ON ENTIRE FUNCTIONS OF IRREGULAR GROWTH DEFINED BY DIRICHLET SERIES

J.S. GUPTA - DK. BHOLA

Lef $f(s) = \sum_{n \in \mathbb{N}} a_n e^{s\lambda_n}$ be an entire function defined by an everywhere convergent Dirichlet series whose exponents are subjected to the condition that $\limsup_{n \to +\infty} \frac{\log n}{\lambda_n} = D \in R_+ \cup \{0\}$ (R_+ is the set of positive reals), and E be the set of all such entire functions. An entire function $f \in E$ is said to be of irregular growth if its lower order is not equal to its Ritt order. In this paper we have studied certain properties of such functions

1. Let E be the set of mappings $f: C \to C$ (C is the complex field) such that the image of an element $s \in C$ under f is $f(s) = \sum_{n \in N} a_n e^{s\lambda_n}$ with

 $\lim_{n\to+\infty}\sup\frac{\log n}{\lambda_n}=D\in R_+\cup\{0\}\ (R_+\text{ is the set of positive reals}),\ \text{and}$ $\sigma_c^f=+\infty\ (\sigma_c^f\text{ is the abscissa of convergence of the Dirichlet series defining }f);$ N is the set of natural numbers $0,1,2,...,< a_n\mid n\in N>$ is a sequence in $C,\ s=\sigma+it$, $\sigma,\ t\in R$ (R is the field of reals), and $<\lambda_n\mid n\in N>$ is a strictly increasing unbounded sequence of nonnegative reals. Since the Dirichlet series defining f converges for each $s\in C,\ f$ is an entire function. Also, since $D\in R_+\cup\{0\}$, we have $(I^1],\ p.168)$ $\sigma_a^f=+\infty\ (\sigma_a^f$ is the abscissa of absolute convergence of the Dirichlet series defining f) and that f is bounded on each vertical line $Re(s)=\sigma_0$.

Let

$$M(\sigma, f) = \sup_{t \in R} \{ |f(\sigma + it)| \}, \forall \sigma < \sigma_c^f$$
 (1.1)

be the maximum modulus of an entire function $f \in E$ on any vertical line $Re(s) = \sigma$,

$$\mu(\sigma, f) = \max_{n \in \mathbb{N}} \{ |a_n| e^{\sigma \lambda_n} \}, \quad \forall \ \sigma < \sigma_c^f$$
 (1.2)

be the maximum term, for $Re(s) = \sigma$, in the Dirichlet series defining f and

$$N(\sigma, f) = \max_{n \in N} \{ n : \mu(\sigma, f) = |a_n| e^{\sigma \lambda_n} \}, \forall \sigma < \sigma_c^f$$
 (1.3)

be the rank of the maximum term.

An entire function $f \in E$ is said to be of irregular growth if its lower order is not equal to its Ritt order. In this paper we study a few results pertaining to such functions.

2. Kamthan has shown ([2], Thm. 4) that:

Theorem A. If $f \in E$ is an entire function of Ritt order $p \in R_+$ and type $T \in R_+$, then

$$\limsup_{\sigma \to +\infty} \frac{\mu'(\sigma, f)}{\mu(\sigma, f) T p e^{\rho \sigma}} \leq e,$$

where μ' is the derivative of μ with respect to σ .

Remark. Theorem A has been proved under condition that D = 0, but it is true for any $D \in R_+ \cup \{0\}$; that is why we have mentioned it in this improved form.

We first show that:

Theorem 1. For every entire function $f \in E$ of Ritt order $p \in R_+$ and type $T \in R_+$,

$$\lim_{\sigma \to +\infty} \inf_{\mu (\sigma, f) \text{ p } T e^{\rho \sigma}} \ge 1. \tag{2.1}$$

Proof. We know ([3], Lemma 1) that, for almost all values of σ ,

$$\frac{\mu'(\sigma,f)}{\mu(\sigma,f)} = \lambda_{N(\sigma,f)}.$$

Let

$$\lim_{\sigma\to+\infty}\sup_{e^{\rho\sigma}}\frac{\lambda_{N(\sigma,f)}}{e^{\rho\sigma}}=\gamma.$$

Then, for an infinite sequence of values of σ , and any given $\varepsilon \in R_+$, $\lambda_{N(\sigma,f)} > (\gamma - \varepsilon) \, e^{\rho \sigma} \geq (pT - \varepsilon) \, e^{\rho \sigma}$, since $\gamma \geq p \, T([^4], \, p. \, 141)$. Hence

$$\lim_{\sigma \to +\infty} \inf \frac{\mu'(\sigma, f)}{\mu(\sigma, f) \rho T e^{\rho \sigma}} \ge 1.$$

Next we show that:

Theorem 2. For every entire function $f \in E$ of irregular growth of Ritt order $p \in R_+$ and type $T \in R_+$,

$$\lim_{\sigma^{2} + \infty} \frac{\mu'(\sigma, f)}{\mu(\sigma, f) \, p \, T \, e^{\rho \sigma}} = 1 \, . \tag{2.2}$$

Proof. It is known ([5], p.250) that, for entire functions $f \in E$ of irregular growth,

$$\lim_{\sigma\to+\infty} \ \frac{\sup}{\inf} \ \frac{\log \mu \left(\sigma,f\right)}{e^{\rho\sigma}} = \ \frac{T}{0}.$$

Hence, for any $\varepsilon \in R_+$ and sufficiently large σ ,

$$- \varepsilon e^{\rho \sigma} < \log \mu (\sigma, f) < (T + \varepsilon) e^{\rho \sigma}. \tag{2.3}$$

Also, since ([6], p.67) log μ (σ , f) is an increasing convex function of σ , we may write, for arbitrary σ , σ_0 ($\sigma > \sigma_0$),

$$\log \mu \left(\sigma, f\right) = \log \mu \left(\sigma_{0}, f\right) + \int_{\sigma_{0}}^{\sigma} \frac{\mu'\left(x, f\right)}{\mu\left(x, f\right)} dx. \tag{2.4}$$

Now, for any $k \in R_+ \cup \{0\}$, we have

$$\int_{\sigma}^{\sigma+k} \frac{\mu'(x,f)}{\mu(x,f)} dx = \int_{0}^{\sigma+k} \frac{\mu'(x,f)}{\mu(x,f)} dx - \int_{0}^{\sigma} \frac{\mu'(x,f)}{\mu(x,f)} dx$$

$$= \log \mu(\sigma + k,f) - \log \mu(\sigma,f), \text{ in view of (2.4)}$$

$$< (T + \varepsilon) e^{\rho(\sigma+k)} + \varepsilon e^{\rho\sigma}, \text{ in view of (2.3)}$$

$$= e^{\rho\sigma} (Te^{\rho k} + \varepsilon (e^{\rho k} + 1)). \tag{2.5}$$

But

$$\int_{\sigma}^{\sigma+k} \frac{\mu'(x,f)}{\mu(x,f)} dx \ge \frac{\mu'(\sigma,f)}{\mu(\sigma,f)} k. \tag{2.6}$$

Hence, from (2.5) and (2.6),

$$\frac{\mu'(\sigma,f)}{\mu'(\sigma,f)\,e^{\rho\sigma}} < \frac{Te^{\rho k} + \varepsilon\,\left(e^{\rho k} + 1\right)}{k} \,. \tag{2.7}$$

Since k is arbitrary but belongs to $R_+ \cup \{0\}$ and the left side of (2.7) is independent of k, it follows that

$$\limsup_{\sigma \to +\infty} \frac{\mu'(\sigma, f)}{\mu(\sigma, f) e^{\rho \sigma}} \le p T. \tag{2.8}$$

Similarly, we can show that

$$\lim_{\sigma \to +\infty} \inf \frac{\mu'(\sigma, f)}{\mu(\sigma, f) e^{\rho \sigma}} \ge p T.$$
 (2.9)

Combining (2.8) and (2.9), we get (2.2).

Remarks. (i) With the same argument, it can be shown that Theorem 2 is true for entire functions $f \in E$ of perfectly regular growth.

- (ii) We conjecture, although we have not been able to prove, that Theorem 2 is true for entire functions $f \in E$ of regular growth but not of perfectly regular growth.
- 3. In the end we give a result regarding ordinary proximate linear order of entire functions $f \in E$ of irregular growth. We first recall its definition.

Definition ([7], p.64). A nonnegative extended real valued function ϕ of reals σ is called an ordinary proximate linear order of an entire function $f \in E$ of Ritt order $p \in R_+$, if

- a) ϕ is eventually a continuous function,
- b) ϕ is differentiable almost everywhere except at isolated points at which the left and right derivatives exist,
 - c) $\lim_{\sigma \to +\infty} \sigma \phi(\sigma) = 0$,
 - d) $\limsup_{\sigma \to +\infty} \phi(\sigma) = p$, and
 - e) $\limsup_{\sigma \to +\infty} \frac{\log M(\sigma, f)}{e^{\sigma \phi(\sigma)}} = 1.$

Theorem 3. For every entire function $f \in E$ of irregular growth of Ritt order $p \in R_+$, and ordinary proximate linear order ϕ , and any $m \in Z_+$ (Z_+ is the set of positive integers),

$$\lim_{\sigma \to +\infty} \inf \frac{\lambda_{N(\sigma, f^{(m)})}}{e^{\sigma_{\phi}(\sigma)}} = 0. \tag{3.1}$$

Proof. Let f be of lower order λ . Then $\lambda < p$. Since, by definition,

$$\lambda = \lim_{\sigma \to +\infty} \inf \frac{-\log \log M(\sigma, f^{(m)})}{\sigma}$$
,

and ([8], Theorem 2.7)

$$\lim_{\sigma^{+} + \infty} \inf \frac{\log \log M(\sigma, f^{(m)})}{\sigma} = \lim_{\sigma^{+} + \infty} \inf \frac{\log \lambda_{N(\sigma, f^{(m)})}}{\sigma},$$

we have

$$\lambda = \lim_{\sigma \to +\infty} \inf \frac{\log \lambda_{N(\sigma, f^{(m)})}}{\sigma}.$$

Therefore, for any $\varepsilon \in R_+$ and sufficiently large σ , we get

$$\lambda_{N(\sigma, f^{(m)})} > e^{(\lambda - \varepsilon)\sigma}$$
, (3.2)

and, for an infinite sequence of values of σ ,

$$\lambda_{N(\sigma, f^{(m)})} < e^{(\lambda + \varepsilon)\sigma}$$
 (3.3)

Dividing (3.2) and (3.3) by $e^{\sigma\phi(\sigma)}$ and proceeding to limit we get (3.1) in view of condition (d) of Definition.

Remark. This theorem generalizes and improves upon a result of Srivastava and Singh ([5], Lemma 2).

REFERENCES

[1] MANDELBROJT : Dirichlet Series, The Rice Institute Pamphlet 31 (1944), No.4, Houston.

[2] KAMTHAN, P.K. : On the order and type of entire Dirichlet series, Math. Student 33 (1965), 89-94.

[*] SRIVASTAVA, R.S.L. : On the maximum term of an integral function defined and GUPTA, J.S. : by Dirichlet series, Math. Ann. 174 (1967), 240-246.

[4] SRIVASTAVA, K.N.

: On the maximum term of an entire Dirichlet series,
Proc. Nat. Acad Sci. (India), Allahabad, 27 (1958),
134-146.

[5] SRIVASTAVA, R.S.L. : On the λ-type of entire function of irregular growth defined by Dirichlet series, Monatsh. Math. 70 (1966), 249-255.

[6] YU, C.Y. : Sur les droites Borel de certaines fonctions entières, Ann. Sci. l'Ecole Norm. Sup. 68 (1951), 65-104.

[7] GUPTA, J.S. : On the ordinary proximate linear order of integral functions defined by Dirichlet series, Monatsh. Math. 70 (1966), 111-117.

[8] RAHMAN, Q.I. : On the maximum modulus and coefficients of an entire Dirichlet series, Tohoku Math. J. (2) 8 (1956),

108-113.

UNIVERSITY OF JAMMU, JAMMU-180001, J AND K, INDIA

ÖZET

Bu çalışmada, eksponentleri

$$\limsup_{n \to +\infty} \frac{\log n}{\lambda_n} = D \in R_+ \cup \{0\} \ (R_+ \text{ pozitif reel sayılar cümlesi})$$

koşuluna uyan ve her yerde yakınsak bir Dirichlet serisi ile belirtilen

$$f(s) = \sum_{n \in N} a_n e^{s \lambda_n}$$

tam fonksiyonlarının bazı özellikleri incelenmektedir.