A NOTE ON MORPHISM GRAPHS

M. I. MOHAMMED

The isomorphic relationship

$$
\operatorname{Mor}(X \times Y, Z)=\operatorname{Mor}(X, \operatorname{MG}(Y, Z))
$$

between the set of morphisms from $X \times Y$ to Z and the set of morphisms from X to the morphism graph $\operatorname{MG}(Y, Z)$, where X, Y and Z are graphs, has been used in [']. Here we discuss this relationship for certain directed graphs by using the posets with Hasse diagrams. Also some theorems related to morphism graphs have been proved.

DEFINITIONS

1. A directed graph (Diagraph) X consists of two disjoint sets X_{V} and X_{E}, called the set of vertices and the set of edges respectively, and two functions, $s, t: X_{E} \longrightarrow X_{V}$, called the source and target maps respectively. It is sometimes convenient to distinguish between those edges where the source and target maps coincide and those where they differ. A loop is an edge e such that $s e=t e$, and a link is an edge e such that se $\neq t e$.

For the purpose of this paper we use an alternative, algebraic definition of a diagraph, namely, a set X with two functions $s, t: X \longrightarrow X$ such that $t s=s$ and $s t=t$, it is easily shown that this definiton implies that $s^{2}=s, t^{2}=t$, and Image $(s)=$ image (t), thus we can take $X=$ Image $(s)=$ lmage $(t), X_{E}=X-X_{V}$ (this definition has been used in [${ }^{3}$]).

Example
 1.

x	$s(x)$	$t(x)$
u	u	u
v	v	v
w	w	w
z	z	z
a	u	u
b, c	z	z
d, e	u	v
f	w	v
g	v	w
h	u	z

2. The set of morphisms, $\operatorname{Mor}(X, Y)$ between directed graphs X and Y is the set of functions

$$
\phi: X \longrightarrow Y
$$

which satisfy $\phi s(x)=s(\phi(x))$ and $\phi(t(x))=t(\phi(x))$.
Note. A morphism may be illustrated by a "3-dimensional" sketch in which the inverse images of vertices and edges lie directly above their images.

Example 2.

3. The product $X \times Y$ of two diagraphs X and Y is defined by $X \times Y=\{(x, y): x \in X, y \in Y, s(x, y)=(s(x), s(y)), t(x, y)=(t(x), t(y))\}$.

Example 3. Let $X=Y=0$, then

4. Let $\phi, \psi \in \operatorname{Mor}(X, Y)$, then $\operatorname{Con}_{\phi, \psi}(X, Y)$ (the connecting maps) is the set of maps $\alpha: X \longrightarrow Y$ satisfying

$$
\left.\begin{array}{l}
s \alpha(x)=\phi s(x) \\
t \alpha(x)=\psi t(x)
\end{array}\right\}, \text { for all } x \text { in } X
$$

Such an α is called a (ϕ, ψ) - connector.
Note. ϕ is a (ϕ, ϕ) - connector for all $\phi \in \operatorname{Mor}(X, Y)$, since $s \phi(x)=s(x)$, and $t \phi(x)=t(x)$.
5. The morphism graph $\operatorname{MG}(X, Y)$ is the set of triples

$$
\left\{(\alpha, \phi, \psi): \phi, \psi \in \operatorname{Mor}(X, Y), \alpha \in \operatorname{Con}_{\phi, \psi}(X, Y)\right\} .
$$

Example 4. Let $Y=$
 , $X=$
 then, $\operatorname{Mor}(X, Y)=\left\{\phi_{u}, \phi_{y}, \phi_{a}, \phi_{b}\right\}$ is represented by the following diagrams:

x	$\phi_{u} s(x)$	$\phi_{u} t(x)$	$\phi_{v} s(x)$	$\phi_{v} t(x)$	$\phi_{a} s(x)$	$\phi_{u} t(x)$	$\phi_{b} s(x)$	$\phi_{b} t(x)$
y	u	u	v	v	u	u	v	v
c	u	u	v	v	u	v	v	u
z	u	u	v	v	v	v	u	u

6. If Γ is any graph, its Hesse diagram is the graph $\Gamma^{*}=\Gamma_{V} \cup E^{\prime}$ where E^{\prime}. is the set of all pairs (x, y) with $x, y \in \Gamma_{V}, x \neq y$ and $\operatorname{Max}\{L(\eta) \mid \eta \in P(\Gamma)$, $s(\eta)=x, t(\eta)=y\}=1$, where $L(\eta), \eta$ and $P(\Gamma)$ are defined as follows:
$L(\eta)$ is the length of a path η where a path of length $n \geqslant 1$ is an n-tupie $\left(y_{n}, \ldots, y_{1}\right), y_{i} \in \Gamma_{E}$.

We denote by $P(\Gamma)$ the set of irreducible paths of Γ, where an irreducible path of Γ is a path of length 0 or 1 , or any path $\eta, \eta=\left(y_{n}, \ldots, y_{1}\right)$, with $n \geqslant 2$, such that the vertices $s\left(y_{1}\right), s\left(y_{2}\right), \ldots, s\left(y_{n}\right)$ are all distinct. For more details of Hasse diagrams, see [${ }^{2}$].

Theorem. Let X and Y be two diagraphs, if Y is 1 -complete (i.e. it has exactly 1-directed edge from any vertex to any other) then $\operatorname{MG}(X, Y)$ contains a copy of Y.

Proof. Let $v_{1}, v_{2}, \ldots, v_{r}$ be the vertices of Y, then $\left\{\phi_{v_{i}}\right\}_{i=1}^{r} \subseteq \operatorname{Mor}(X, Y)$, where each $\phi_{\nu_{i}}$ is defined by $\phi_{v_{i}}(x)=x$ for all edges $x \in X$, define the constant connectors $\left\{\psi_{y}, y \in Y\right\}$ where $\Psi_{y}(x)=y$ for all x in X, and for all edges y in Y. These connectors give the set of triples $\left\{\left(\psi_{y}, \phi_{v_{i}}, \phi_{v_{j}}\right)\right\}$ where $v_{i}=s(y)$ and $v_{j}=t(y)$. For each vertex $v_{i} \in Y, \psi_{v_{i}}=\phi_{v_{i}}$, and this completes the proof. Now we discuss $\operatorname{MG}(X, Y)$ in example 3. First, $\operatorname{Mor}(X, Y)=\left\{\phi_{y}, \phi_{z}\right\}$ where

| ϕ | u | v | a | b |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ϕ_{y} | y | y | y | y |
| ϕ_{z} | z | z | z | z |

also we have the following table :

x	$\phi s(x)$	$\phi t(y)$	$\phi s(x)$	$\phi t(x)$
u	y	y	z	z
v	y	y	z	z
a	y	y	z	z
b	y	y	z	z

So, $\mathrm{MG}(Y, X)$ is given by the following diagram :

There' is no $\left(\phi_{z}, \phi_{y}\right)$-connector because we require such an α to satisfy $s(\alpha(x))=z$ and $t(\alpha(x))=y$ for all $x \in Y$, and there is no edge from z to y in X.

Proposition. $\operatorname{MG}(X, Y)$ is not isomorphic to $\operatorname{MG}(Y, X)$.
Proof. See the above example.

$$
\text { An illustration of } \operatorname{Mor}((X \times Y), Z) \cong \operatorname{Mor}(X, \operatorname{MG}(Y, Z))
$$

Take

and

then $X \times Y=$

and $\operatorname{Mor}(X, Z)=\left\{\phi_{p}, \phi_{q}, \phi_{r}, \phi_{c}, \phi_{d}, \phi_{e}\right\}$ where ϕ_{x} maps a to x.
To construct $\mathrm{MG}(X, Z)$ we need the following table :

x	$\phi(u)$	$\phi(a)$	$\phi(v)$	sources	targets
p	p	p	p	$p \quad p \quad p$	$p \quad p \quad p$
q	q	q	q	$q \quad q \quad q$	$q \quad q \quad q$
r	r	r	\because	$\begin{array}{llll}r & r & r\end{array}$	$\begin{array}{lll}r & r & r\end{array}$
c	p	c	q	$p \quad p \quad q$	$p \quad q \quad q$
d	q	d	r	$q \quad q \quad \begin{array}{lll}q\end{array}$	$q \quad r \cdot r$
e	p	e	r	$p \quad p \quad r$	$p \quad r \quad r$

The diagram of $\mathrm{MG}(X, Z)$ is presented below.

Note. Z can be considered as a directed graph associated to the poset (Hasse diagram) :

Similarly, X is associated to Hesse diagram ${ }_{u}^{v}$, , then $\operatorname{MG}(X, Z)$ is associated to Hesse diagram:

It is clear that the morphisn diagraphs can be viewed as a morphism of posets.

Now we construct $\operatorname{Mor}(X, \operatorname{MG}(Y, Z))$. The morphism graphs $\operatorname{MG}(Y, Z)$ and $\operatorname{MG}(X, Z)$ are isomorphic, for, replace u, a, v everywhere by w, b, z.

Here we need a diagraph morphism from X to $\operatorname{MG}(Y, Z)$, since $\operatorname{MG}(Y, Z)$ has twenty edges, there are twenty such morphisms drawn on page q (List A).

The second part of the isomorphic relationship is $\operatorname{Mor}(X \times Y, Z)$ and this must contain twenty morphisms, for $\operatorname{Mor}(X, \operatorname{MG}(Y, Z)$) does. Consider one particular morphism ψ.

If we split the edges of $X \times Y$ into sets $\{(u, b),(u, w),(u, z)\},\{(a, w)$, $(a, b),(a, z)\}$ and $\{(v, w),(v, b),(v, z)\}$, then we have the following diagrams:

From these diagrams we have

Thus ψ gives the diagram
 and this corresponds to a orphism in $\operatorname{Mor}(X, \operatorname{MG}(Y, Z))$ which is number 13 in (List A).

To illustrate the reverse process, choose a morphism from X to $\mathrm{MG}(Y, Z)$, number 3 in (List A) say,

so $u \longrightarrow\left(\begin{array}{c}w \longrightarrow p \\ b \longrightarrow p \\ z \longrightarrow p\end{array}\right), a \longrightarrow\left(\begin{array}{c}w \longrightarrow p \\ p \longrightarrow e \\ z \longrightarrow e\end{array}\right), v \longrightarrow\left(\begin{array}{c}w \longrightarrow p \\ b \longrightarrow e \\ z \longrightarrow r\end{array}\right)$.
This enables us to sketch the following projection diagram (where we shorten (u, w) to $u w$, etc).

On the following page we sketch a projection diagram for each of the morphisms of $\operatorname{Mor}(X, \operatorname{MG}(Y, Z)$), so we have twenty projection diagrams in (List B).

(List A)

(List B)

$\operatorname{MG}(X, \operatorname{MG}(Y, Z))$

i	$\phi_{i} s(y)$	$\phi_{i} s(c)$	$\phi_{i} s(z)$
1	ϕ_{p}	ϕ_{p}	ϕ_{p}
2	ϕ_{p}	ϕ_{p}	ϕ_{c}
3	ϕ_{p}	ϕ_{p}	ϕ_{e}
4	ϕ_{p}	ϕ_{p}	ϕ_{q}
5	ϕ_{p}	ϕ_{p}	ϕ_{d}
6	ϕ_{p}	ϕ_{p}	ϕ_{r}
7	ϕ_{c}	ϕ_{c}	ϕ_{c}
8	ϕ_{c}	ϕ_{0}	ϕ.
9	ϕ_{c}	ϕ_{c}	ϕ_{q}
10	ϕ_{c}	ϕ_{c}	ϕ_{d}
$\overline{11}$	ϕ_{c}	ϕ_{c}	$\phi_{\text {r }}$
12	ϕ_{e}	ϕ_{e}	$\phi_{\text {e }}$
13	ϕ_{e}	ϕ_{e}	ϕ_{d}
14	ϕ_{e}	ϕ_{e}	ϕ_{r}
15	ϕ_{g}	ϕ_{q}	ϕ_{q}
$\overline{16}$	ϕ_{4}	ϕ_{q}	ϕ_{d}
17	ϕ_{q}	$\phi_{\text {e }}$	ϕ_{r}
18	ϕ_{d}	ϕ_{d}	ϕ_{d}
19	ϕ_{d}	ϕ_{d}	ϕ,
20	ϕ_{r}	ϕ_{r}	ϕ,

i	$\phi_{t} t(y)$	$\phi_{1} t(c)$	$\phi_{l} t(z)$
1	ϕ_{p}	ϕ_{p}	ϕ_{p}
2	ϕ_{p}	ϕ_{c}	ϕ_{c}
3	ϕ_{p}	ϕ_{e}	ϕ_{e}
4	ϕ_{p}	ϕ_{a}	ϕ_{d}
5	ϕ_{p}	ϕ_{d}	ϕ_{d}
6	ϕ_{p}	ϕ_{r}	ϕ_{r}
7	ϕ_{c}	ϕ_{c}	ϕ_{c}
8	ϕ_{c}	ϕ_{d}	ϕ_{e}
9	ϕ_{c}	ϕ_{q}	ϕ_{q}
10	ϕ_{c}	ϕ_{d}	ϕ_{d}
11	ϕ_{c}	ϕ_{r}	ϕ_{r}
12	ϕ_{e}	ϕ_{e}	ϕ_{e}
13	ϕ_{e}	ϕ_{d}	ϕ_{d}
14	ϕ_{e}	ϕ_{r}	ϕ_{r}
15	ϕ_{q}	ϕ_{q}	ϕ_{q}
16	ϕ_{q}	ϕ_{d}	ϕ_{d}
17	ϕ_{q}	ϕ_{r}	ϕ_{r}
18	ϕ_{d}	ϕ_{d}	ϕ_{d}
19	ϕ_{d}	ϕ_{r}	ϕ_{r}
20	ϕ_{r}	ϕ_{r}	ϕ_{r}

