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HARMONIC FUNCTIONS ON FINSLER SPACES
5. DRAGOMIR. - B. LARATO

Let (M™c), E) be a Finsler space of scalar curvature ¢=20 and
vanishing mixed torsion vector Pj= 33 NJ’; —F_g,.. All A-harmonic functions
J(x, ¥y on T(M"™())-{0} which are positive homogeneous of degree r in the ys
and whose f-gradient has compact support, are given by f=a E"'?;acIR.
The image of a totally-geodesic immersion of a Finsler space in a Landsberg
space M™ is not contained in any /-convex supporting set of M™HP .

1. INTRODUCTION

The induced bundle = ! T'(M) —— V(M) of a Finsler space M carries a
naturally defined Riemann bundle metric gy; its Sasaki lift G,z makes V(M)
into a Riemann space and the horizontal distribution N (of the unique regular
Cartan connection) appears to be precisely the (G, z)-orthogonal complement of
the vertical distribution on ¥{(M). Moreover V(M) has a natural orientation
arising from the almost complex structure associated with N, cf. ref. [*]. The
choice of V(M) = T(M) — {0} (rather than the whole of T(M)) is prompted by
the lack of differentiability of the Finsler energy function (only C* on T(M))
along the zero section (consequently g;; are discontinuous at yi = 0).

The study of the geometry of (V(M), G,p5) based on the Riemannian machin-
ery has a highly complicate character, see [*?]. In turn, in the framework of
Finsler geometry, the presence of the (generally non-holonomic) Pfaffian system
N on V(M) yields decompositions of tensor fields on V(M) in horizontal, vertical
and mixed components (with respect to T(V{M)) = N @ Ker (dx)). For instance,
the curvature tensors R}k,,, , P}km and .Sj,cm occuring in E.CARTAN’s theories
{cf. [’]) are nothing but the horizontal, mixed and vertical parts of a unique
7 T(M) - valued curvature form R (of the Cartan connection vy in =™ T(M));
these are usually handled independently, by analogy with their Riemannian
counterparts.

In the present note we apply E.Cartan’s ideas (cf. also [']) and decompose
the Lap.ace-Beltrami operator (on V(M) associated with the Sasaki metric.
This procedure gives rise to two differential operators A* and A*. We prove an
analogue of the classical E.Hopf’s lemma for the operator A*. Precisely, we
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determine all positively homogeneous (of degree r) differentiable functions on
V(M) which satisfy A%f = 0 everywhere, and whose h-gradient has compact
support in V(M), provided that M is a Finsler space of non-zero scalar curvature
(in the sense of [°]) having a vanishing Vranceanu vector P;. These have the
form f=a L', ac IR, where L is the fundamental Lagrangian fonction of the
Finsler space, and A%f=0 (which agrees with L;; = 0, cf. ref. [¥, p.115]).
In particular, Finsler spaces of non-zero scalar curvature do not admit A-harmonic
(i.e. A*f =0) positive homogeneous functions of degree zero and with
supp (grad® f) compact (other than the constant functions), provided P;—0, This
is based on a theorem of [**], where the meaning of the equations -»§£:0, l=i=n,
on a Finsler space is explained. :

For a given transformation ¢ of M we show that A* is invariant under dd if
and only if ¢ is an isometry of the Finsler space.

In § 5, as an application of the notions in § 1-§ 3, we consider totally-geod-
esic submanifolds M" of a Landsberg space M=tr, Then M" is a Landsberg
space (with the induced Finsler structure) and has a vanishing (horizontal)
second fundamental form H%,. This is analogous to harmonicity (of the given
immersion f: M"—— M"tr) in Riemannian geometry, cf. [*’]. We prove that
S(M™) cannot be contained in a A-convex supporting subset of M#+7 provided
that M” is totally-geodesic. For the theory of submanifolds in Finsler spaces see

[*% 71, 1 [*1-
2. THE LAPLACE-BELTRAMI OPERATOR OF THE SASAKI METRIC

Let (M, E) be an n-dimensional Finsler space; here E: T(M) —» IR de-
notes the Finsler energy, of, ['%], ch. I, E = L2, Let (I, x/) be a local coordinate
system and (n! (U), ', ») the induced coordinates on V(M) = T(M) —{0},

where @ : V(M ) — M denotes the natural projection. Let g;; = % A2 E[3y gy,

be the associated Finsler metric (0, 2)-tensor field. Let & be the distribution
on V(M) given by the Pfaffian system d3’ J- Njdx’ = 0, where Nj are given
by (18.15) in [, p.118]. Let G,y be the Sasaki fift of g, to V(M), of. [, p.111].

. ]
We may ose the non-holonomic frame (— , i) on V(M) such as to express

& xi 3 yr
the Laplace-Beltrami operator A of the Riemannian manifold (V(M), G45) (on
functions); one obtains :

1 3 .8 1 " et O
Af = }—B——(gg"- —f.)—I-?—.{gg"a—f.) — gM Gy — (2.1)

3
ay'\ 9y 0 x7
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where G are the coefficients of the Berwald connection, cf. (18.14) in [, p.118] .

Also we use the notations —8— = f _ N = d » g=det(g;)). Here fe C=(V(a1)).
dx'  gaxf a3

Our (2.1) ‘suggests the following definitions :

1 & Y 4
Al — - N
/ v B(Q@SJ
1 9 /i af @2)
A"f:_____( ,-,-__')_
Ve £y

1t is easily seen that the definitions above do not depend upon the choice of lo-
cal coordinates, such that (2.2) gives two globally defined differential operators

on V(M). We also set grad® f=g¥ giX where X{v) = (u, —éa—] ) , for
X (i)

any #& w1 ({7); the definition of grad” f does not depend upon the choice of

local coordinates, and grad? f is refered to as the h-gradient of f

Let ©! T(M) — V(M) be the pullback bundle of T{M) by w. Note
that grad® is a = T(M)-valued IR-linear mapping on C*(V(M)). If X is a
cross-section in wlT(M) (e a Finsler vector field on M), then locally

X=X (x,y) X;,. We set div* X = \/ly ) (/g X7). The definition of divt X
g

is independent of the choice of local coordinates on M, note that Al f=
div? (grad® f). A function fe C* (V(M)) is said to be h-harmonic if AMf=0.

Let " be the exterior h-differentiation operater on Finsler forms, c.f. [*°], and

also [F]. If fe C= (V(M)), then d*f— »g—f;a\:f, where dx'|, = (u, dx?| nq), for
x[

any zew ! (U). It is known that 4" satisfies the complex condition (d*? =0
iff Ry = 0, where Rj is given by (17.8) in [*, p.112].

Note that %! 7(M) becomes a Riemannian bundle in a natural manner,
cf. also [']. Let g denote its bundle metric. This extends in a natural manner

to © 7 THM) — V(M), where T¥(M) denotes the cotangent bundle over M,
and the following formulae hold :

divh (fX) = fdivi ¥ + BX) f
At(f)=2fAf+2g(d@f,d" )

2.3)

for any fe C* (V(M)) and any Finsler vector field X on M. Here

o . 8
B: =1T(M)— N denotes the horizontal lift, ie. B X, = —

Sxi °
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3. A DIVERGENCE FORMULA
Let X = (X7, j(‘) , Xi= Nj' X7 be a horizontal tangent vector field on
Vi(M). Its divergence (with respect to the Sasaki metric) is given by :
div X = div? ¥ + X (log\/g) — G, X/ G.)
where X — L X. Here L: T(¥(M)) — 1L T(M) denotes the bundle morphism

8' =X, L-Lii =0. Let P,':k be the mixed P! -torsion of the

ax’ dy

given by L

Cartan connection; consider also P; = P{, This is refered to as the Vranceanu
vector associated with the P! -torsion. See [**]. Using the formulae (1.12) - (1.14)
in [*, p.235], one obtains :

i é .
Gy = P; + 7 (iog/g). | REE)
Using (3.2) to substitute in {2.1), (3.1), we obtain :

Af=Arf4 N ftg(df,d log\/g) — g @ f, P)

_ B B - (33)
divpX)=div*X—PX.

Here d'f = 531 dxi , PX = P, X", By Green’s theorem, e.g. [*, p.281],

yl
vol. I, one has:

_[ @div)¥1—0,
VM)

provided that X has compact support, Here *1 denotes the canonical Rieman
nian measure associated with the Sasaki metric. Also V(M) is orientable in a natu-
ral manner due to the presence of the almost complex structure J X = Y X,
Jy X=— Bf, cf. [*]. Here v : 77 T(M)— Ker {(d =) denotes the vertical lift,

ie. 7X, — 53— . Let fe C° (M(M)) such that X — grad® f has compact
¥ \
support. Then (3.3) leads to
[ @y = f (P X) *1. (3.4)
V(AL V(M)

Suppose from now on that (M, E) cbeys P = 0. Let us assume that A* f > 0,
Then by (3.4) the function f is A-harmonic. Also

0= fAh(fz/z)*szfAhf*l_l_[ Hd”f[!z*l

F(M) VM) C W)
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) ) .
and consequently ~--—f—0, 1=i=n. Let us assume now that (M, F) is a Finsler

.

X

space of scalar curvature ¢, i.e. Rl = kyc; — K¢, , where c,-:% E—{?;T+

+ ALY Ly=5 2L Bi—=g% by, B =gy — L5, of [%, p.168]. Suppose
F 3 ) 2 ayj714'g i s M Bij it . s P s pp

also that f is positive homogeneous of degree r in the y”s and ¢ # 0. By a
result of [*], since f is h-covariaut constant, we obtain f = a L*, for some real
constant a. We have obtained the following generalization of the thecrem of
E.Hopf (cf. e.g. ref. [*°, p. 338], vol. IT);

Theorem A. Let (M, E) be a Finsler space of scalar curvature ¢, ¢ # 0,
having a vanishing Vianceanu vector P and fe C* (V(M)) such that AFf = 0
and X = grad’ f has compact support in V{M). If f is positive homogeneous of
degree r in the directional arguments then f= a E"  ac IR (and A'f=10). In
particular, a Finsler space of non-zero scalar curvature obeying P =0 has no
h-harmonic positive homogeneous function of degree zero, except for constant
Junctions.

Remarks. i) Our theorem A might be completed for the case c=0 as
follows: if ¢ =0 then Rj = 0 and the Pfaffian system dy' 4 Njdx/ =0 is
integrable. Then f|; =0 implies that f is constant on each maximal integral
manifold of the non-linear conmection N of the Cartan connection, see ref,

. 5 F
23 .
%, p.555]. Here f|; 5 o7
ii) Note that the assumption on the Vranceanu vector in theorem A may

be relaxed to ] (P')f) *] == 0 for any gradient Finsler vector field X on M.
V{a)

iiiy A Landsberg space is a Finsler space whose Berwald connection
(N}, Gl ,0) is h-metrical, of, [*, p.162]. If (M, E) is Landsberg, then P} =0,
by a result in [*']. Therefore the hypothesis P, = 0 in our theorem 4 is verified
(the converse is not true in general), Let M” (c), ¢ # 0, be a Landsberg space of
scalar curvature c. We distinguish two cases; if # > 2 then by the theorem of
S.NUMATA [}, M"(c) is a Riemannian manifold of constant sectional
curvature, and if this is the case on one hand theorem A contains the classical
Hopf lemma (when f does not depend upon the directional arguments), and on
the other one obtains the following :

Corollary. Let (M"(c), g,;(x)) be a real space form, n>2, ¢#0. Any positive
homogeneous (in the y"s, of degree r) h-harmonic function f & C® (V(M"())) has
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the form f(x, y) = a(g;; (x) ¥ yI¥2 , provided supp (grad* f) is compact, where
aelR.

Finally, if # = 2 then S.Numata’s theorem does not apply, and our result
is completely new.

iv) If (M, E) is a Riemannian manifold, then by (3.3) the Laplacian of the
Sasaki lift of g, (x) to V(M) (or T(M)) is given by A f=ARf LAY f fe C=(V(M)).
Clearly A*(f") = Ay f, for any fe C» (M), where f* = fox is the vertical lift
of f, while A,, denotes the Laplacian of (M, g; (x)).

4. ISOMETRIES OF FINSLER SPACES

Let (M, E) be a Finsler space and ¢: M — M a transformation of M. It

is said to be an isometry of (M, E) if; _
Eecdd)=E, (4.1)
cf. also [“]. Let pe M and (U, x%), (¥, x") coordinate neighborhoods at p

and $(p), respectively. Then (4.1) might be written FE(x', /)= E( Hx), g‘b. ) yj)
x7
and consequently ¢ is an isometry iff :
r r I a i
g% 1) =gy(x", ), ¥ ’ﬁa;j;(x)yf‘ 4.2)

Conversely, (4.2) yields (4.1), by the classical Euler theorem on positive homo-
geneous functions.

Let fe C*{V(M)) and A a linear transformation of C=(V(M)) into itself;
for a given diffeomorphism ¥ : (M) — V(M) we denote by A" the mapping
F—s (A4S, where f¥ = fo W1, Then A is invariant by ¥ if A¥ = A. Let
¢ be an isometry of M; then (A”)d“ A%, The converse is also true. The
argumentation follows the steps in ['%, p.388], such that the details might be left
as an exercise to the reader. One obtains:

Theorem B. Let & be a transformation of M. Then d ¢ leaves A* invariant
if an isometry of the Finsler space M.

5. SUBMANIFOLDS OF LANDSBERG SPACES

Let M™t? be an (n -- p)-dimensional Landsbefg space and f an immersion
of an n-dimensional manifold M" in M»*+7 ., Let f s =5, u" be

ax

the equations of M" in M»+? . We set B (u)— (u) ‘fank (BY) = n. Let

' (N,, F}k ) jk) be the Cartan connection of M#+? and N3, Fpe s Cb,:) the
induced connection on the submanifold. We set : .
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i 0% x!
By = DR B, = B} B} .
We recall (cf. e.g. [15]) the (horizonial) Gauss equation of M™ im Mnte |
Bus + Biiy B~ Hay BY Cjie = Fip B; + Ho - (5.1

Here H), denotes the (horizontal) second fundamental form of f, while
i, = H,ib v® . Here (u*,v") are the naturally induced local coordinates on
V(M™).

Let U < M"*t? be an open set and Fe C*(U). We call F strictly h-convex
if Fy(u) >0, for all ue = (U). Here :
2 F
o°F F d-

= —Fy— .
ax’ ox/ dxk

(5.2)

A subset 4 in M7t is said to be h-convex supporting (in analogy with ['7]) if
there is an open set I/ in M»*>2, U containing A, and a strictly A-convex function
. . , . o .
Fe C=(U) such that its A-gradient X? = gV g— — has compact support in T }(U).
x/
The submanifold M™" is said to be fofally-geodesic in M7+2 if any geodesic of
the induced connection is also a geodesic of the Cartan connection of the ambient

space. Cf. th. 6.2. in [7, p.1035], M" is totally-geodesic in M»+7 iff Hgo = 0,

where Hip = HL, v vP.

Remark. Actually, th, 62, of [] is formulated for the codimension one
case, i.e. when M" is a Finslerian hypersurface. It is a simple matter to refine this
result in arbitrary codimension. Therefore, unlike the Riemannian case (e.g
[*D) totally-geodesic submanifolds are not characterized by the vanishing of the

~ entire H,. Yet H bo=10 yields Hio=0, cf a result in [22'].

Theorem C. Ler f: M"—> M"+2 be g totally-geodesic immersion of the
manifold M" in the Landsberg space M=+?. Then f(M") is not contained in any
of the h-convex supporting subsets of M#"t?, We need to recall, cf. [*], the
following :

Lemma. If M" is a submanifold of the Landsberg space M"+P then the
Jollowing formulae hold :

P (._A;, ?): WN(?)‘-X_‘
HX,Y) =D, vN) X+ N(C (¥, X))

Jor any Finsler vector fields X, Y on M". In particular, if M" is totally-geodesic in
Muntr then M" is also a Landsberg space (with the induced Finsler structure) and
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H ==,

The notations used to state the above lémma are those in ref, ['9]. I
B —» F(M") is the normal bundle of f: M” — Mr+», and Ay, is the Weingarien
operator (corresponding to the cross-section U in B) then Wy, X ;idg'yf. if 7
is the second. fundamental form, then H (X, Y)=H ® X, _};)‘ The normal curvature
vector N is defined by N(X) = H(X, v), where v is the Liouville vector, ie. the
cross-section in the pull-back bundle ©*T'(M") defined by v(u)=(u, 1), ue V(M").

The proof of our theorem C is by contradiction. Let f(M™) be contained in
a h-convex supporting set and let F be a strictly A-convex function defined on

2
some open set containing f(M"). We set G==Fof, G, = _ae s G
dudu u
and obtain :
if aF i i ol
G = Fy By + o (Hap — Hao By Ci)- (5.3)
X

Let us contract with g#® in (5.3). We obtain :

A G¥ = g® Fy, BY, (5.4)
where & = G o & ; integrating (5.4) over F(M™), with respect to the canonical
Riemannian measure of the Sasaki metric (associated with the induced Finsler
structure on M™) we obtain (since supp (grad® F¥) compact, F' = Fo g, yields
supp (grad” ") is compact, too) :

Fi,g® BiBy*1=0
VL™

and thus B. = 0, a contradiction. Our theorem C is thereby completely proved.

REFERENCES

['] AKBAR-ZADEH, H. 1 Les éspaces de Finsler et certaines de leurs généralisations,
Ann. Sci. Bcole Normale Sup., (3) 80 (1963), 1-79.
[*] AKBAR-ZADEH, H. o Sur les sous-variéiés des Variétés finslériennes, C.R.
Acad. Sci. Paris, 266 (1968), 146-148.
[*)] AKBAR-ZADEH, H. ¢ Structure presque Kaehlerienne naturelle syr le fibre
and BONAN, E. tangent @ une variété finslérienne, C.R. Acad. Sci. Paris,

258 (1964), 5581-5582.
[*'] AKBAR-ZADEH, H. and : Structure presque complexe associée & une connexion

WEGRZYNOWSKA, A. " reguliére de vecteurs, C.R. Acad. Sci. Paris, 282 (1976),
375-377. h i
[’] AMICT, ©. 1 On the cohomology of Finsler spaces, Collog. Math.
CASCIARO, B. and Soc. “JBolyai”, 46 (1984), 57-82.

DRAGOMIR, §.

£
[
[
[
Iz
[
i

o
[
I
1
K
[
iz

i



Ny

]
1

[

"

1]
(|
"1
g |
[*]
{1
I
1
[*1
"1

1

("1

4
4

1

HARMONIC FUNCTIONS: ON FINSLER' SPACES 15

BERWALD, L........ ..

BROWN, M.G. |

CARTAN, E.

CHEN, B.Y.

CLARK, R.S. X
DAVIES, ET.

DAVIES; ET..

DAVIES, ET. and

YANO, K.
DAVIES, ET. and

YANO, K.
DRAGOMIR, S.
DRAGOMIR, §.
GORDON, W.B.
HASSAN, B.T.M.
HELGASON, S.-..*
KOBAYASHL S. and_
NOMIZU, K.:

MATSUMOTO, M. ..

MATSUMOTO, M.

MATSUMOTO, M. and :
TAMASSY, L.

NUMATA, S.

RUND, H. :
RUND, H.

. Ueber Finslersche wnd Cartansche Geometrie - I. Geo-

metrische -Erkidrungen der Krimmung und des Haupt—
skalars eines . Zweidimensionalen Finslerschen Raumes,
Math. Timisoara, 17 (1941), 34-58. ‘

A study of tensors which characterize . a hypersuiface.

of a Finsler spoce, Canad. J. Math,, 20 (1968),
1025-1036.

Les éspaces de Finsler, Act. Sei. 79, Paris; 1934, 41 p.
Geometry of - Submanifolds, M. Dekker, Inc.,, New
York, 1973, 298 p.

Hyan Tom. Davies, Bull. London Math:. Soc,, 6 (1974),
370-376.

Sulla struttura quast complessa associata ad uno .spazip
di Finsler, Atti VII Congr. U.M.L (1963), 367.

On the curvature of the tangent bindle, Ann. Math,, .

(4) 81 (1969), 193-204.

Metrics and connections in the tangent bundle, Xodai
Math. Sem. Reports, 23 (1971), 493-504.

1 . On the tangent bundle of Finsler and Riemannian mani- .

folds, Rend. Circ.. Mat. Palermo,.(2) 12 (1963), 211-228.

The theorem of - K:Nomizu on Finsler. manifolds; : An,
Univ. Timisoara, . Ser: -$t. Mat., 19 (1981), 117-127.

Submanifolds of Finsler spaces, Conf, del Sem. di Ma-.

tem. del’Univ. di Bari, 217 (1986), 1-15.

Convex functions and harmonic maps, Proe. AM.S,,
(2) 33 (1972), 433-437.

The theory of geodesies in Finsler spaces, Ph. D. thesis,
Southampton, 1967, 108. p.

Differential. .Geometry . and - Symmetric - Spaces, Acad.
Press, New York, 1962, 486 p.

Foundations :..of ;- Differential . Geometry,. Vol. I-IL,
Interscicnce Publishers,. New York, 1963,  1969.
Foundations . of : Finsler: Geometry . and - Special Finsler
Spaces, Kasheisha Press, Kyoto, 1986. '

The induced and intrinsic Finsler connections of a kyper-
surface and Finslerian profective geometry, J. Math,
Kyoto Untv., (1) 25 (1985), 107-144.

Sealayr and gradient vector fields of Finsler spaces and
holonomy groups of non-linear connections, Demons-
tratio Mathematica, 13 (1980), 551-564.

On Landsberg spaces of scalar curvature, J. Korean
Math. Soc., 12 {1975), 97-100.

A divergence theorem for Finsler metrics, Monatsh,
Math., 79 (1975), 233-252.

The theory of subspaces of a Finsler space, I-11. Math.
Z., 56 (1952), 363-375, 57 (1953), 193-210.




76

.
[:B]"-
[aé]”_.

[*1

]

[**

[*%1

T SDRAGOMIR - B LARATO
RUND, H. - °  + " "~ i Hypersurfaces of a Finsler space, Canad. J. Math.j
A - (1956), 487-303.
SANINL A.” o : Applicazioni armoniche tra i fibrati tangenti di varietd
' C Riemanniane, Boll. U.M.L, (6) 2-A (1983), 55-63. ]
SHIMADA, H. O On _the Ricei tensors of ‘particular Finsler spaces, - J
o ’ - Korean Math. Soc., 14 (1977), 41-63.
TARINA, M. and o ¢ Formalisme extérieur dans la géométrie de Finsler d'un
"ENGHIS, E. B B ﬁbre vectoriel, Proc. Nat. Sem. on Finsler Spaces,
e ' Brasov, 3 (1984), 89-97. .
YANO, K. and _ " i Tangent and cotangent bwmdles, M. Dekker, Inc., New
- ISHIHARA, S. - York, 1973. ‘
YANO, K. and ~t On tangent bundles with Sasakian melrics of Finslerian
OKUBQO, T. ’ " - and Riemannian manifolds, Ann. Mat. Pura Appl,
: . : : T (4 8T (1970), 137-162.
VRANCEANU, G. : Lectii de Geometrie Differentiala, Vol. I-IV, Ed. Acad..

R.S.R., Bucuresti, 1979.

Sorin DRAGOMIR

Bambina LARATO, _
UNIVERSITA DEGLI STUDI DI BARI
DIPARTIMENTO DI MATEMATICA

VIA G.FORTUNATO, CAMPUS UNIVERSITARIO
70125 BARI, ITALIA

OZET

(M" (c), E), skaler egrilifi c¢+0 ve karma burulma vektiirii

Pj: é,— N_';.—iji sifir olan bir Finsler uzayr olsun. 7(M"™ (¢)) — 10} iize-

rinde 3! lere giire r. dereceden pozitif homogen ve h-gradiyenti kompakt ta-

siyicaya sahip olan bittiin f(x, 3} A-harmonik fonksiyonlary, ge iR olmak

iizere, f= a E™'? ile verilebilir. Bir Finsler vzayinin bir M™+? Landsberg

uzay! igine total-jeodezik yatirthginin resmi, M™+? nin higbir A-konveks tagt-
yic1 ciimlesinin iginde bulunamaz.

1




