Istanbul Üniv. Fen Fak. Mat. Der. 49 (1990), 31-36 31

A NOTE ON BARELY TRANSITIVE PERMUTATION GROUPS SATISFYING MIN-2

M . KUZUCUOÔL U

We recall that a group of permutations G of an infinite set Ω is called a barely transitive group if G acts transitively on Ω and every orbit of every proper subgroup is finite. An abstract group is called barely transitive, if it is isomorphic to some barely transitive permutation group. Recall also that $\binom{2}{1}$ an infinite group *G* can be represented faithfully as a barely transitive permutation group if and only if G possesses a subgroup H such that $\bigcap_{x\in G} H^x = 1$ and $|K: K \cap H| < \infty$ for every proper subgroup $K < G$. The subgroup *H* is a point stabilizer of a barely transitive permutation group. Locally finite barely transitive groups are studied and the following theorem is proved in $\lceil \frac{5}{2} \rceil$:

Theorem [⁵] (1.2). *A locally finite barely transitive permutation group containing a nontrivial element of order p and satisfying min-p is isomorphic to* $C_{p\infty}$.

In the proof of the above theorem we invoke the classification of finite simple groups. In this paper we will prove the same result for the prime 2 without using the classification of finite simple groups and extend the above theorem by reducing the min-p condition on *H.*

By assuming some restrictions on point stabilizer *H* one might expect to obtain some results about the structure of a locally finite barely transitive group. On the lines of this idea we have three propositions which might be of interest. Proposition 4 might have independent interest.

Proposition 1. *Let G be a locally finite barely transitive group and H be a point stabilizer of G. If there exists a non-trivial element of order p in G and H satisfies min-p, then G satisfies min-p.*

Proof. Let Q be a Sylow p-subgroup of H. Then by $[{}^{\circ}]$ Q is a Cernikov group. Since H is a proper subgroup of G the group Q is a proper subgroup hence residually finite. But a residualfy finite Cernikov group is finite. Hence *Q* is finite. Let P be a Sylow p -subgroup of G . If G is a p -group, then finiteness of $|K: K \cap H|$ for each proper subgroup $K < G$ implies that each proper subgroup of *G* is finite hence *G* satisfies *min-p.*

32 M. KUZUCUOĞLU

Assume that *P* is a proper subgroup of *G*. Since $P \cap H$ is a *p*-subgroup jo *H* it is contained in a Sylow p -subgroup of *H* which is finite. Barely transitivity implies $|P : P \cap H| < \infty$ hence P is finite i.e. G satisfies min-p.

Corollary. *Let G be a locally finite barely transitive group and H be a point stabilizer of G. If G contains a nontrivial element of order p and H satisfies min~p, then* $G \cong C_{p\infty}$.

Proof. Use Proposition 1 and the above Theorem.

Theorem. *Let G be a locally finite barely transitive group and H be a point stabilizer of G. If G contains a nontrivial element of order 2 and H satisfies min-2, then* $G \cong C_{2^{\infty}}$.

Proof. By Proposition 1 *G* satisfies min-2. Let *S* be a Sylow 2-subgroup of *G.* Then *S* is *Cernikov [⁶]* and so *S* has a divisible abelian normal subgroup of finite index. Residual finiteness of each proper subgroup of *G [⁵]* Lemma (2.13) and non residual finiteness of C_{2^∞} implies that either S is isomorphic to C_{2^∞} and so $G = S$ or *S* is proper and hence finite. In the first case we are done. We show that the second case is impossible.

Assume that *G* is a locally finite barely transitive group with finite Sylow 2-subgroups

a) each proper subgroup K of G satisfies $| K : O_{2'}(K) | < \infty$.

We prove this by induction on the order of Sylow 2-subgroups of proper subgroups of *G.*

Let $K < G$. If Sylow 2-subgroup of K is trivial group, then K is locally solvable by the Feit-Thompson theorem and $K = O_{2'}(K)$. Assume that in the set of proper subgroups of *G* if the order of Sylow 2-subgroup of *K* is less than the order of a Sylow 2-subgroup of G, then $|K: O_{2'}(K)| < \infty$. Let L be a proper subgroup of G containing Sylow 2-subgroup *S* of *G.* Let *x* be an involution in *L.* Since *L* is residually finite there exists a normal subgroup N_x of *L* such that $x \notin N_x$ and $\vert L : N_x \vert$ is finite. So order of Sylow 2-subgroup of N_x is less than the order of *S*. By the induction assumption $|N_x: O_{2'}(N_x)| < \infty$. As. $O_{2'}(N_x)$ *char* $N_x \triangleleft L$ we have

$$
| L : O_{2'}(N_x) | = | L : N_x | | N_x : O_{2'}(N_x) | < \infty .
$$

 $O_{2'}(N_x) \triangleleft L$ hence $O_{2'}(L) \supset O_{2'}(N_x)$ and so

 $\left| L \colon O_{2^{\prime}}(L) \right| < \infty$.

b) G is not simple.

A NOTE ON BARELY TRANSITIVE PERMUTATION GROUPS ... 33

Assume that G is simple with finite Sylow 2-subgroup *S.* For each involution *x* in *G*, the subgroup $C_G(x)$ is a proper subgroup and by the previous paragraph, $C_G(x)$ is almost locally solvable. The group *G* contains an elementary abelian 2-subgroup of order four. Otherwise there is a unique involution *i* in the centre of the Sylow 2-subgroup *S* of *G.* Since Sylow 2-subgroups are conjugate every Sylow 2-subgroup contains at most one conjugate of i, then by $[3]$ Theorem (1.1.4) *G* is not simple. Hence we may assume that *G* contains an elementary abelian 2-subgroup *V* of order four. Let x_1, x_2, x_3 be the nontrivial involutions in *V.* Then

$$
|C_G(x_i): O_{2'}(C_G(x_i))| < \infty \quad i = i, 2, 3.
$$

Since *S* is finite, the 2-rank of *G* is finite. Then again by [*] Theorem 9

$$
|G: < O_{2'}(C_G(x_i)) : i = 1, 2, 3 > | < \infty.
$$

Since our group does not have a subgroup of finite index

$$
G = \langle C_G(x_i) : i = 1, 2, 3 \rangle.
$$

But again $C_G(x_i)$ is proper subgroup of G for all $i = 1, 2, 3$. But by [5] Lemma 2.10 *G* cannot be generated by two proper subgroups. Hence $G = C_G(x_i)$ for some $i = 1, 2, 3$ which is impossible since $x_i \notin Z(G) = 1$. So G is not simple.

Since we have non-trivial normal subgroups either *G* has a maximal normal subgroup or *G* is a union of an ascending series of proper normal subgroups *Nt.* In the latter case there exists *i* such that $S \subseteq N_i \triangleleft G$ and by a Frattini argument

$$
G=N_i N_G(S).
$$

But *G* cannot be generated by two proper subgroups, and N_i is a proper subgroup so $G = N_G(S)$. Hence *S* is a normal subgroup of *G*. The group *S* is finite and normal whence [⁵] Lemma 2.2 implies $S \leq Z(G)$. Since *S* is finite abelian and a maximal 2-subgroup, G/S is a 2⁻group. Let Σ be a local system consisting of finite subgroups and containing *S.* We can find such a local system since *G* is countable by $\binom{5}{1}$ Lemma 2.14 and *S* is finite. Any element K_i in the local system is a finite subgroup of G containing S and $(|K_i/S|, |S|) = 1$. Then by the Schur-Zassenhaus theorem $K_i = S \times L_i$ as $S \leq Z(G)$. The group L_i is a 2'-group. But this is true for all $K_i \in \Sigma$. Since the complements L_i of S are unique by embedding for each i, $L_1 < L_{1+1}$ we get

$$
G=S\times O_{2'}(G).
$$

Since S is finite and G does not have a subgroup of finite index $G = G_{2'}(G)$ which is impossible since there exists nontrivial $x \in G$ such that $2 | o(x)$.

It remains to show the first possibility, that G contains a maximal normal subgroup is impossible. If there exists a maximal normal subgroup N , then G/N is a simple group satisfying min-2. By [5] Lemma 2.4 *GjN* is barely transitive and

34 M. KUZUCUOĞLU

by the first paragraph a barely transitive locally finite group satisfying min-2 cannot be simple.

This proof also says that in a locally finite barely transitive group all maximal 2-subgroups are infinite and indeed not *Cernikov.*

Proposition 2. *Let G be a locally finite barely transitive group and H be a point stabilizer of G. If for a fixed prime p every p-subgroup of H is solvable, then G is a union of proper normal subgroups. In particular G is not simple.*

Proof. Assume if possible that, G is a locally finite barely transitive simple group. Let P be a maximal p -subgroup of G . Bare transitivity of G implies that $|P : P \cap H| < \infty$. The subgroup $P \cap H$ is a *p*-subgroup of *H* and hence contained in a maximal p -subgroup of H . But maximal p -subgroups of H are solvable. Therefore $P \cap H$ is a solvable p-group. By bare transitivity we have $|P : P \cap H| < \infty$ which implies that P is solvable. Therefore every p-subgroup of *G* is solvable. Every locally finite simple group is either linear or non-linear. But a non-linear locally finite simple group contains finite p -subgroups of arbitrary derived length. Hence *G* cannot be a non-linear group. Then *G* is a linear group, but we show in $\lceil 5 \rceil$ Lemma 2.11 that a locally finite barely transitive group cannot be a group of Lie type.

Let N be a proper normal subgroup of G . If N is a maximal normal subgroup of *G,* then *GjN* is a simple barely transitive group with *HN/N* its solvable point stabilizer. Hence there exists no maximal normal subgroup and *G* is a union of its proper normal subgroups.

Proposition 3. *Let G be a locally finite barely transitive group and H be a point stabilizer of G. If H is locally solvable, then G is a union of proper normal subgroups. In particular G is not simple.*

Proof. If G is locally solvable, then G cannot be a simple group as the only locally finite-solvable simple groups are finite cyclic groups.

Let *K* be a proper subgroup of *G*. Then $| K: K \cap H| < \infty$. So *K* has a locally solvable subgroup of finite index. Hence every proper subgroup of *G* is almost locally solvable. Then by $[4]$ the only locally finite simple groups having each proper subgroup is almost locally solvable are either linear group A_i or 2B_i . But these groups cannot be isomorphic to a barely transitive group $\lceil \frac{s}{2} \rceil$ Lemma 2.11. One can show easily as in the Proposition 2 that there exists no maximal normal subgroup of *G,* Hence *G* can be written as union of its proper normal subgroups.

Proposition *4. Let G be a locally finite barely transitive group and H be a point stabilizer of G. If a proper subgroup X of G involves an infinite simple group*, such that $Y \triangleleft X$ and X/Y isomorphic to an infinite simple group, then

- *a) Y cannot be locally solvable.*
- *b) Y cannot be finite.*
- *c) H involves an infinite simple group.*

Proof, a) Assume if possible that *Y* is locally solvable and *X(Y* is infinite simple. Since each proper subgroup of *G* is residually finite *X* is residually finite. Then for all $1 \neq x \in X$ we have $N_x \triangleleft X$ such that $x \notin N_x$ and $| X: N_x | < \infty$. But then $N_x Y/Y \trianglelefteq X/Y$. Since X/Y is infinite simple we have either $N_x Y = Y$ or N_x *Y*=*X*. Assume if possible that there exists $1 \neq x \in X$ such that N_x *Y*=*Y*. Then $N_r \leq Y$. But then $|X: Y| < |X: N_x| < \infty$ which is impossible. Hence we have $N_x Y = X$ for all $1 \neq x \in X$. Then $Y/(Y \cap N_x) \cong (YN_x)/N_x = X/N_x$. Finiteness of $|X/N_x|$ and locally solvableness of Y implies that, there exist $n_x \in N$ satisfying $X^{(\frac{n}{x})} \leq N_x$ for all $x \in X$. If there exists an upper bound *m* for the set $I = \{n_x \mid 1 \neq x \in X\}$, then $X^{(m)} \leq N_x$ for all $1 \neq x \in X$. Hence $X^{(m)} \leq \bigcap_{x \in X} N_x = 1$ i.e. *X* is solvable which is not the case. Hence we may assume that there exists no upper bound for the set *I*. But then $X^{(\pi_X)} \leq N_x$ hence $\bigcap_{n_x \in I} X^{(\pi_X)} \subset$ $\int_{\mathcal{X} \times \mathcal{X}} N_{\mathcal{X}} = 1$. But this implies X is locally solvable which is impossible. Indeed let $A = \langle x_1, x_2, \ldots, x_t \rangle$ be a finite subgroup of *X*. Then consider $A^{(1)}$, $A^{(2)}$, \ldots If *A* is not solvable, then there exists $k \in N$ such that $1 \neq A^{(k)} = A^{(k+1)} = \dots$. But then $A^{(k)} \leq \bigcap_{n_x \in I} X^{(n_x)} = 1$. Hence *A* is solvable. This proves (a).

b) If Y is finite then by residual finiteness of X , there exists a normal subgroup N_Y of X such that $N_Y \cap Y = I$ and X/N_Y has finite order. Then

$$
N_Y Y/Y \trianglelefteq X/Y.
$$

But *X/Y* is infinite simple. Hence $N_Y Y = X$, so $N_Y \cong N_Y/N_Y \cap Y \cong N_Y Y/Y =$ X/Y . The group N_Y is residually finite hence finiteness of Y is impossible.

c) By bare transitivity for each proper subgroup *X* of *G* we have $|X: X \cap H| < \infty$, so there exists $K \le X \cap H$ such that $K \triangleleft X$ and $|X: K| < \infty$. Then $K Y/Y \triangleleft X/Y$. Since X/K is finite and X/Y infinite simple, then $K Y=X$.
But $K/K \cap Y \cong K Y/Y = X/Y$ and $K \cap Y \leq X \cap H \cap Y \leq H \cap Y$. Hence $K \leq H$ and involves the infinite simple group $K/(K \cap Y)$.

K < H and involves the infinite simple group *Kj(K* fl 1'). So in case of *H* is locally solvable, *G* does not have a proper subgroup *X* which involves an infinite simple group.

36 M. KUZUCUOĞLU

REFERENCES

MAHMUT KUZUCUOĞLU DEPARTMENT OF MATHEMATICS MIDDLE EAST TECHNICAL UNIVERSITY 06531 ANKARA-TURKEY

 $\omega_{\rm{eff}}=2$