İstanbul Ürtiv. Fen Fak. Mat. Der. **50 (İ991), 1-7 1.**

ON *p*-ADIC U_m -NUMBERS

K . ALNIAÇÏK

In this paper it is shown that integral combination with p-adic algebraic coefficients of some certain *p*-adic Liouville numbers belong to the Mahler subclass U_m in the Hensel's field Q_p of p-adic numbers, where **m is the degree of the algebraic number field determined by these coeffi**cients. Thus we have carried the results in $[$ ⁴ $]$ to the the *p*-adic case.

In the following p is a fixed prime of Q and $\left| \ldots \right|_p$ denotes the p-adic valuation.

Definition¹. Let ξ be a p-adic number in Q_p and $m \ge 1$ an integer. The number ξ is called p-adic U_m -number if for every $w > 0$ there are infinitely many algebraic numbers y of degree *m* with

$$
0<\left|\,\xi-\gamma\,\right|_{\rm\scriptscriptstyle P}
$$

and if there exist constants $C, K > 0$ depending only on ξ and m such that the relation

$$
|\xi - \beta|_p > C H(\beta)^{-K}
$$

holds for every algebraic number β in Q_p which has degree less than m.

Lemma I. Let $P(x) = a_0 + a_1 x + \ldots + a_k x^k$ be a polynomial of degree k with integral coefficients and α be a p -adic algebraic number of degree M with $P(\alpha) \neq 0$. Then the relation

$$
|P(\alpha)|_p \geq \frac{p^{(M-1)t}}{(M+k)! H(P)^M H(\alpha)^k} \tag{1}
$$

holds, where $| \alpha |_{p} = p^{-h}$, $t = \min (0, h)$, and $H(P)$, $H(\alpha)$ are the height of $P(x)$ and the height of the minimal polynomial of α respectively (K. Mahler $[2]$).

¹) We note that we have, in fact, defined a p-adic U_m^* -number in [¹] instead of p-adic **Mahler** U_m -number. However, it is known that they are the same (see ['], [²]).

2 K . ALNIAÇIK

Now using (1) we give a iower bound for $|\alpha - \beta|_p$ where β is an arbitrary *p*-adic algebraic number of degree $k < M$. If $|\beta|_p \neq |\alpha|_p$, then we have $|\alpha - \beta|_p > p^{-|h|}$. Hence we may assume that $|\alpha - \beta|_p \leq 1$ and $|\beta|_p = p^h$.

Let $P(x)$ be the minimal polynomial of β . Then

$$
0 \neq P(\alpha) = P(\beta) + (\alpha - \beta) P'(\beta) + (\alpha - \beta)^2 \frac{P''(\beta)}{2!} + \ldots
$$

and so

$$
0 < | P(\alpha) |_{p} = | \alpha - \beta |_{p} \left| P'(\beta) + (\alpha - \beta) \frac{P''(\beta)}{2!} + ... \right|_{p}.
$$

Thus using $|P^{(j)}(\beta)|_p \leq p^{M|h|}$ and $|\cdots| \leq p^M (1 \leq j < M)$ we see that the second factor on the right side of the above equality $\leq p^{M(|h|+1)}$. Hence using this in **(1)** we get

$$
|\alpha - \beta|_p \ge c_0 H(\alpha)^{-M+1} H(\beta)^{-M},
$$

where $c_0 = p^{(M-1)t-M(|h|+1)} (2M!)^{-1}$ is a constant depending only on α . (2)

Lemma II. Let α_1 , α_k ($k \ge 1$) be algebraic numbers in \mathbf{Q}_p with $[Q(\alpha_1, ..., \alpha_k):Q] = g$ and let $F(y, x_1, x_2, ..., x_k)$ be a polynomial with integral coefficients, whose degree in y is at least one. If η is an algebraic number such

the coefficients, whose degree in *y* is at least one. If
$$
η
$$
 is an algebraic in the
that $F(η, α₁, ..., α_k) = 0$, then the degree of $η ≤ dq$ and

$$
h_n \leq 3^{2dg + (l_1 + \ldots + l_k)g} H^g h_{\alpha_1}^{l_1 g} \ldots h_{\alpha_k}^{l_k g},
$$

where h_n is the height of η , h_{α_i} is the height of α_i (*i* = 1,..., *k*), *H* is the maximum of the absolute values of the coefficients of F , l_i is the degree of F in x_i (*i* = 1,..., *k*) and *d* is the degree of *F* in *y* (O.Ş. içen [⁵]).

Lemma III. Let α_0 , α_1 , ..., α_k ($k \ge 1$, $\alpha_i \ne 0$, $i = 0, 1, \dots, k$) be algebraic numbers in Q_p with $[Q(\alpha_0, ..., \alpha_k) : Q] = m > 1$ and let $\{u_n^{(1)}\}, \{u_n^{(2)}\},..., \{u_n^{(k)}\}$ be sequences of positive integers with

$$
\lim_{n \to \infty} u_n^{(i)} = \infty \quad (i = 1, ..., k),
$$
\n(3a)

$$
\lim_{n \to \infty} \frac{\log u_n^{(i+1)}}{\log u_n^{(i)}} = \infty \quad (i = 1, ..., k - 1).
$$
 (3b)

Then there exists a positive integer N such that if $n > N$, the degree of the *k* algebraic number $\gamma_n = \alpha_0 + \sum u_n^{\alpha} \alpha_i$ is *m* and $\lim H(\gamma_n) = \infty$. (4)

The proof is the same as in the Lemma III in $[4]$. Now applying the LeVeque's idea in $[6]$ to *p*-adic case we have the

Theorem I. Let α_0 , α_1 , ..., α_k ($\alpha_j \neq 0$, *i* = 0, 1, ..., *k*, $k \geq 1$) be algebraic numbers in Q_p with $[Q(\alpha_0, ..., \alpha_k) : Q] = m > 1$ and let $\xi_1, \xi_2, ..., \xi_k$ be p-adic Liouville numbers in the canonical forms

$$
\xi_{\mathbf{i}} = a_0^{(i)} + a_1^{(i)} p^{u_1^{(i)}} + \ldots + a_n^{(i)} p^{u_n^{(i)}} + \ldots \tag{5}
$$

$$
(u_v^{(i)} > 0, u_{v+1}^{(i)} > u_v^{(i)}, \ 1 \le a \le p-1, \ 1 \le i \le k, \nu = 1, 2, \ldots),
$$

where

 $\omega_{\rm c} = 10^{-1}$

$$
\lim_{n \to \infty} \frac{u_{n+1}^{(i)}}{u_n^{(i)}} = \infty \quad (i = 1, ..., k).
$$

Next assume that monotonic union sequence s_n (consisting of all integers $s = u_j^{(i)}$ for *i*, *j*, arranged by size) satisfies that

$$
\lim_{n \to \infty} \frac{s_{n+1}}{s_n} = \infty. \tag{6}
$$

Then the *p*-adic number $\gamma = \alpha_0 + \alpha_1 \xi_1 + ... + \alpha_k \xi_k$ is a *p*-adic U_m -number.

Proof. Let N_0 be a positive integer with $N_0 \ge \max_{i=1}^k (u_i^{(i)})$ and n_0 be an integer such that if $n > n_0$ then $s_n > N_0$. For $n > n_0$ we define integers $r_i(n)$ and $\rho_n^{(i)}$ by

$$
u_{r_i(n)}^{(i)} = \max_j \{ u_j^{(i)} \mid u_j^{(i)} \le s_n \} \quad (i = 1, ..., k),
$$

$$
p_n^{(i)} = a_0^{(i)} + a_1 p^{u_1^{(i)}} + a_2 p^{u_2^{(i)}} + ... + a_{r_i(n)} p^{u_{r_i(n)}^{(i)}} \quad (i = 1, ..., k) \tag{7}
$$

and algebraic numbers

$$
\gamma_n = \alpha_0 + \alpha_1 \, \rho_n^{(1)} + \alpha_2 \, \rho_n^{(2)} + \ldots + \alpha_k \, \rho_n^{(k)} \quad (n > n_0). \tag{8}
$$

m Now to prowe that $\gamma \in \mathbb{I}$ *U_j* we shall approximate γ by γ_n $(n > n_0)$. First $j = 1$ **we** have

$$
|\gamma - \gamma_n|_p \leq \max_{i=1}^k \left\{ |\alpha_i|_p \right\} \max_{i=1}^k \left\{ |\xi_i - \rho_n^{(i)}|_p \right\}. \tag{9}
$$

On the other hand it follows from the definitions of ξ_i and $\rho_n^{(i)}$ that

$$
|\xi_i - \rho_n^{(i)}|_p \le p^{-s_{n+1}} \quad (n > n_0, i = 1, ..., k).
$$

4 K . ALNIAgi K

Thus putting $c_1 = \max_{k} (\vert \alpha_k \vert_p)$ and using the above inequality in (9) **i = l**

$$
|\gamma - \gamma_n|_p \le c_1 p^{-s_{n+1}}.
$$
 (10)

Next applying Lemma II to γ_n , α_0 , ..., α_k in (8) we obtain

$$
H(\gamma_n) \leq c_2 p^{m.s_n} ,
$$

where c_2 is a constant depending only on p, m, k, α_0 ,..., α_k . Since $s_n \to \infty$ as $n \rightarrow \infty$, there is a positive integer n_1 such that if $n > n_1$ then

$$
H\left(\gamma_n\right) \le p^{2ms_n} \,. \tag{11}
$$

Finally using this in (10) we get

$$
|\gamma - \gamma_n|_p \le c_1 \ H(\gamma_n)^{-(s_{n+1}/2ms_n)} \quad (n > \max(n_0, n_1)), \tag{12}
$$

» J which gives us that $y_{i=1}$ that $\gamma \notin U_j$ ($j = 1, ..., m - 1$). It can be seen from (5) and (6) that γ_n satisfies all conditions in Lemma III. Hence there is a positive integer n_2 such that if $n>n_2$ then degree of $\gamma_n = m$.

Let β be a *p*-adic algebraic number of degree $\lt m$. Then we can apply Lemma I to β , γ_n ($n > n_2$) and so we obtain

$$
|\gamma_n - \beta|_{p} \ge c_3 \ H(\gamma_n)^{-m+1} \ H(\beta)^{-m}
$$

or using (11) in the above inequality

$$
|\gamma_n - \beta|_p \ge c_3 p^{2m(m-1)s_n} H(\beta)^{-m}, \quad n > \max_{i=0}^2 \{n_i\}, \tag{13}
$$

where c_3 is a positive constant depending only on p, m, α_i , ξ_i (1 $\leq i \leq k$). Set $t(m) = 2m^2 - m + 1$ and $r(m) = 2m(m - 1) t(m) + m + 1$. Then there is an integer n_3 such that if $n > n_3$ then $\frac{s_{n+1}}{s_n} > r(m)$. On the other hand for c_{ref} $\begin{pmatrix} 0 & p & p & p \\ p & p & p & q \end{pmatrix}$ there is an integer v such that $\frac{1}{2}$ W

 $p^{s_y} < H(\beta) \leq p^{s_{y+1}}$. (14)

Now we have two cases in (14) as following :

Case I. Let $p^{s_y} < H(\beta) \leq p^{s_{y+1}/(\ell m)}$. Then using the first and second part of this inequality in $(13)_{n=x}$ and in $(10)_{n=y}$ respectively we obtain

^O ^N *p -* **ADI ^C** *Um* **- NUMBER S 5**

$$
|\gamma_{\nu} - \beta|_{p} \ge c_{3} H(\beta)^{-t(m)+1}, |\gamma - \gamma_{n}|_{p} \le c_{1} H(\beta)^{-K(m)}
$$

that is

$$
|\gamma_{\nu}-\beta|_p>|\gamma-\gamma_n|_p
$$

and so

$$
|\gamma - \beta|_p = \max(|\gamma_v - \beta|_p, |\gamma - \gamma_v|_p) \geq c_3 H(\beta)^{-(m)+1}.
$$

Case II. If $p^{s_{v+1}/(m)} < H(\beta) \le p^{s_{v+1}}$ then writing (10) and (13) for $n = v + 1$ and using the above inequality we see that

or

$$
|\gamma_{\nu+1} - \beta|_p \ge c_3 H(\beta)^{-r(m)+1}, |\gamma - \gamma_{\nu+1}|_p \le c_1 H(\beta)^{-s_{\nu+2}/s} + \varepsilon
$$

$$
|\gamma_{\nu+1} - \beta|_p > |\gamma - \gamma_{\nu+1}|_p.
$$

Finally this inequality gives us that $|\gamma - \beta|_p \ge C_3 H(\beta)^{-r(m)+1}$ and this completes the proof.

Example. Let $k > 1$ be an integer. Then *p*-adic Liouville numbers

 $\xi_{i+1} = 1 + p^{(k+i)!} + p^{(2k+i)!} + \ldots + p^{(nk+i)!} + \ldots$ $(i = 0, 1, \ldots, k-1),$ satisfy all conditions in Theorem I. So if α_0 , α_1 ,..., α_k are *p*-adic algebraic numbers with $[Q(\alpha_0, ..., \alpha_k): Q] = m$ then $\alpha_0 + \alpha_1 \xi_1 + ... + \alpha_k \xi_k \in U_m$.

Note that it can be easily seen from the proof of Theorem I that it is sufficient to suppose that $\lim_{n \to \infty} \inf \frac{s_{n+1}}{s} > r(m)$ and $\lim_{n \to \infty} \sup \frac{s_{n+1}}{s} = \infty$ instead of stronger assumption (6).

We have a generalization of Theorem I as

Theorem II. Let α_0 , α_1 , ..., α_k ($k \ge 1$) be *p*-adic algebraic numbers in Q_p with $[Q(\alpha_0, ..., \alpha_k): Q] = m$ and $\xi_1, \xi_2, ..., \xi_k$ be *p*-adic Liouville numbers in the canonical forms

$$
\xi_i = a_0^{(i)} + a_1^{(i)} p^{u_1^{(i)}} + \dots + a_n^{(i)} p^{u_n^{(i)}} + \dots
$$

\n
$$
(u_{j+1}^{(i)} > u_j^{(i)} > 0, \ 1 \le a_j \le p-1, \ i = 1, \dots, k, \ j = 1, 2, \dots),
$$

and suppose that the sequence $\{u_n^{(i)}\}$ has a subsequence $\{u_{(i)}^{(i)}\}$ verifying the conditions

a)
$$
\lim_{n \to \infty} \frac{u_{\nu_n^{(i)}}^{(i)} + 1}{u_{\nu_n^{(i)}}^{(i)}} = \infty \quad (i = 1, ..., k),
$$

\nb)
$$
\lim_{n \to \infty} \frac{u_{\nu_{n+1}^{(i)}}^{(i)} + 1}{u_{\nu_{n+1}^{(i)}}^{(i)}} < \infty \quad (i = 1, ..., k).
$$

6 K . ALNIAgi K

Further suppose that the monotonic union sequence *sn* (consisting of all integers $s = u_{(i)}^{\prime\prime}$ for *i, j*, arranged by size) satisfies the condition $\lim_{n \to \infty} \frac{u_{i+1}}{n} = \infty$, then *V*_{*J*} s_n the *p*-adic number $\gamma = \alpha_0 + \alpha_1 \xi_1 + ... + \alpha_k \xi_k$ is a *p*-adic U_m -number.

We define integers $r_i(n)$ and $\rho_n^{(i)}$ as following :

$$
u_{r_i(n)}^{(i)} = \max_i \{u_{r_i()}^{(i)} | u_{r_i()}^{(i)} \le s_n\}, \rho_n^{(i)} = \sum_{j=0}^{r_i(n)} a_j^{(i)} p_{j}^{u_{j()}^{(i)}} \quad (i = 1, ..., k, n = i, ...).
$$

Then we approximate γ by $\gamma_n = \alpha_0 + \alpha_1 \rho^{(1)} + \alpha_2 \rho^{(2)} + \ldots + \alpha_k \rho^{(k)}$. The proof, which we shall omit, can be conducted by using a combination of the arguments used in the proof of Th. I. Finally we have the

Corollary I. Let ξ be a *p*-adic Liouville number in the canonical form $\xi = a_0 + a_1 p^{u_1} + \ldots + a_n p^{u_n} + \ldots$ ($u_{i+1} > u_i > 0, 1 \le a_i \le p - 1, i = 1, \ldots$), and suppose that the sequence $\{u_n\}$ has a subsequence $\{u_{n}\}$ verifying the conditions

$$
\lim_{n\to\infty}\frac{u_{\nu_{n+1}}}{u_{\nu_n}}=\infty\,,\,\,\limsup_{n\to\infty}\frac{u_{\nu_{n+1}}}{u_{\nu_n+1}}<\infty.
$$

Then p -adic Liouville number ξ can be represented by the sum and product of two *p*-adic U_m ($m = 1,...$) numbers.

Proof. First note that by Lemma I in $\begin{bmatrix}1\\1\end{bmatrix}$ we know that for every integer $m > 1$, there is an algebraic number α of degree *m* in Q_p . Now if $m = 1$ then ξ e ξ e ξ e ξ e ξ there is nothing to prove since $\zeta = \frac{1}{2} + \frac{1}{2} - \zeta$, $\zeta = \frac{1}{2} + \frac{1}{2} - \zeta$, $\zeta = \frac{1}{2} + \frac{1}{2} - \zeta$ 2×24 2 2×22 2×22 Liouville numbers. Let $m > 1$ and $\alpha \in \mathbb{Q}_p$ with $\deg \alpha = m$. Then

$$
\xi = \left(\frac{\xi}{2} + \alpha\right) + \left(\frac{\xi}{2} - \alpha\right), \ \xi = (\xi^2 \alpha) (\alpha \xi)^{-1}.
$$

One can show that ξ^2 and ξ^{-1} also satisfy the conditions in the corollary. Thus by Theorem II we see that

$$
\sum_{2}^{\xi} \mp \alpha, \xi^2 \alpha, (\alpha \xi)^{-1} \in U_m
$$

and this completes the proof.

Corollary II. Every algebraic number α in Q_p of degree $m > 1$ can be represented by the sum and product of two p-adic U_{mk} ($k = 1,...$) numbers.

Proof. Let $\alpha \in \mathbb{Q}_p$ with deg $\alpha = m > 1$. Then for $k \geq 1$, there is an algebraic number β in Q_p with deg $\beta = k$ such that

 $\mathbb{Z}[\mathbb{Z}]$

ON p - **ADIC** U_m - **NUMBERS** 7

$$
\deg\left(\frac{\alpha}{2}\mp\beta\right)=\deg\frac{\alpha+1}{\alpha}\beta=\deg\frac{\beta}{\alpha+1}=km.
$$

Let ξ be a *p*-adic Liouville number satisfying the conditions in Corollary I. Then we have

$$
\alpha = \left(\frac{\alpha}{2} - \beta + \xi\right) + \left(\frac{\alpha}{2} + \beta - \xi\right), \ \alpha = \left(\frac{\alpha + 1}{\beta} \alpha \xi\right) \left(\frac{\beta}{(\alpha + 1)\xi}\right).
$$

But it follows from Th. II that

$$
\frac{\alpha}{2} \mp \beta \pm \xi \in U_{mk}, \frac{\alpha+1}{\beta} \alpha \xi, \frac{\beta}{(\alpha+1)\xi} \in U_{mk}
$$

and this completes the proof.

REFERENCE S

H **SCHLÏCKEWEÏ, H.P.** *p-adic T-nutnbers do exist,* **Acta Arithmetica, 39 (1981), 181-191.**

- H **MAHLER , K .** *Über eine Klassen-einteÜung der p-adischen Zahlen,* **Mathe-** \cdot **matica (Leiden), 3 (1935), 177-185.**
- *On the subclasses Um in Mahler's classification of the tran-* $\mathbb{Z}^{\mathbb{Z}}$ **[³] ALNIAÇIK, K .** *scendental numbers* **(Thesis), Revue de la Faculté des Sciences de l'Université d'Istanbul, Série A , 44 (1979), 39-82.**
- **[⁴] ALNïAÇIK, K .** *On Mahler's U-numbers,* **American Journal of Mathematics, 6, 105 (1983), 1347-1356.**
- **i ⁵] İÇEN, O.Ş.** *Anhang zu den Arbeiten "Über die Funktionswerte der p-adisch elliptischen Funktionen I und II" ,* **Rev. Fac. Sei. l'Université d'Istanbul, Ser. A , 8 (1973), 25-35.**
- **[°] LEVEQUE , W.J .** *On Mahler's U numbers,* **Journal of the London Mathematical Society, 28 (1953), 220-229.**

DEPARTMENT OF MATHEMATICS UNIVERSIT Y O F KARADENİZ TRABZON-TURKE Y

O Z E T

B u çalışmada bazı koşullan gerçekleyen Liouville sayılarının cebirsel katsayılı tam kombinezonları incelenerek, bunların Q ^p cismindeki Mahler'in *Um* **alt sınıfına ait olduğu gösterilmektedir.**