ON CONTINUITY OF THE SAMPLE FUNCTION OF GAUSSIAN RANDOM VECTOR FIELD ON THE HILBERT SPACE

AL-MADANI M. GHALEB

Lipschitz conditions of order α corresponding to Gaussian Random vector field on a Hilbert space are found, also some conditions for continuity with probability one is determined. The necessary and sufficient condition for a Random vector field to be isotropic is also investigated.

1. Introduction

Conditions for absolute continuity corresponding to the sample function of a Gaussian Random vector field have not yet been sufficiently investigated.

In this paper an attempt has been made to find Lipschitz conditions of order α corresponding to Gaussian Random vector field on a Hilbert space. In addition to this some conditions for continuity with one probability has also been investigated.

Let H be perfect separable Hilbert space. Later under H we shall comprehend the space

$$H = \left\{ t : (t_1, ..., t_n, ...), \sum_{n=1}^{\infty} t_n^2 < \infty \right\}.$$

T is a compact subset in H such that

$$T = \left\{ t : a_n \leq t_n \leq a_n + \frac{1}{2^n}, (a_1, ..., a_n, ...) \in H \right\}.$$

Let also (Ω, β, P) denote probability space (see for example $\{1\}$), $X(t, \omega)$ is a column vector, X' is the corresponding row vector and G denote a rotation group in H, i.e. collection of all one to one and measurable transformations from H into H.

Definitions. 1. A function $X(t,\omega)$ on $H \times \Omega$ is called a random vector field if for any fixed element t, $X(t,\omega)$ is a measuring function with respect to the σ algebra β , for any fixed ω the Random vector field $X(t,\omega)$ is called a sample function of the Random vector field.

2. The Random vector field $X(t,\omega)$ is called isotropic if for any t and S from H and $\forall g \in G$

$$E\left\{X(t,\omega).\ X'(s,\omega)\right\}=E\left\{X(gt,\omega).\ X'(gs,\omega)\right\}.$$

3. The Random vector field $X(t,\omega)$ is continuous in mean square if

$$\lim_{t\to s}\sum_{i=1}^n|\left(X_i\left(t,\omega\right)-X_i\left(s,\omega\right)\right|^2=0.$$

Consider that $X(t,\omega)$ is an isotropic random *n* vector field with independent components, continuous in mean square with $EX(t,\omega) = 0$ and

 $E[\{X(t,\omega)\}\}\{X'(s,\omega)\}] = I$, where I is the unit matrix, then the n by n matrix

$$E\{X(t,\omega): X'(s,\omega)\} = B(t,s) = B(||t-s||)$$

will be positive definite continuous kernel on $H \times H$. According to Schoenberg [2] we may write

$$E\left\{X(t,\omega)\cdot X'(s,\omega)\right\} = \int_{0}^{\infty} e^{-\lambda ||t-s||^{2}} d\phi(\lambda), \tag{1}$$

where $\phi_{ij}(\lambda)$, $i,j=\overline{1,n}$ is bounded nondecreasing function.

2. Main Results

Theorem 1. If $X(t, \omega)$ is a Gaussian Random n vector field with independent components and $\forall t, s \in H$

$$E||X(t,\omega) - X(s,\omega)||^2 \le \frac{||t-s||^{2\alpha}}{|\ln||t-s|||} \cdot C_1,$$
 (2)

where C_1 is a positive constant, then $X(t,\omega)$ will satisfy on T with one probability Lipschitz conditions of order α .

Outlines of Proof. We observe that

$$E\left[\left\{X(t,\omega)-X(s,\omega)\right\}\cdot\left\{X(t,\omega)-X(s,\omega)\right\}'\right]=2\left[I-B(t,s)\right],$$

where B(t,s) is a diagonal matrix given by the equation

$$B(t,s) = \int_{0}^{\infty} e^{-\lambda ||t-s||^{2}} d\phi(\lambda).$$

From the assumption in the Theorem 1, taking $C_1 = ||C||^2$, where C is a constant vector we can assert

$$E | X_i(t,\omega) - X_i(s,\omega) |^2 = 2 (1 - B_{ii}(t,s)) \le \frac{||t-s|||^{2\alpha}}{||1n|||t-s|||} \cdot C_i^2$$

 $\forall i = \overline{1,n}$. An easy calculation shows that the previous inequality can be written as follows:

$$E | X_t(t, \omega) - X_t(s, \omega) |^2 \le ||t - s||^{2\alpha} \cdot C_t^2$$

 $\forall i = \overline{1,n}$. Now by using Theorem 1, in $\{3\}$ we see that $X_i(t,\omega)$ will satisfy on T with one probability Lipschitz conditions of order α , i.e.,

$$|X_i(t,\omega) - X_i(s,\omega)| \leq \delta_i \cdot ||t - s||^{\alpha}$$

or

$$||X(t,\omega) - X(s,\omega)|| \leq ||\delta|| \cdot ||t-s||^{\alpha},$$

where δ is a constant vector.

This proves Theorem 1.

Theorem 2. If $X(t, \omega)$ is a Gaussian Random vector field with independent components on H and $\forall t, s \in H$

$$E \mid \mid X(t,\omega) - X(s,\omega) \mid \mid^2 \le Q(\mid \mid t - s \mid \mid) \cdot C_1$$
,

where C_1 is a positive constant,

$$Q(||t-s||) = \frac{1}{|\ln||t-s|||^{1+\delta}} \ (\delta > 0)$$
 (3)

or

$$\frac{1}{|\ln||t-s|||.|\ln|\ln||t-s||||^{2+\delta}} \quad (\delta > 0). \tag{4}$$

Then the sample function $X(t, \omega)$ is continuous on T with one probability.

Outlines of Proof. Since the components of the vector $X(x,\omega)$ are independent, we may write

$$E \mid \{X(t,\omega) - X(s,\omega)\} \cdot \{X(t,\omega) - X(s,\omega)\}' \mid =$$

$$\begin{bmatrix} E \mid X_1(t,\omega) - X_1(s,\omega) \mid^2 & 0 \\ 0 & E \mid X_n(t,\omega) - X_n(s,\omega) \mid^2 \end{bmatrix}.$$

If (3) or (4) holds then we assert that

$$E[X_i(t,\omega) - X_i(s,\omega)]^2 \le \frac{1}{|\ln||t-s|||^{4+\delta}} C_i^2$$

 $\forall i = \overline{1,n}$. Using theorem (2) in [3] we can find a constant $\delta_i : i = \overline{1,n}$ such that the inequalities

$$|X_i(t,\omega) - X_i(s,\omega)| \leq \delta_i ||t - s||$$

hold with one probability, i.e.,

$$||X(t,\omega) - X(s,\omega)|| \le ||\delta|| \cdot ||t-s||$$

with one probability, where δ is a constant vector.

Let L_n be the set of all possible 2n-dimensional vectors = $(m_1, ..., m_n, k_1, ..., k_n)$ with natural components $(m_1 + m_2 + ... + m_n = n)$ and let us consider that

$$\gamma_n(t,\lambda,n) = e^{-\lambda(t,t)} (2\lambda)^{n/2} \frac{t_{m_1}^{k_1} \cdot t_{m_2}^{k_2} \cdots t_{m_n}^{k_n}}{\sqrt{k_1! k_2! \dots k_n!}}.$$
 (5)

Then the following theorems hold:

Theorem 3. The continuous in mean square Random vector field $X(t,\omega)$ is isotropic if and only if

$$X(t,\omega) = \sum_{n=0}^{\infty} \sum_{v \in I_n} \int_{0}^{\infty} \gamma_n(t,\lambda,n) \cdot dZ_{v}^{n}(\lambda,\omega), \qquad (6)$$

where $Z_{\nu}^{n}(s,\omega)$ is a sequence Random n vector measures on $(0,\infty)$, such that

$$E\{Z_{\nu}^{n}(s,\omega)\} = 0$$

$$E[Z_{\nu}^{n}(s_{1},\omega)\} \cdot \{Z_{\nu}^{n'}(s_{2},\omega)\}'] = \delta_{n}^{n'} \cdot \delta_{\nu}^{\nu'} \phi(s_{1} \Lambda s_{2}). \tag{7}$$

Outlines of **Proof.** Consider that $X(t,\omega)$ is isotropic, then we write

$$B(r_{ts}) = \int_{0}^{\infty} e^{-\lambda ||t-s||^{2}} d\phi(\lambda).$$

Using {12.9, 5} in {4} we can write

$$e^{2\lambda(t,s)} = \sum_{n=0}^{\infty} (2\lambda)^n \frac{(t_{i_1} S_{i_1})^{k_1} \dots (t_{i_n} S_{i_n})^{k_n}}{k_1 ! \dots k_n !}$$

or

$$e^{2\lambda(t,s)} = \left[\sum_{n=0}^{\infty} \sum_{v \in I_n} (2\lambda)^{n/2} \frac{t_{i_1}^{k_1} \dots t_{i_n}^{k_n}}{\sqrt{k_1! \dots k_n!}} \right].$$

$$\left[\sum_{n=0}^{\infty} \sum_{v \in I_n} (2\lambda)^{n/2} \frac{S_{i_1}^{k_1} \dots S_{i_n'}^{k_{n'}}}{\sqrt{k_1! \dots k_{n'}!}} \right].$$

By substitution we get

$$B(r_{ts}) = E \int_{0}^{\infty} e^{-\lambda(t,t)} \cdot e^{-\lambda(s,s)} \cdot \sum_{n=0}^{\infty} \sum_{v \in I_{n}} (2\lambda)^{n/2} - dZ_{v}^{n}(\lambda,\omega).$$

$$\cdot \sum_{n'=0}^{\infty} \sum_{v' \in I_{n'}} (2\lambda)^{n/2} - dZ_{v'}^{n'}(\lambda,\omega)$$

or

$$X(t,\omega) = \int_{0}^{\infty} e^{-\lambda(t,t)} \sum_{n=0}^{\infty} \sum_{\nu \in I_{n}} (2\lambda)^{n/2} \frac{t_{i_{1}}^{k_{1}} \dots t_{i_{n}}^{k_{n}}}{\sqrt{k_{1}! \dots k_{n}!}} \cdot dZ_{\nu}^{n}(\lambda,\omega).$$

Now if $X(t, \omega)$ satisfies the previous equation then it is easy to prove that

$$B(r_{ts}) = \int_{0}^{\infty} e^{-\lambda ||t-s||^{2}} d\phi(\lambda).$$

The last equation means that $X(t, \omega)$ is isotropic.

Theorem 4. If

$$Tr \int_{0}^{\infty} \lambda \, d \, \phi \left(\lambda \right) < + \infty \tag{8}$$

then the sample function $X(t,\omega)$ will satisfy on T with one probability Lipschitz conditions of order $\alpha < 1$.

Theorem 5. If

$$Tr\left\{\int_{0}^{\infty} \ln^{1+\delta} (1+\lambda) d\phi(\lambda)\right\} < \infty \tag{9}$$

for some $\delta > 0$, then the sample function $X(t, \omega)$ is continuous on T with one probability.

The proof of theorems 4 and 5 may be easily obtained.

BIBLIOGRAPHY

[1] GIKHMAN, I.I. and SHAROHOD, A.V. The theory of Stochastic processes 1, "Nauka" Moscow, 1971; English trans. 1, Springer Verlag, New York, 1974.

[³] SCHOENBERG : Ann. Math., 39 (1938), 811. [³] STRAIT, P.T. : Pacific J. Math., 19 (1966), 159.

[4] BATEMAN, H. : Higher Transcendental Functions, Vol. 2, 1953.

MATHEMATICS DEPARTMENT
COLLEGE OF ENGINEERING P.O.B. 9027
KING ABDULAZIZ UNIVERSITY
JEDDAH, SAUDI ARABIA

ÖZET

Bu çalışmada, bir Hilbert uzayı üzerindeki Gauss tesadüfi vektör alanına karşılık gelen α mertebeli Lipschitz koşulları bulunmakta ve olasılığı 1 olan bazı süreklilik koşulları belirlenmektedir. Aynı zamanda, bir tesadüfi vektör alanının izotropik olabilmesi için gerek ve yeter koşul araştırılmaktadır.