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O N P R E C R O S S E D M O D U L E S A N D G R O U P G R A P H S 

M . I . M . A L A L I 

I n [E] J . Shrimpton has defined for a graph ( F ) the symmetry group 
graph S Y M ( F ) , which contains the traditional automorphism group Aut ( F ) 
as set of edges. I n this paper we study the relation between precrossed 
modules and group graphs, also we introduce the notion of sub-precrossed 
module. 

INTRODUCTION 

Throughout this paper we wil l deal with reflexive directed graph, called 
simply digraph. This consists of a set (V) and functions s, t : T — > T, 
called respectively the source and target maps, such that st—t, ts=s. I t follows 
that s1 ~ s , t2 — t and s, t coincide on I m s = I m t. The elements of T are 
called the edges of the digraph, and the elements of I m s are called vertices. 
I f x, y are vertices of F, i t is common to write T (x, y) for i _ I (x) f] t~l (y), and 
to write u : x-—>y for ueT(x, y). A n edge element such that su=tu is called 
a loop, other edges are called links. I t is common to draw a diagram of a 
digraph in the form 

where the dot denotes a vertex. 

A morphism / : (T ,s ,t)—>(V ,s', t') of digraphs is a function / : T >V 
commuting with s, t, i.e. sf = fs , tf = ft. So we have a category Digr of 
digraphs and their morphisms. 

Note that this definition allows for a morphism of digraphs to map an edge 
to a vertex. I t is possible to set up another category Digr of irref lexive digraphs, 
in which this possibility of mapping an edge to a vertex is not allowed. However, 
the category Digr has some properties which are preferable to those of J Digr. 
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There are a number of constructions in graph theory whose properties are 
more easily comprehended from the view point of the category Digr. For 
example, the category Digr has products, where the product T x A of digraphs 
(TE , s , t), ( A £ , s, / ) has ( F x A ) E = r £ x A £ and source and target maps 
sxs', txt'. 

This implies that i f a, b are edges of V, A respectively, then in T x A we 
have a diagram : 

O f course the universal property of F x A is that there are two morphisms 
p1 : T x A y T ,p2 : F x A — > A, and a morphism / : X — > F x A is entirely 
determined by its two components ptf: X—~> T , p2f: X—»• A. More generally, 
one can say that Digr admits all limits and all colimits (i.e. is complete and 
cocomplete), but this more general statement will not be used here. 

I f F , A are graphs, then Digr ( F , A) is the set of digraph morphisms 
r — > - A . This set is equivalent to the set of vertices of a digraph D I G R ( r , A ) ^ 
which we now describe. 

The edges of D I G R (r , A) are triples (f, p , y) such that p , y are morphisms-
r >A a n d / : F — > A i s a function such that c / = p a , x / = y t so for each 
flef we obtain a diagram 

1. A ca^-group is defined by Loday (using here the notion of [*]) to b& 
a group G with two endornorphisms s, t of G such that st = t, ts — s and 
[Ker (5), Ker (i)3 = 1 the group of commutators of Ker ( j ) and Ker(0- I f the 
condition [Ker (s) , Ker (01 = 1 is dropped, we get what is known as. 
pre-cat1 -group, or group graph. 
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Given any group-graph (G, s, t), there is therefore a canonical method of 
constructing a cat^group from i t : we can form G = Gl[Ker(s), Ker ( i ) ] with 
the induced endomorphisms s ,t : G — y G. 

2. A precrossed module is consisting of two groups M, P where P acts 
on M and a homomorphism \i : M—*• P such that u (mp)=p~1 (u m)p , / J G P 
and meM. 

Theorem 1. Any precrossed module is associated with a group graph. 

s' e 
Proof. Consider the following mapping P a M [ >P —• P a M where 

t' 
P a M is the semidirect product of P by M and , /«) (pr, m')=(pp', mpr m') 
where p,p'eP and m,m'eM. The mappings s', f and B are defined as 
follows : 

s'(p,m)=p, t'(p , m) = p(\im) and B(p) = (p,l). 

I t is clear that s' is a homomorphism. 
t' (pp', m1" m') = pp' u (mpr m') = pp' p'^1 (u m) p' (u m) = i ' (p , m) t' (p', m), 
so, t' is a homomorphism and hence is a group graph where 
s , t : Pa M—^> P a M are homomorphisms defined by s = 8 s' and t — 0 
I t is very clear that st = t and to — 

Theorem 2. Every group graph is associated with precrossed module. 

Proof. Let (G,s,t) be a group graph, then i * : K e r j -—«-Imi, where 
/* is the restriction of t on Kers, and Ims acts on Kers by conjugation, 
gives a precrossed module structure; for, let belms and aeKevs, this implies 
that b=s(b*) for some 6*eG, so t*{ab)=t* e(a s (**))=i*s((b*)~ l ) i (a ) j (é*) = 
= / * j ( è * ) " 1 t{a) s(b*) = s*(b*)~l t{a) j (6* ) = r 1 6. I t is clear that 
I m s a Ker = G. 

The symmetry digraph SYM (T) of F consists of the invertible elements of 
D I G R (T , T). I n other words the triples ( / , p , y) consist of permutations of 
F such that p and y are morphisms and t 7/=Po-,x / =yT (Note that we use 
the term "permutation" for any one to one correspondence of a set to itself, 
whether the set is finite or infinite. Thus the automorphism group Aut (F) forms 
the set of vertices of T (Note that an automorphism is an invertible morphism). 

The monoid multiplication on D I G R ( r , T) is given by pointwise compo­
sition of functions : ( / , P , y) ( /" , P', y ' ) = ( / / ' , P P', y y ' ) , and this multipli­
cation gives SYM (F) a group structure. I t can easily be checked that the two 
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structures on SYM (F) are compatible, in the sense that source and target 
functions are group homomorphisms. 

Theorem 3. Let kn be a 1-complete graph on n vertices (i.e. there is only 
one directed edge from x to y and one directed edge from y to x for any 
vertices x, y in k,) then S Y M (kn) = Sna Sn where Sn is the symmetric group 
of degree n. 

Proof. I t is clear that A u t ( & J m. Sn. The edges of the group $YM(kn) 
are (/,P,y), where p , y : i r „ — > k n are automorphisms. Let u : x—* y be 
an edge in kn then fu : P x — > y y, so fu is determined by P , y , JC and j>, this 
means t h a t / is determined by P, y, so SYM(/c„) is 1-complete. 

We have a , T : SYM (kr) • S Y M f o ) and c(f, P , y) = (P , P , P) and 
i ( f > P > T) ' = (y > Y > Y)> also Ker cr consists of ( / , p , y) such that p = 1. 

Hence Ker a = Sir so the associated precrossed module is isomorphic to 
T * 

Sn —>- Sn, where t * is the restriction of T on Ker a. So, 

S Y M t / c J s ^ a ^ d b ^ a S , , . 
T 

Now we wil l discuss the corresponding notion associated to subgroup graphs. 
Let ( G , s, 1) be a group graph and H be any subgroup of G, such that 

S(H)^H, t{H)^H, then {H,s* , ?*) is a group-graph, called subgroup-graph 
of ( G , s , 0. 

Lemma. Let Q be a subgroup of P, N be a subgroup of Af which is Q 
equivalent (i.e. i f neN ,q& Q, then nqeN), then N-—> Q is a precrossed 
module i f M—-> P is a precrossed module, and Q a N is a subgroup-graph of 
/>a Af. 

Proof. The proof is obvious and similar to that of theorem 1. Note that 
the action of Q on N is the restriction of action of P on M. 

Let An be a discrete graph on n vertices and kn be a 1-complete graph 
on n vertices then we have the following theorem : 

Theorem 4. Let {1}.-—>• Sn and Sn—^-Sn be two precrossed modules, 
then the associated group graphs are SYM(A n ) and SYM(/t n ) respectively (Sn 

acts on itself by conjugation, and the same for the action of Sn on {1}). 

Proof. I t is clear that the associated group graphs are isomorphic to 
S J , o { l } r J S l , a { l } l where s(p , 1) - {p , 1) , t{p , 1) = (p(tm), 1) and 
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s 
S„ a S„ ZZZ Sn a Sn respectively where s(p , m)= (p , 1) and t(p , m)=(p(tm), 1), 

/ 
p,meSn, but Sn a {]} = I m c a Ker a, where a is the source map : 
SYM(A„) — • S Y M (A n) (note that Aut (A„) = SH)t also S„ a Sn = I m a a K e r a 
where cr is the source map : 

S Y M ( £ „ ) — + S Y M (£„). 
So, kna 5 f l = I m o a K e r a = SYM(Ärn), and Sna { l } = I m a a Ker a s S Y M (A f l). 

Theorem 5. I f T is an n circuit digraph, i.e. 

then SYM(T) = Clt a {1} , Cn is the cyclic group of order n. 

Proof. I t is clear that Aut (r) s C„ . Let a , % : SYM (T) — • S Y M (T) be 
the source and target maps of SYM(F) , then I m CT=C„ and Ker d = { l } . So, 

- f l j . —>• c„ is the associated precrossed module. Hence S Y M ( r ) = Cna {!}. 

Now we end this paper with the following open problems : 

Problem 1. What is the action of a group graph on a group graph? 

Problem 2. What is the precrossed module associated with 
S Y M (kn uknu ... u kn), where T = kn \j kn u ... u kn is a graph consisting 
of n-copies of kH1 

Problem 3. What is the semidirect product of S Y M ( L ) by a group? 

Problem 4. Suppose Y is a graph such that SYM (V) is discrete graph. Is 
the precrossed module associated to S Y M ( T \j T) discrete? Is it 

{1} ~ ^ - A u t ( r ) a z2 

where A u t ( T ) a z, is the direct product of Aut (T ) with the cyclic group of 
order 2? 
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Ö Z E T 

[3] de J . Shrisnpton, bir Y grafı için geleneksel Aut ( T ) otomorfiler 
grubunu kenarlar cümlesi olarak içeren S Y M (T) simetri grubu grafmı 
tanımlamıştır. B u çalışmada "precrossed" modüller ile grup graflan arasın­
daki ilişki incelenmekte ve ayrıca, "sab-precrossed" modül kavramı ithal 
edilmektedir. 


