İstanbul Ünİv. Fen Fak. Mec. Seri A, **46-47 (1981-1982), 73 - 79 73**

ON THE (p, q) -ORDER AND (p, q) -TYPE OF ENTIRE FUNCTIONS

S. *K.* **VAIS H - G . PRASA D**

In this paper, we have considered a unified mean $P_{b,k}(r)$ for an entire function $f(z) = \sum a_n z^n$, $|z| = r$ and have obtained certain growth relations

on (p, q) -order and (p, q) -type of $f(z)$. We have also studied the results **pertaining to the means** $I_8(r)$ and $P_{6,k}(r)$ for the *n* th derivative $f^{(n)}(z)$ of an entire function $f(z)$. It will be assumed throughout that all entire func**tions under consideration are of same index pair** *{p, q).*

to **1. Introduction.** The (p, q) -order $p(p, q)$ of an entire function $f(z) = \sum_{q} a_q z^q$,

having an index pair (p, q) , $p = q = 1$ is given by [\int] :

$$
\limsup_{r \to \infty} \frac{\log^{|P|} M(r)}{\log^{|Q|} r} = p(p, q) = \rho, \qquad (1.1)
$$

r-m Ing material -and the function *f(z)* having *(p,* g>order p *(b <* p < °°) is said to be of (p, (/)-type *T(^P ,q)[²* $T(p, q)$ [²], if

$$
\limsup_{r \to \infty} \frac{\log^{[p-1]} M(r)}{(\log^{[q-1]} r)^{\circ}} = T(p, q) \equiv T,
$$
\n(1.2)

where $M(r) = \max |f(z)|$, $\log^{10} x = x$, $\log^{10} x = \log (\log^{10} x - 1)$ for $0 < \log^{10} x - 1$, $x < \infty$, $b = 1$ if $p = q$ and $b = 0$ if $p > q$.

Let us define

$$
I_{\delta}(r) = \frac{1}{2\pi} \int\limits_{0}^{2\pi} \left| f(re^{i\phi}) \right|^\delta d\theta, \ 0 < \delta < \infty \tag{1.3}
$$

and

$$
P_{\delta,k}^{m}(r,f) = P_{\delta,k}(r,f) = P_{\delta,k}(r) =
$$

=
$$
\frac{k+1}{2\pi (\log^{[m]}r)^{k+1}} \int_{c}^{r} \int_{0}^{2\pi} \frac{|f(xe^{i\theta})|^{s} (\log^{[m]}x)^{k}}{V_{[m-1]}(x)} dx d\theta,
$$
 (1.4)

where $-1 < k < \infty$; $m = 0, 1, 2, ...$; c is a constant depending on m and

$$
V_{[m]}(x) = \prod_{i=0}^{m} \log^{[i]}x
$$

Our aim in this paper is to investigate certain growth relations of the means $I_8(r)$ and $P_{8,k}(r)$ for an entire function of (p, q) -order p and (p, q) -type T. It will be assumed throughout that all entire functions under consideration are of same index pair (p, q) . For the definition of index pair etc. see Juneja et al. $[1], [2]$.

2. Theorem 1. If $f_1(z)$ and $f_2(z)$ are two entire functions of (p, q) -orders p_1 and p_2 ($0 \leq p_1 \leq \infty$, $0 \leq p_2 \leq \infty$), then a sufficient condition for $p_1 = p_2$ is that

$$
\lim_{r \to \infty} \sup_{(P_{\delta,k}(r,f_2) - P_{\delta,k}(r,f_1))
$$
\n(2.1)

exists and is finite. The condition is also necessary if $0 \leq p_1 < \infty$ and $0 \leq p_2 < \infty$.

Proof. We suppose the superior limit in (2.1) exists and is equal to β , that is

$$
\limsup_{r\to\infty} (P_{\delta,k}(r,f_2)-P_{\delta,k}(r,f_1))=\beta.
$$

Then for any $\varepsilon > 0$ and sufficiently large r,

$$
P_{\delta,k}(r,f_2)-P_{\delta,k}(r,f_1)<\beta+\epsilon,
$$

or,

$$
\frac{P_{\delta,k}(r,f_2)}{P_{\delta,k}(r,f_1)}-1<\frac{\beta+\varepsilon}{P_{\delta,k}(r,f_1)}.
$$

Hence,

$$
\lim_{r\to\infty}\left\{\frac{P_{\delta,k}(r,f_2)}{P_{\delta,k}(r,f_1)}-1\right\}=0,
$$

since $P_{\delta,k}(r)$ increases with r. Therefore, as $r \rightarrow \infty$

$$
P_{\delta,k}(r,f_2) \sim P_{\delta,k}(r,f_2) \,, \tag{2.2}
$$

or $[$ 4 $],$

$$
p_2 = \limsup_{r \to \infty} \frac{\log^{[p]} P_{\delta,k}(r, f_2)}{\log^{[q]} r} = \limsup_{r \to \infty} \frac{\log^{[p]} P_{\delta,k}(r, f_1)}{\log^{[q]} r} = \rho_1,
$$

showing that the condition (2.1) is sufficient.

Now, we establish the necessary part of the theorem by showing that if $p_1 \neq p_2$, then (2.1) is not finite. We suppose that $p_2 > p_1$, then

$$
\limsup_{r\to\infty}\frac{\log^{\lceil p\rceil}P_{\delta,k}(r,f_2)}{\log^{\lceil q\rceil}r}\geq \limsup_{r\to\infty}\frac{\log^{\lceil p\rceil}P_{\delta,k}(r,f_1)}{\log^{\lceil q\rceil}r}
$$

or,

ON THE (p, q) **-ORDER AND** (p, q) **-TYPE OF ENTIRE FUNCTIONS** 75

$$
\limsup_{r\to\infty}\frac{\log^{\lceil p\rceil}P_{\delta,k}(r,f_2)}{\log^{\lceil q\rceil}r}=\limsup_{r\to\infty}\frac{\log^{\lceil p\rceil}P_{\delta,k}(r,f_1)}{\log^{\lceil q\rceil}r}=a>0.
$$

This gives

$$
\limsup_{r\to\infty}\log\left\{\frac{\log^{[p-1]}P_{\delta,k}(r,f_2)}{\log^{[p-1]}P_{\delta,k}(r,f_1)}\right\}=\infty.
$$

Hence,

$$
\limsup_{r \to \infty} \left\{ \frac{\log^{[p-1]} P_{8,k}(r, f_2)}{\log^{[p-1]} P_{8,k}(r, f_1)} - 1 \right\} = \infty
$$

from which it follows that (2.1) is not finite.

Theorem 2. If $f_i(z)$ and $f_2(z)$ are two entire functions of same (p, q) -order p ($b < p < \infty$) and perfectly regular (p, q)-growth of (p, q)-types T_1 $(0 \leq T_1 < \infty)$ and T_2 $(0 \leq T_2 < \infty)$, respectively, then, as

$$
\log \left\{ \frac{\log^{[p-2]} P_{\delta,k}(r,f_1)}{\log^{[p-2]} P_{\delta,k}(r,f_2)} \right\} = \left\{ \begin{matrix} 0 \ (\log^{[q-1]} r)^{\rho} \text{ if, and only if } T_1 \neq T_2 \\ 0 \ (\log^{[q-1]} r)^{\rho} \text{ if, and only if } T_1 = T_2 \end{matrix} \right. \tag{2.3}
$$

Proof. For every entire function $f(z)$ of (p, q) -order $p (b < p < \infty)$ and perfectly regular (p, q) -growth of type T, it follows $[4]$ that

$$
\lim_{r \to \infty} \frac{\log^{[p-1]} P_{\delta,k}(r)}{(\log^{[q-1]} r)^{\circ}} = T. \tag{2.4}
$$

Making use of (2.4) for the entire functions $f_1(z)$ and $f_2(z)$, and subtracting the resulting expressions, we find

$$
\lim_{r\to\infty}\frac{\log\left\{\frac{\log^{\lfloor p-2\rfloor}P_{\delta,k}(r,f_1)}{\log^{\lfloor p-2\rfloor}P_{\delta,k}(r,f_2)}\right\}}{\left(\log^{\lfloor q-1\rfloor}P\right)^{\delta}}=T_1-T_2,
$$

from which the result in (2.3) is immediate.

3. In this section we shall study results pertaining to the means $I_0(r)$ and $P_{\delta,k}(r)$ for the *n* th derivative $f^{(n)}(z)$ of an entire function $f(z)$. The function $I_{\delta}(r)$ is defined as follows :

$$
I_{\delta}(r, f^{(\theta)}_{\cdot}) = \frac{1}{2\pi} \int_{0}^{2\pi} \left| f^{(\theta)}_{\cdot}(r \, e^{i\theta}) \right|^{s} d\theta \, , \, 0 < \delta < \infty \, . \tag{3.1}
$$

Theorem 3. If $I_8(r, f^{(n)})$ and $P_{8,k}(r, f^{(n)})$ are the means of the *n* th derivative $f^{(n)}(z)$ of an entire function $f(z)$, then, for any k ($-1 < k < \infty$) and $0 < r_1 < r_2 < \infty$,

PRODUCED AND PRODUCED ASSESSMENT OF A REPORT OF A

$$
I_{\delta}(r_1, f^{(n)}) \leq \frac{(\log^{[m]} r_2)^{k+1} P_{\delta,k}(r_2, f^{(n)}) - (\log^{[m]} r_1)^{k+1} P_{\delta,k}(r_1, f^{(n)})}{(\log^{[m]} r_2)^{k+1} - (\log^{[m]} r_1)^{k+1}} \leq
$$

$$
\leq I_{\delta}(r_2, f^{(n)}).
$$
 (3.2)

Proof. From (1.4), we have

$$
P_{\delta,k}(r, f^{(n)}) = \frac{k+1}{2\pi (\log^{(m)}r)^{k+1}} \int_{c}^{r} \int_{0}^{2\pi} \frac{|f^{(n)}(x e^{i\theta})|^{\delta} (\log^{[m]}x)^{k}}{V_{[m-1]}(x)} dx d\theta
$$

=
$$
\frac{k+1}{(\log^{[m]}r)^{k+1}} \int_{c}^{r} \frac{I_{\delta}(x, f^{(n)}) (\log^{[m]}x)^{k}}{V_{[m-1]}(x)} dx.
$$

Therefore,

$$
P_{\delta,k}(r_1, f^{(n)}) = \frac{k+1}{(\log^{|m|} r_1)^{k+1}} \int_c^{r_1} \frac{I_\delta(x, f^{(n)}) (\log^{|m|} x)^k}{V_{[m-1]}(x)} dx \qquad (3.3)
$$

and

$$
P_{\delta,k}(r_2, f^{(n)}) = \frac{k+1}{(\log^{[m]}r_2)^{k+1}} \int_c^{\epsilon_2} \frac{I_{\delta}(x, f^{(n)}) (\log^{[m]}x)^k}{V_{[m-1]}(x)} dx.
$$
 (3.4)

From (3.3) and (3.4), we find

$$
(\log^{\{m\}} r_2)^{k+1} P_{\delta,k} (r_2, f^{(m)}) - (\log^{\{m\}} r_1)^{k+1} P_{\delta,k} (r_1, f^{(m)}) = \tag{3.5}
$$

$$
= (k+1) \int_{r_1}^{r_2} \frac{f_s(x, f^{(n)}) (\log^{[m]} x)^k}{V_{[m-1]}(x)} dx \le
$$

$$
\le I_s(r_2, f^{(n)}) (\log^{[m]} r_2)^{k+1} - (\log^{[m]} r_1)^{k+1})
$$

and

$$
(\log^{[m]} r_2)^{k+1} P_{\delta,k}(r_2, f^{(n)}) - (\log^{[m]} r_1)^{k+1} P_{\delta,k}(r_1, f^{(n)}) \ge
$$
\n
$$
\ge I_{\delta}(r_1, f^{(n)}) \left((\log^{[m]} r_2)^{k+1} - (\log^{[m]} r_1)^{k+1} \right). \tag{3.6}
$$

(3.5) and (3.6) give the desired result.

Theorem 4. If $I_8(r, f^{(n)})$ and $P_{8,k}(r, f^{(n)})$ are the means of the *n* th derivative $f^{(n)}(z)$ of an entire function $f(z)$ and $M(r, f^{(n)})$ is the maximum of $|f^{(n)}(z)|$ $| z | = r$, then for any $k > -1$,

$$
\limsup_{r \to \infty} \frac{P_{\delta,k}(r, f^{(n)})}{(M(r, f^{(n)}))^{\delta}} \leq \limsup_{r \to \infty} \frac{P_{\delta,k}(r, f^{(n)})}{I_{\delta}(r, f^{(n)})} \leq 1.
$$
 (3.7)

ON THE (p, q) -ORDER AND (p, q) -TYPE OF ENTIRE FUNCTIONS

Proof. We have

$$
P_{8,k}(r, f^{(n)}) = \frac{k+1}{(\log^{|m|}r)^{k+1}} \int_{c}^{r} \frac{I_{8}(x, f^{(n)}) (\log^{|m|}x)^{k}}{V_{1m-1}J(x)} dx
$$

= $I_{8}(r, f^{(n)}) \left[1 - \left\{\frac{\log^{|m|}c}{\log^{|m|}r}\right\}^{(k+1)}\right],$

therefore,

$$
\limsup_{r \to \infty} \frac{P_{\delta,k}(r, f^{(n)})}{I_{\delta}(r, f^{(n)})} \leq 1.
$$
\n(3.8)

From (3,1), we get

$$
I_{\delta}(r,f^{(n)}) \leq \{M(r,f^{(n)})\}^{\delta},
$$

it follows that

$$
\frac{P_{s,k}(r,f^{(n)})}{I_{\delta}(r,f^{(n)})} \ge \frac{P_{\delta,k}(r,f^{(n)})}{(M(r,f^{(n)}))^{\delta}},
$$
\n(3.9)

whence, in view of (3.8)

$$
\limsup_{r \to \infty} \frac{P_{\delta,k}(r, f^{(n)})}{(M(r, f^{(n)}))^{\delta}} \leq \limsup_{r \to \infty} \frac{P_{\delta,k}(r, f^{(n)})}{I_{\delta}(r, f^{(n)})} \leq 1.
$$

Theorem 5. For a class of entire functions for which log $I_0(r)$ is an increasing convex function of r log r, we have, for every arbitrary small $\varepsilon > 0$ and $r > r_0$,

$$
\frac{P_{\delta,k}(r,f^{(1)})}{P_{\delta,k}(r)}>(1-\epsilon)\frac{I_{\delta}(r-\alpha,f^{(1)})}{I_{\delta}(r-\alpha)}
$$

where α is fixed and > 0 .

To prove this theorem we need the following lemma : **Lemma 1** [³]. For $r > r_0$, we have

$$
I_{\delta}(r, f^{(1)}) \geq I_{\delta}(r) \left\{ \frac{\log I_{\delta}(r)}{\delta r \log r} \right\}^{\delta}.
$$

Proof of Theorem 5. From (1.4), we have

$$
P_{\delta,k}(r, f^{(1)}) > \frac{k+1}{(\log^{[m]}r)^{k+1}} \int_{r-\alpha}^{r} I_{\delta}(x, f^{(1)}) (\log^{[m]}x)^{k} dx \geq
$$

$$
\geq \frac{I_{\delta}(r-\alpha, f^{(1)})}{I_{\delta}(r-\alpha)} \left[\frac{k+1}{(\log^{[m]}r)^{k+1}} \int_{r-\alpha}^{r} I_{\delta}(x) (\log^{[m]}x)^{k} dx \right],
$$

77

since, by Lemma 1, $I_8(r, f^{(1)}) / I_8(r)$ increases with *r*. Hence

$$
P_{\delta,k}(r, f^{(1)}) > \frac{I_{\delta}(r - \alpha, f^{(1)})}{I_{\delta}(r - \alpha)} \left[\frac{k + 1}{(\log^{[m]}r)^{k+1}} \left\{ \int_{c}^{r} - \int_{c}^{r - \alpha} \left\{ \frac{I_{\delta}(x) (\log^{[m]}x)^{k}}{V_{[m-1]}(x)} dx \right\} \right\}
$$

=
$$
\frac{I_{\delta}(r - \alpha, f^{(1)})}{I_{\delta}(r - \alpha)} \left[P_{\delta,k}(r) - \left\{ \frac{\log^{[m]}(r - \alpha)}{\log^{[m]}r} \right\}^{k+1} P_{\delta,k}(r - \alpha) \right].
$$

Now, from the definitions of $I_8(r)$ and $P_{\delta,k}(r)$, we get

$$
\log \left[\left\{ \frac{\log^{[m]} r}{\log^{[m]} (r-\alpha)} \right\}^{k+1} \frac{P_{\delta,k}(r)}{P_{\delta,k}(r-\alpha)} \right] = \int_{r-\alpha}^{r} \frac{I_{\delta}(x)}{P_{\delta,k}(x) V_{[m]}(x)} dx.
$$

Hence,

$$
\exp\left[\frac{I_{\delta}(r-\alpha)}{P_{\delta,k}(r-\alpha)}\left(\log^{[m+1]}r-\log^{[m+1]}(r-\alpha)\right)\right] \leq
$$

$$
\leq \left\{\frac{\log^{[m]}r}{\log^{[m]}(r-\alpha)}\right\}^{k+1} \frac{P_{\delta,k}(r)}{P_{\delta,k}(r-\alpha)} \leq
$$

$$
\leq \exp\left[\frac{I_{\delta}(r)}{P_{\delta,k}(r)}\left(\log^{[m+1]}r-\log^{[m+1]}(r-\alpha)\right)\right].
$$

Therefore,

$$
P_{\delta,k}(r-\alpha)=o(P_{\delta,k}(r)),
$$

a a complete de la completa de la completa de la completa de la completa de la completa de la completa de la c

and so, we find, for $r > r_0$,

$$
P_{\delta,k}(r,f^{(1)}) > (1-\epsilon) P_{\delta,k}(r) I_{\delta}(r-\alpha, f^{(1)})/I_{\delta}(r-\alpha) .
$$

Finally we show that :

Theorem 6. For a class of entire functions for which log $I_5(r)$ is an increasing function of *r* log *r,* we find

$$
\frac{P_{\delta,k}(r,f^{(1)})}{P_{\delta,k}(r)} \leqq \frac{I_{\delta}(r,f^{(1)})}{I_{\delta}(r)}.
$$

Proof. We have

ON THE (p, q) **-ORDER AND** (p, q) **-TYPE OF ENTIRE FUNCTIONS** 79

$$
P_{8,k}(r, f^{(1)}) = \frac{k+1}{(\log^{[m]}r)^{k+1}} \int_{c}^{r} \frac{I_{8}(x, f^{(1)})}{I_{8}(x)} \frac{I_{8}(x) (\log^{[m]}x)^{k}}{V_{[m-1]}(x)} dx \leq
$$

$$
\leq \frac{I_{8}(r, f^{(1)})}{I_{8}(r)} \left\{ \frac{k+1}{(\log^{[m]}r)^{k+1}} \int_{c}^{r} \frac{I_{8}(x) (\log^{[m]}x)^{k}}{V_{[m-1]}(x)} dx \right\} =
$$

$$
= \frac{I_{8}(r, f^{(1)})}{I_{8}(r)} P_{8,k}(r),
$$

since $I_8(x, f^(t))/I_8(x)$ is an increasing function and this proves the result.

REFERENCE S

DEPARTMENT OF MATHEMATICS UNIVERSIT Y O F ROORKE E ROORKEE-24767 2 (U.P.) INDI A

ÖZE T

Bu çalışmada bir $f(z) = \sum_i a_i z^n$, $|z| = r$, tam fonksiyonuna ait bir $P_{\delta,k}(r)$ $n=0$ **birleştirilmiş ortalaması gözönüne alınmakta ve** $f(z)$ **in** (p, q) **mertebe ve** *(p, q)* **tipine ilişkin bazı büyüme bağıntıları elde edilmektedir.**