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CONE M A X I M A L POINTS I N LINEAR TOPOLOGICAL PRODUCTS*) 

M. TURINICJ 

A maximally result due to Sterna-Karwat is shown to have a natural 
extension to the product setting. Some related questions occasionated by 
these developments are also discussed. 

1. PRELIMINARIES 

Let E be a Hausdorff (real) topological vector space. By a cone in E we 
shall mean any part C o f E with 

C + C^C;XC^C, Q < XeR ; OeC. (1.1) 

Given such an object, denote 

Iin (C) = C n ( - C), pt (C) = C n (lin (C)) c 

(Here, for any subset X of E, Xc stands for the absolute complement of X), 
O f course, l in (C) is the larger linear subspace included, in d And, p t (C) is 
a cone without origin ; that is, (1.1) takes place -with p t (C) in place of C- but 
without its last part. 

For a nonempty subset Y of E, denote by m a x ( F , C) the (eventual empty) 
subset of all zeY with the maximal (mod C) property 

we.Y, 2 < w(mod C) ~==>z < w(mod Jin(C)), 

where, by < (mod C) we understand the quasi-ordering over E induced by C, 
i n the usual way 

x < y i f and only i f y — x e C. 

We shall be interested in the sequel to determine (structural) conditions upon C 
so that the following property -referred to as C is a comp-max cone- be fulfilled 
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max( iy , C) is nonempty, for each (nonempty) compact part H of E (1.2) 

(Here, as usually, the term "compact" is taken as in Kelley [ 9, ch. 5, §1]; that is, 
each net in H admits an accumulation point in H). To give a practical 
motivation of this, we note (cf. Penot [ I 2 ] ) that an element of max (H, C) may 
be deemed as a Parote efficient point of a certain multi-criterion optimization 
problem. But, our interest has also a theoretical motivation; this emerges from 
the fact that (1.2) may be interpreted as a (linear) topological version of the 
Zorn Maximality Principle. I n this perspective, as a basic answer to the prob
lem we dealt with, we must consider the one obtained in 1954 by Ward [ 1 8 ] : 

Theorem 1. Suppose that 

K , ) C is a closed cone. 

Then, C has the comp-max property, in the sense 

Now, for the above precised reasons, it is natural to ask of whether or 
not is Theorem 1 extendable in the sense of (1.2). Note that any such extension 
must be purely technical; because, as results from the paper by Borwein [*], 
Theorem 1 is actually equivalent to the Axiom of Choice. The answer is 
positive. For example, to state an extension of this type, call the cone C in E, 
correct when c l ( C ) + p t ( C ) c c (Here, " c l " stands for the closure operator). 
Now, it may be shown that, under 

K 2 ) C is a correct cone 

in place of K t ) , the above conclusion of Theorem 1 is retainable. This is 
essentially the 1989 Luc's result [ n , ch. 2, §3] (where a more general compactness 
assumption about H is being used). But this is only a step towards a larger 
extonsion. To be more specific, let us call the cone C in E, admissible, when 

This property was introduced in Sterna-Karwat [ 1 S ] , I t is important to note 
that 

K 3 ) C is an admissible cone 

includes K 2 ) (This fact wi l l be clarified in Section 3). Of course, the implica
tion in (1.3) must be checked only i f c l ( L n C) is not reduced to the null 
subspace ; since, otherwise, i t becomes trivial. For example, this happens when 
C fulfills a condition like in Corley [ 5 ] ; namely 

K 4 ) cl(C) is pointed (lin cl(C) = {o}). 

max ( 7 / , C) is nonempty and cofinal (mod C) in H, for 
each (nonempty) compact part H of E. 

(1.2') 

£ = closed subspace of Hn(cl(C)) and c l ( L n C ) = linear 
subspace imply LnC = linear subspace. 

(1.3) 
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A n interesting situation described by such a condition is the following: Denote 
m = ( r + c ) n ( r - c ) , r<=£, 

and term the subset Y of E, full, in case Y = [Y]. Call the underlying cone C, 
normal when the origin of E has a fundamental system % of full neighborhoods. 
Now, i t turns out that 

K / ) C is a normal cone 

is a particular case of K 4 ) . To verify this, we firstly note that all members in 
% may be taken as balanced (hence symmetric) parts of E. Secondly, by a 
well known formula (to be found, e.g., in Schaefer [ 1 3 , ch. 1, §1]) 

c l ( C ) = n { C + U; Ue<?/} = n {C ~ U; UE<%}. 

This finally gives (by the Hausdorff property) 

lin c l (C) = n {(C - f E7) n ( - C + * / ) ; t/e<?/} = n <2r - { 0 } 

and the claim follows. Passing to the general case, call the cone C in E, non-flat 
when for each closed subspace L of l in cl (C) with cl (L n C) = nondegenerate 
linear subspace, i t is the case that LnC has a nonnempty interior in c l ( L n C ) 
(endowed with the relative (linear) topology). Then 

K 5 ) C is non-flat 

is also a particular case of K 3 ) . In fact, let the closed subspace L of lin cl (C) 
be taken as above. Then, by the classical Eidelheit's separation theorem (see, 
e.g., Cristescu [ 6, ch. 1, §2)] i t is not hard to show that 

L n C = c l ( L n C) = linear subspace, (1.4) 

and the claim follows. Now, K 5 ) is fulfilled when 
K

5') C = {xeC; x^o) is open (in E). 

To verify this, let the closed subspace L of l in cl(C) be such that cl(X n C) 
is a nondegenerate linear subspace. We therefore have 

L(~\C^{o) (or, equivalently, LnC'^tf))-

By the double inclusion 

LnC = (LnC)nC^cl(LnC)nC'^LnC', 
we deduce LnC' is open in cl(LnC) (endowed with the relative (linear) 
topology); hence, the interior of LnC in cl (LnC) is nomenpty, as claimed. 
The similar statement of the above quoted author (Remark 2.2, hi), in [ 1 5 ] ) 
corresponds to C being, in addition, convex in K / ) . This is, of course, 
redundant by the argument above; and moreover, i t makes K 5 ) be vacuously 
satisfied. Indeed, C must be pointed under such an assumption about C; for 
otherwise, i f x is a nonzero element of l in (C) then, o = ( l / 2 ) (x+(— x)) must 
belong to C , contradiction. So, combining with (1.4), 
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LnC = Hn (LnC) = £ n l i n ( C ) {o}. 

But, this is absurd by the admitted hypothesis about cl ( I n C); hence the claim. 
Finally, i t is werth noting that, by Theorem C (ch. 1, §2) and Lemma A 
(ch. 2, §11) in Helmes [ 8 ] , condition K 5 ) wi l l be also fulfilled when 

K 6 ) l in cl (C) is finite dimensional. 

I n particular, this condition wil l trivially hold for any cone C in E provided 
dim (E) = finite; and this shows K 3 ) includes effectively K , ) . 

Further aspects concerning this notion wi l l be delineated in Section 3. Here, 
we merely note that the following statement obtained in the 1986 paper by 
Sterna-Karwat we already quoted is -technically speaking- a strict extension o f 
the above one : 

Theorem 2. Suppose K 3 ) is admitted. Then, C is a comp-max cone, in 
the sense 

max ( i f , C) is nonempty and cofinal (mod cl(C)) in H, ^ 
for each (nonempty) compact part H of E. 

The proof goes by transfinite induction. I t consists essentially in the follow
ing. Take 

L 0 <= E} C0 = C, H0 = H, yQ = arbitrary in H0. 

Generally, for the ordinal X, put 

.L x = lin (cl (C\_x)), C\ = LhnC^, yx = arbitrary in 
max ( i f , _ , , cl (CVJ) , = (y% + L , ) 

when X is of the first kind (X — 1 exists), and 

L , = n {Le;Z,<X\, C x = n { C e 

HK= r\ {H^ ;B,<X], yh = arbitrary in max(H K , cl C\)) 

when X is of the second kind (X— 1 does not exist). Now, it may be shown that 

max {H, C)2max (HK, C ) , fur all Ç. 

So, to complete the proof, i t suffices that 

max (i/g , C^)¥=4>, for some 

This clearly holds when 

Q = l i n ( Q ) , for some 

Hence, the only point is what happens in the opposite case. Then 

L % is constructive for ;dl (1-6) 
and 

L K ID L . n , whenever • E, <r | . . (1.7) 
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(Here, 3 denotes the strict inclusion). This, in the author's view, yields a 
contradiction i f one takes into account the Axiom of Replacement (see, e.g., 
Cohen [ 4, ch. 2, §3]) in the presence of the other axioms of the Zermelo-Fraenkel 
set theory. Unfortunately, the author's argument is unacceptable from a logical 
viewpoint. Indeed, i t wil l follow by (1.6)+(1.7) that the transfinite sequence 3? 
of all such £ 5 appears as an effective/actual model of the class W of all 
ordinals, whose contradictory character is well known (see, e.g., Sierpinski [ l 4

( 

ch. 14, §2]). And consequently, any argument founded on this premise has no 
logical value. But, in this case, the last part of the above proof hangs in the 
air; and then, the question arises of whether or not is this removable. To give 
an appropriate answer, let us remember that any transfinite induction process 
is to be considered over a certain segment W(\i) = {£, e W ; £ < u } of ordinals, 
where the limiting ordinal u, is apriori given by our data. Having this in mind, 
let k denote the cardinal number of the family 

&>(Q ='{L ; L = closed subspace o f Hn c l (C)} . 

Also, let m be any (Hartogs type) aleph number for which relation m<k does 
not hold (The existence of such an aleph is a consequence of a result in Sitrpm>ki 
[ 1 4 , ch. 16, §1] proved without the aid of the Axiom of Choice). Denote by u. 
the initial ordinal associated to m ; that is, min { i ; e W ; card W (£)=m}. Now, 
assume the transifinite sequence =Sf of all such L K is constructible over W(y). 
Then, J27 is order isomorphic with W(\i); and consequently, i t has the. cardi
nality m. This, however, is in contradiction with 

m - card < card ( ^ (C)) = k. 

Hence, the sequence in question must stop for a certain ordinal p < u ; and the 
proof of Theorem 2 is complete. We must however say that the argument is 
technically complicated. I t is our aim in the following to get a simplified form 
of this ; details will be given in Section 4. The main tool of these investigations 
is the well known Bourbaki fixed point principle p ] ; some constructive aspects 
of it were delineated in Section 2. We also show, in Section 3, that the 
statement of Theorem 2 may be put in a product setting. And, finally, Section 
5 is devoted to the converse question to Theorem 2. 

2. T H E BOURBAKI FIXED POINT PRINCIPLE 
i 

Let A be a nonempty set and < , an ordering over A. We let / : AI-> A 
be a progressive mapping ; that is 

H,) x<f(x), for all JC in A. 

Concerning the question of what: can be said.-about the set F i x ( / ) of all fixed 
points for this mapping, the following facts -will be in effect for us. Let us call 
the ambient set A, semi-complete, when 
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H 2 ) sup (X) exists, for each part X of A. 

I t is now clear that, with such a hypothesis about A, the set F i x ( / ) is not 
empty; in fact, sup (A) is an element of it. But, for the developments below, 
this wi l l not suffice. Our objective is to determine, for any point aeA, the 
"shortest" iterative process starting from a, having as endpoint an element of 
Fix ( / ) . I n this direction, the following result due to Bourbaki [ z ] must be noted. 

Proposition 1. Let / and A be as in H,) plus H 2 ) . Then, for each a e A, 
there may be determined a well ordered part B = B(d) of A with the properties 

a) aeB, f(B)<zB, and mp(X)eB, whenever X^B. 

b) u, v e 5 = > « > ; v o r / ( w ) < v (i.e., x->f(x) is the immediate successor 
mapping of B). 

c) sup(8) is the only fixed point of / in B (that is, xeB and x ^ s u p ( B ) 
imply x < f(x)). 

Actually, B may be defined as the intersection of all nonempty parts Y of A 
fulfilling a) (with Y in place of B); see the quoted paper for details. Now, in 
view of b), the iterative process we are looking for is that defined by the well 
ordered set B. To explain this, we need some preliminary facts. Let W stand 
for the class of all ordinals; i t has a contradictory character, by the well 
known Burali-Forti paradoxe (see, e.g., Sierpinski [ u , ch. 14, §2]). However, 
when one restricts the considerations to a Grothendieck universe & (introduced 
as in Hasse and Michler [ 7 ,ch. 1,§2]) this contradictory character is removed 
for the class W^S) of all admissible (modulo ^ ) ordinals (that is, ordinals 
generated by well-ordered (non-contradictory) sets in ^ ) . I n the following, we 
drop the subscript (@) for simplicity. So, by an ordinal (in W) we shall 
actually understand a ^-admissible ordinal with respect to a "sufficiently large" 
Grothendieck universe @. This wi l l be referred to as an admissible ordinal (to 
indicate the fact that a generic universe & is considered in its construction). 
Clearly, 

i ; = admissible ordinal, f\<£>'=^>'*\ ~ admissible ordinal. 

Hence, in the formula 

W(X) = {t>eW;^<X}> XeW, 

the set W in the brackets may be taken as the "absolute" set of all ordinals. 

Let in the following the generic Grothendieck universe be so large that 
A is a member/part of i t . For each aeA, let the transfinite iterates of / at 
this point be introduced as 
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f° (a) — a (the considered point) 

f*(a) = fif^ia)), i f X is a first kind ordinal (2.1) 

= sup {f%{d); £,<X}, otherwise 

(Here, by "ordinal" we actually mean "admissible ordinal". But, in the following, 
we shall not make any distinction between these; because, in view of the accepted 
hypothesis, only admissible ordinals are considered). The definition above is 
meaningful, in view of the semi-completeness condition H-»). Moreover, by H J , 

f% (a) < /" (a), whenever \ < r\; 

that is, the transfinite sequence (J* (a)) increases. Now, in principle, i t would 
be possible that such a sequence be nonstationary, i.e., 

f (a) < P (a), provided % < n . (2.2) 
Therefore, what the above result says is that the transfinite sequence ( / 5 (a)) 
becomes stationary beyond a certain ordinal number |3 = p (a) (which also 
depends on / and A), in the sense 

/ " (a) for all % > p. 
Precisely, let y denote the order type of (B, < ) . Hence B is order isomorphic 
with W(y); and this, in conjunction with c), shows y is necessarily a first 
kind ordinal (that is, p^=y— l exists) and proves the assertion above in view 
of the remark made in b). Two important facts about this ordinal must be noted: 

i) The ordinal in question is admissible (in a sense we already precised) 
with respect to the ambient Grothendieck universe @ including/containing A, 
I n fact, under this assumption (about A), the family 0>(A) is necessarily a 
member/part of the same universe. As a consequence, any subfamily of 
0>(A) -in particular, the one appearing in the definition of B- is again 
endowed with such a property. But, in this case, B is a member/part of the same 
universe; and then, by definition, p is an admissible ordinal. 

i i ) The process of determining this ordinal is not depending on the Axiom 
of Choice. Nevertheless, i t is true that, with the aid of this axiom, a more direct 
proof of the statement above is available. Precisely, denote k ~ card (A), and 
let m be another cardinal with 

k < m = aleph number 
(Note that each of these relations requires the Axiom of Choice; because, the 
former is not in general valid without the trichotomy law, and the latter may 
fail, in general without the aleph hypothesis; cf. Sierpinski [ l 4 , ch. 16, §1]). 
Denote also by (i the initial ordinal associated to m. I t follows by the same 
procedure as in Section 1 that the transfinite sequence ( / e ( a ) ) cannot satisfy 
a relation. like (2.2) over W(\i); hence, i t becomes stationary beyond a certain 
ordinal p < \i and the claim is proved. 
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Now, as a consequence of these facts, the mapping from A into itseif 

• r(ct) = sup {f(d)}, cteA 
(y 

is well defined. The basic properties of it are collected in 

Proposition 2. The following are valid : 
m) f^(d) ^fa(a), for a l l . ^ a n d - a l l a e ^ ; and consequently,/™ is pro

gressive (over A), 

n) = fm.(/*(«)) (a), for all ^ and all aeA; hence, in 
particular, / r o (a) is an element of Fix ( / ) , for each a e A. 

p) i f / is increasing, over A, then so'is /"> . 

Proof. . The first part is obvious. For the second part, i t suffices to note 
that the property in question is valid for £, = 1 ; and, from this, the general 
case follows easily by transfinite induction. The third part is an immediate 
consequence of the fact that, under the precised requirements, all transfinite 
iterates ( / 5 ) of the considered function are increasing over A. Hence the result, 
q.e.d. 

Now, as f™ is progressive too, the transfinite sequence of all its iterates 
((/m)5 (a)), is again stationary beyond a certain ordinal y=y(a), for each aeA. 
Hence, the mapping (from A to itself) 

(f»r(a) = sup{(f«f(a)}, aeA, 

is well defined;1 etc. This procedure may continúate indefinitely and seems to 
generate interesting problems. But, for the* developments below, these wil l not be 
needed, ' 1 

---- - ' 3 . . M A I N RESULTS • 

We now return to the framework of Section' 1. Let E be a Hausdorff (real) 
topological vector space. Denote by # (E) the class of all cones in E; i t is easily 
shown to be semi-complete with respect to the converse inclusion ( 3 ) over 
&(E). Let the self-mapping T of W(E) be introduced as 

]'./' T(X) = Xn lin cl(A0, Xe<g(E) 

(Here, ás precised, " c l " is the closure operator associated to the ambient (linear) 
topology Over is). This map is trivially shown to be progressive (again with 
respect to the converse inclusion). Hence, for any cone C in is, the transfinite 
sequence of iterates (T% (C)) is constructible, in accordance with the convention 
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T°(C) — C (the considered cone)••• 

T x (C) = r ( r x _ 1 (C)), i f X is a first kind ordinal (3.1) 

= n ( T ? ( C ) ; £ < X}, otherwise 

(Here, the term "ordinal" means "admissible ordinal" with respect to a 
sufficiently large Grothendieck universe ^ containing/including E. But in the 
following the word "admissible" wi l l be deleted). Now, it is clear that 

•T% (C) 2 T" (C), whenever £ < i\. 
So, the question arises of whether or not is a property like 

T^(C) r> r (C), provided % < r,, (3.2) 
avoidable, for any cone C in Moreover -supposing this would be true- it is 
natural to ask of which supplementary properties has the associated self-map 
T™ of $?(£) , introduced as 

(5) 

A n appropriate answer to these is precised in 

Proposition 3. Let the notations above be accepted. Then 

A ) For any cone C in E there may be determined an ordinal p = p(C) 
{which also depends on E and T) such that the transfinite sequence (!T e(C)) 
becomes stationary beyond, p, in the sense 

T^(C)•= T 5 ( C ) , for a l U > p. 

B) The self-mapping T™ of ^ (E) (introduced as above) is well defined 
and increasing (with respect to the usual inclusion over 

Proof. The first part follows by Proposition 1 (in the preceding section) 
.and the remarks following it . The second part is immediate, via Proposition 2, 
because T is increasing with respect to the usual inclusion over (E). q.e.d. 

Now, i t must be remarked that part A) of the statement above is due to 
Sterna-Karwat [ " ] . The author's proof consists in the following: 

"Observe that (T%(C)\ is a chain in (V (E), Q ) . Since, by the Hausdorff 
Maximal ly Principle (see, e.g., Kelley t 9 , ch. 0, § 12]) there exists a maximal chain 
in every ordered set, we must have an ordinal p* with the stated property. 
Hence the result." 

That such an argument cannot be accepted from a logical viewpoint follows, 
essentially, by the same way as the one precised in Section 1. I n fact, the author's 
remark involving the chain property of (T\C)) must be necessarily coupled with 
•condition (3.2) being accepted; for, otherwise, there is nothing to prove. Now, 
two cases are open before us: 
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a) No reference is made about a Grothendieck universe $ which should 
contain/include E. Then, "ordinal" means "absolute ordinal". And, in such a 
situation, the transfinite sequence in question becomes an effective model of the 
contradictory class W of all ordinals. Therefore, we cannot assign any logical 
value (true/false) to the premise of the argument above. 

b) A n implicit assumption is made about a Grothendieck Universe & 
which should contain/include E. Then, the transfinite sequence (7^(C)) is no 
longer contradictory; but, from this one cannot see to what extent is available 
the Hausdorff Maximality Principle to get-in a direct way-the conclusion of 
the above argument. 

Under these preliminaries, we may now return to the notion of admissible 
cone introduced in Section 1. A useful characterization of it may be given under 
the lines below. 

Proposition 4. The following are equivalent: 1 

i) C is admissible (in the sense of (1.3)), 

ii) D = subcone of C and cl (D) = linear subspace imply 
C n c l (D) ~ linear subspace, 

hi) Ta (C)•= l ih (C). 

Proof, iii) i ) . Let L be a closed subspace of l in cl (C) with cl ( L n C)~ 
= linear subspace. It is not hard to see, via transfinite induction, that 

LnC = Lr\T^(C), for a l l ^ (3.3) 

Actually, this relation holds for any subspace L of E with, cl (Z,nC)=subspace 
(of E). The deep part of the induction argument is the verification for E, = 1. 
This, in turn is immediate, in view of 

Ln C - L n Cn l in (cl (LnC))^Ln Cnlin (cl (L)n cl (C)). 
As a direct consequence, 

LnC = LnT^XC) = linear subspace; 
and so, the assertion is proved. 

i) = > i i ) . Let D be a subcone of C with c\(D) — linear subspace (Here, the 
term "subcone" means: a subset of a cone which is itself a cone). Put L=c\(D). 
We have (by some elementary arguments) 

c l ( L n C ) = L(= closed linear subspace of lin cl(C)). 

Hence, by i ) , LnC = c l ( D ) n C i s a linear subspace. 
ii) = > i i i ) . Denote for simplicity D^T^iC). That cl(Z>) is a linear subspace 

of l in cl(C) is simply to verify, via D=T{D). Hence, by i i ) , C n c I ( D ) is a linear 
subspace. On the other hand, we have by (3.3), with L = c\(D), that 
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C n c l ( D ) = 7*(C)ncl(Z>), for all t 

This immediately gives (by the adopted notation) 

or, in other words, D is a linear subspace (of lin (C)). Now, it is easy to verify, 
via transfinite induction, that 

Mn(C) = l i n ( r e (C) ) , for all £ (3.4) 

(As before, the deep part of the induction argument is the one concerning the 
case i ; = 1 ; and this, by the definition of T, is immediate). As a consequence, 

lm(C) = l in ( £ ) = ! > , 

and the assertion is proved, q.e.d. 

I t is to be noted that the equivalence i)==>iii) was obtained in Sterna-Karwat 
f 1 7 ] , through a similar technique. Also, we formally conclude from the above 
argument that the admissibility condition upon C may be also expressed, 
respectively, by 

i*) the property (1.3), with L , an arbitrary subspace of E (instead of being 
closed in l in c l (C) ) ; 

i i*) the property i i ) , with the subcone D of C being, in addition, linearly 
compatible wi th C (i.e., l i n ( / ) ) = h n ( C ) ) ; 

in*) J1™ (C) is a linear subspace of E. 

Immediate applications of these developments are : 

P) Let d£ be a family of admissible cones, and put C = n j , We have, 
by part B) of Proposition 3, 

Ta,(C)^ r\{Tm(K) ; KeJt} = . n {\in(K) ; KeJt) = lin'(C). 

On the other hand, it follows by the relations (3.4) that 7"™(C)Qlin(C). Hence, 
T™ (C) = lin ( C ) ; and this proves (cf. Sterna-Karwat [ I 7 ] ) : 

The class of all admissible cones in E is semi-complete 
(3.5) 

wi th respect to the converse inclusion. 
Q) We introduced in Section 1 the notion of correctness for a cone C in 

by means of 

cl (C) + pt (C) E C (or, equivalent^, cl (C) -F pt (C) £ pt (C)) ; 

see Luc [ u , ch. 1,§1] for details. I t is our intention to study the relationships 
between this notion and the one of admissibility. So, let C be a correct cone in E, 
and denote for simplicity £> = T™ (C). By hypothesis, i t clearly follows that 
c l (Z>)+pt(Z))£ C. On the other hand, from the remarks made in Proposition 4, 
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cl(ZJ) is a linear space; and consequently, cl(£>) -f- pt(D) = cl(Z>). Hence, 
combining these facts, cl(D)^C. And, from this, 

cl(r>)&Cr\c\(D) - V, 

i f we again take into account the developments in that statement This immedi
ately gives 

E> = cl(D) = linear subspace, 

Summing up, we have the implication 

C is correct ==> C is admissible. (3.6) 

This cannot be reversed; because, e.g., a non^closed linear space of E is 
admissible but not correct. 

A dimensional consequence of these facts may be stated along the following 
lines. Let{is (- ;iel} be a family of Hausdorff (real) topological vector spaces,; 
and E = U{Ej; iel] their topological product (introduced as in Cristescu 
[ 6, ch. 1,§2]). For each/e 7, let yy-denote the projection of E into EJt defined as. 

jj(x). = xj, when x = (jc;)/e/ is in E. 

Put r — (Ti) , e / . We shall term the cone C of E, T-decomposable, in case 

C = LT {Cj; ie I}, where C f — y ; (C), ie I. 

The class of all such cones in E wi l l be denoted by 2 (E). I t is easily shown 
to be semi-complete with respect to the converse inclusion ( ¡2) over (E). 

The following fact is useful for us; 

Proposition 5. Let C = n { C ; ; i e / } be a T-decomposable cone in E. Then„ 
C is admissible in E i f and only i f Cj is admissible in E,, for each i e I. I n 
other words: the property of being admissible is closed with respect to cartesian 
products. 1 

Proof. Suppose that, for i e I, the cone C(- in Ei is admissible. Then, evidently,. 

C* = y r 1 (C f) is admissible in E, for each i . . 

And this, in conjunction with (3.5), proves the sufficieny. Conversely, suppose 
the F-decomposable cone C = Xl{Ct ; iel} is admissible in E. Denote by T 
the mapping from (E) to itself introduced as in a previous convention 
(where " c l " denotes the closure operator induced by the product topology). I t 
follows by some well known facts involving topological products (see, e.g.,. 
Bourbaki [ \ ch. 1,§4]) that the restriction of T to 2 (E) is a self-mapping o f 
<$ (E). Precisely, 

T(X) = n {Tt (X,) ; / G / } , X = H {X, ; / e / } e S> (E), 
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where, for each i e I, the self-mapping T, of (£*,-) is introduced again as in 
the discussed convention (with "cf" denoting this time the closure operator 
associated to the linear topology over is,). And, from this, one immediately 
gets, by transfinite induction, that 

THQ = U{Tf(Ci) ; iel], for all (3.7) 

Now, by part B) of Proposition 3, the self-map TJ° of ^ (E,) is well defined, 
for each iel; likewise, the self-map Tx of eS' (E) is again well defined. This, 
in conjunction with (3.7), yields 

7"°(C) = n{T™(Cd ; iel}. 

But, in view of the accepted hypothesis, Tm (C) is a subspace of E. Hence, 
T?(C^ = 7 , (7"°(C)) is a subspace of E;, for each iel; and this, in view of 
a remark following Proposition 4, gives the desired conclusion, q.e.d. 

We now introduce a basic convention. Let us call a cone C in E, T-admissible, 
in case 

Q = Y ; ( 0 1S admissible in Et, for each iel. (3.8) 

By the above statement we have that, for a F-decomposable cone in E, the 
notions of admissible and T-admissible are identical. Hence, taking into account 
Theorem 2, we formally deduce 

Theorem 3. Let the T-decomposable cone C in E be r-admissible. Then, 
it necessarily has the comp-max property, in the sense of (1.2*). 

Of course, this methodological implication may be reversed; i.e., Theorem 2 
is a particular case of Theorem 3 (obtained whenever the index set / reduces 
to a single point). 

A natural question is to see what happens when the underlying cone is no 
longer T-decomposable. For a partial answer, denote 

. r (C) = n {.y, (C) ; i G / } , C € i f (£) . 

Clearly, F ( C ) is a F-decomposable cone in E which, in addition, includes 
C (a cone in E). 

Theorem 4. Let the cone C in E be F-admissible and linearly compatible 
with F (C) . Then, it,has the comp-max property, in the sense precised by (1.2*). 

Proof. Denote for simplicity Z>=r(C). We have \ixi(D)=\m(C)<^C^D. 

So, i f we apply the (increasing) map to these, one immediately gets 
(C) — lin ( C ) o r , in other words, C is admissible (by Proposition 4). But, 

in this case, Theorem 2 applies. Hence the conclusion, q.e.d. 
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So far, Theorem 4 above is a particular case of the main result in Section 1. 
But, the converse is also valid, as i t can be directly seen. 

The above statement -as well as the ones in the introductory part- are non-
trivial only i f the ambient Hausdorff linear topology over E is, roughly speaking, 
"not very strong". To explain this, let E be a (real) vector space. We introduce 
over E the Hausdorff linear topology having as zero-neighborhoods basis the 
class of all convex balanced sets for which the origin of E is an algebraic interior 
point. This object-called the convex core topology- is actually the strongest locally 
convex topology over E, as i t can be directly seen. 

Theorem 5. Let the ambient Hausdorff linear topology over E be stronger 
than the convex core topology. Then, any cone C in E has the comp-max property. 

Proof. Let H be a (nonempty) compact part of E (with respect to the 
ambient (linear) topology). Then, necessarily, H is compact in the convex core 
topology. And this, combined with a known result (see, e.g., Kelley and Namioka 
[ I 0 , ch. 2, §6, ex. I ] ) gives 

H^L, for some finite dimensional subspace L of E. But, in this case, 

max (H, C) = max (H, Cn L), 

for any cone C in E. Adding to these informations the remarks in Section 1 
following K 6 ) , conclusion is clear, q.e.d. 

This result partially answers a question raised by Corley [ 5 j ; namely 

"Is i t true that any cone C in £ has the comp-max property with respect to 
any Hausdorff (linear) topology over the ambient space El" 

Precisely, Theorem 5 says that the class of all such topologies cannot be 
empty. On the other hand, as we shall see in Section 5, not any Hausdorff 
linear topology over E has such a property, when E is infinite dimensional. A n 
interesting open problem is that of determining to what extent is the convex 
core topology the minimal one to solve the question above. We conjecture 
that the answer is affirmative. 

4. A DIRECT PROOF OF T H E O R E M 2 

As already precised in Section 1, the argument in Sterna-Karwat [ I S ] may 
be appropriately completed so that an acceptable proof of Theorem 2 be 
reached. However, a close analysis shows i t may be improved. I t is our aim in 
the. following to get such a simplified proof. Let E be a Hausdorff (real) 
topological Vector space. The following "diagonal" version of Theorem 1 wi l l 
be in effect for us. 
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' Proposition 6. Suppose i f is a (nonempty) compact part of E. And, a > 0 
denoting an ordinal number, let ( Q ; £ « x ) be a family of closed cones in E, 
which is descending with respect to the usual inclusion in ^(E); namely 

Q 3 C \ , whenever i ; < r | < a . (4.1) 

Then, K=r\ {max ( i f , C\) ; i ; < a } is nonempty and cofinal (mod C 0) in i f . 

Proof. Let x e i f be arbitrary fixed. By Theorem 1, we find ayQe max ( i f ,C 0 ) 
with x < y0 (mod C 0). For this y0 there exists, again by Theorem 1, a 
_F jemax( l / , C\) wi th j 0 < j j ( m o d Cj); note that, as C 0 3 C , , one gets 

yQ<y1 (mod C 0 ) (hence x^y^mod CJ). 

Generally, suppose that, for the ordinal number X < a, we constructed a net 
(y\)e,<x in wi th the properties 

y^y-v (mod C g), when i ; < r| < X (4.2) 

•. y e e max ( i f , Q ) , for each i ; < X. (4.3) 

I f X is a first kind ordinal, put X — 1 — \i. We thus have 

y 5 <y K (mod ,Cg) , when £ < u . 

Now, again by Theorem 1, choose a yh e max ( i f , Q ) with J V < j \ ( m o d C\). 
By (4.1) + (4.2), i t is clear that 

j> x(mod Q ) , for each £ < A.; (4.2') 

that is, (4.2) holds with n = X (We formally remark that (4.3) also holds with 
i ; = X, by the choice of yh). I f A. is a socond kind (limit) ordinal, the net 
CVg)iK?> has, by the compactness of i f , an accumulation point (in i f ) , say /. I n 
view of 

plus the closedness of C c , one gets 

' i (mod Q ) , when < A,. 

Now, again by Theorem 1, we may determine a y^e max ( i f , C\) with t ^ yx 

(mod C\) Hence (4.2') is va l id ; and, from this, (4.2) holds with n = X (That 
(4.3) also holds for t, = X is trivial). Summing up, the net Q>5) is constructive 
over W{a) so that (4.2) + (4.3) be fulfilled (with X=d). But, in this case, the 
procedure we just employed for the ordinal X may be used as well to produce 
a point y e H wi th • ' 

yz < y (mod C e), for all t, < a. 

The obtained point is an element of K (the set defined in the statement); and, 
moreover, x<y{mo& C 0). Hence the conclusion, q.e.d. 
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We now introduce a useful.convention. Let C, D be a couple of cones in E 
with. CZ2D. For a (nonempty) part T of denote by m a x ( T ; C , X>) the 
(eventual empty) subset of all zeY with the (maximal type) property 

weY, z<M>(mod C) ==Z> z<w (mod D). 

Note at this time the trivial implication 

D - l in (C) — > max ( Z ; C , Z>)= max (Y, C). (4.4) 

Under the model of Section 1, let us say the pair (C ,D) has the comp-max 
property, when 

max ( i f ; C , D) is nonempty, for each (nonempty) compact part i f of K (4.5) 

Now, as an application of the developments above, one has 

Theorem 6. Let C be a cone in E. Then, the pair ( C , ^ " ( C ) ) has the 
comp-max property, in the sense 

max ( i f ; C, (C)) is nonempty and cofinal (mod cl (C)) 

in i f , for each (nonempty) compact part i f of E, (4-5) 

Proof. Let the self-mapping T of (E) be introduced as in Section 3. 
Denote for simplicity 

Q = r ? (C), for all £, ; B ~ Tm (C). 

I t follows by Proposition 3 that, an ordinal P—P(C) may be found so that the 
(descending) transfinite sequence (C\) becomes stationary beyond p ; that is, 

C s = Q , for all £ > p (hence "Cs = D). 

The transfinite sequence ( c l ( Q ) ; < p -f- I ) is again descending (with respect 
to the usual inclusion in {E)). Let i f be a (nonempty) compact part of E. By 
Proposition 6, 

Hc = n {max ( i f , d ( C e ) ) ; i ; < 0 + 1} 

is nonempty and cofinal (mod cI(C)) in i f . We now claim that i f c c max ( i f ; C,7J) 
(and this wi l l complete the argument). Let x be arbitrary fixed in i f c , and let 
y eH be such that x<y (mod C ) ; or, in other words, x<y (mod C 0). We thus 
havex<>- (mod cl (C 0 ) ) ; this, plus x e max ( i f , cl (C 0)), g ivesx<y (mod lin cl (C 0)) 
wherefrom (again by the information above) 

x<y (mod C 0 n l i n c l (C 0 ) = CJ . 

Generally, assume that, for the fixed ordinal A,<P+1, one has the information 
like 

x<y (mod Q ) , for all % < X. (4.6) 
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I f X is a first kind ordinal, then the argument above (with Q _ , in place o f 
C 0) gives x<y(mod Ch); i.e., (4.6) is true for £ — X. I f X. is a second kind 
ordinal then, (4.6) plus the construction of C\ yield the same conclusion. 
Hence, (4.6) is necessarily true over ( ^ ( p + i ) - I n particular, this must happen 
for i;—p ; that is, x<y (mod D). Combining with our initial information yields 
xemax(H; C, D), As x is arbitrary in Hc, the claim follows, q.e.d. 

Now, Theorem 1 follows immediately from this statement, by virtue of 
(4.4). As a matter of fact, the converse implication also holds; hence these two 
results are equivalent to each other. 

I t is not without importance to specify that, in all these arguments, the 
(non-integer) scalar multiplication were not effectively used. Hence, these results 
wi l l remain valid in case of E being a Hausdorff topological (additive) abelian 
group and C. a semigroup in E; that is, a part of E fulfilling (1.1) with Z in 
place of R, Actually, a close analysis shows that a further extension of these 
statements is obtainable in the context of Hausdorff topological spaces endowed 
with quasiorderings. We shall treat these questions elsewhere. 

5. S O M E CONVERSE RESULTS 

Let again E be a Hausdorff (real) topological vector space. By the devel
opments i n Secton 1, we have that the class of admissible cones in E is included 
in the class of comp-max cones in E. Concerning this fact, i t is natural to ask 
of what can be said about the converse inclusion (implication). Loosely speaking, 
a. complete answer is to be given in the case of E being metrizable; that is, 

an invariant to translations metric (x, y) => d(x., y) exists so that its 
(5.1) 

associated (linear) topology over E is equivalent to the initial one 
(Equivalently, this may be also expressed as the ambient space having a countable 
(neighborhoods) basis; see, e.g., Schaefer [ 1 3 , ch. 1, §6] for details). The main 
results in this direction are the ones due to Sterna-Karwat [ 1 S , 1 6 ] . I t is our aim in 
the following to make a few remarks about these, imposed by some technical 
reasons to be explained. Some aspects involving the general (non-metrizable) 
•case will be also discussed. 

We start by remembering a notation made in Section 1. Namely, for each 
cone C in E, we denoted by pt (C) the set-difference between C and lin (C). As 
precised there, p t (C) is a cone without origin. Of course, this notion is operant 
only when C is not a linear space. 

The following auxiliary fact wi l l be needed. 

Proposition 7. Let the cone C in E be singular, in the sense 

C is not a linear subspace, but cl(C) is. (5.2) 
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Then, for "each x in p t (C) and each neighborhood U of zero there exists y in 
p t (C) with x 4- ye U. ' - ' 

Proof. Let x e p t ( C ) be arbitrary fixed. Note that we anyway have 

— x e cl (C). So, there exists a net Cy;)^ in C with yj -» (— x). Denote 

zj = 2yj + x, jeJ. (5.3) 

Clearly, Zj -> ( — JC) (hence z,- + x -> 0) and 

— Zj is not belonging to C (i.e., r,- e pt (C)), 7 e J; 

since, otherwise (for certain ranks j in / ) 

— x = 2^; + (— ^ ) e C, contradiction. 

This ends the argument, q.e.d. 

As an application of this, we deduce 

Proposition 8. Suppose the cone C in E is nonadmissible and lin cl(C) 1 

has a countable basis. Then, C is necessarily not comp-max. 

Proof. By the admitted hypothesis, we may find a closed subspace L o f 
l in cl(C) with LnC being singular (in the sense of (5.2)). Now,, in view of a 
remark in Section 3, i t wi l l suffice proving that 

max (H, LnC) = <j>, for some (nonempty) compact part H of L . 

So, without any loss, one may replace the couple (E, C) by (L,LnC)\ or, in 
other words, we assume E itself has a countable basis and C is a singular 
cone in E. Let {U0, U{ , . . . } be a countable descending (module e ) basis of 
zero-neighborhoods. Fix y in p t (C) . By Proposition 7 we find a ^ 0 e p t ( C ) 
wi th y-\-y0eU0. Further, as y + y0 is in pt (C) , we determine, again by 
Proposition 7, a yl e p t (C) with y + _y0 + e t / j , etc. This procedure may be 
continued indefinitely, via ordinary induction, to get a sequence {yQ,yi,---} 
in p t (C) with the above properties. Denote 

z0=—y, Zi=y0, z2 = -Vo -

The (nonempty) subset H={zQ,zl , . . . } is evidently compact and max(7/, C ) ~ 
— (f), because 

zt<Zj (mod C) is impossible for i > j . 

Hence the conclusion, q.e.d. 

We are now in position to state 

Theorem 7. Let the space E have a countable basis. Then, for a cone. C i n 
E, the property of being admissible is equivalent with the property of being; 
comp-max. 
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As already said, this result was obtained by Sterna-Karwat [ 1 5 j . The only 
point in which the argument differs from the original one is that concerning 
Proposition 7; or, to be more specific, the one related to the use of definition 
(5.3) for the net (zj) used there. Although minor from a technical perspective, 
i t is methodologically useful, because makes the argument above independent 
of (non-integer) scalar multiplications. That is, Theorem 7 remains valid in case 
of E being a Hausdorff topological abelian (additive) group and C, a semigroup 
in E. 

Now, a natural question raised by this statement is to determine what happens 
beyond the metrizable context. As precised in Sterna-Karwat [ i 6 ] , the answer is, 
in general, negative. Precisely, let the ambient Hausdorff (linear) topology over 
E be the convex core topology (introduced as in Section 3). By Theorem 5, any 
cone C in E has the comp-max property. This, in particular, wil l be valid for 
that cone C in E consisting of the null vector in E and all nonzero vectors in E 
whose last coordinate with respect to a certain Hamel basis is strictly positive. 
Of course, in such a construction E is infinite dimensional. But, in this case, by 
Theorem D (ch. 1,§2) in Holmes [ 8 ] , we have cl(C) = E; in other words, C is 
non-admissible, and the assertion is proved. Nevertheless, the answer in question 
is not essentially negative. To clarify this, let {E, ; / e / } be a family of Hausdorff 
(real) topological vector spaces and E ~ XI {Et ; i e / } , its topological ( h n e a r ) 
product. 

Proposition 9. Suppose the T-decomposable cone C = IT { C i ; i e J] m E 
is non-admissible, in the sense 

for at least one jeL C,- is non-admissible 
(5 4) 

and l in cl(C/) has a countable basis. 

Then, C is not a comp-max cone. 
Proof. By Proposition 8, we have promised, for that rank j \ a (nonempty) 

compact part Hj of Ej with max (Hj, Cj) = <£. On the other hand, for any rank 
i different from j , let Hj be a (nonempty) compact subset of Ei. Denote 
H=U{Ht ; iel] ; i t is nonempty and compact, by the well known Thyconoff's 
theorem (see, e.g., Kelky [ 9, ch. 5, §3]). I n addition, max (H, C) is empty, as it 
can be directly seen. Therefore, C is not a comp-max cone, q.e.d. 

Now, clearly, 

l in cl (C) = LT { l in cl (C,) ; i e / } 

does not admit a countable basis when the index set I is not denumerable; see 
Kelley-Namioka [ 1 0 , ch. 2, §6] for details. Hence, conclusion of Proposition 8 
may be valid even i f lin cl (C) is non-metrizable. 
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Finally, as a completion of Theorem 7, we have 

Theorem 8. Suppose all factors {Ef ; i e 1} have a countable basis. Then, 
for a F-decomposable cone C in E, the property of being admissible is equivalent 
with the property of being comp-max. 

I n other words, the equivalence stated in Theorem 7 is extendable beyond 
the metrizable context. Note that the structural requirement of the statement 
above is a natural one; because, by Theorem 9 (ch. 2, §6) in Kelley and Namioka 
[ ! 0 ] , any Hausdorff (real) topological vector space can be imbedded in a product 
of metrizable (real) topological vector spaces. As a matter of fact, this context 
is also the most appropriate one for the main results in Section 3. Some related 
aspects of these were discussed in Luc ch. 2, §3]. 
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