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THREE PRINCIPLES OF D A T A REDUCTION I N STATISTICAL 
INFERENCE 

I. H. A R M U T L U L U 

Sufficiency, likelihood and invariance are three basic principles of 
statistical inference. An investigator uses the information in a sample to make 
inferences about unknown parameter 8. Any statistics, T(X), defines a form of 
data summary. A sufficient statistics for a parameter 9 is a statistics that, in a 
certain sense, cover all the information about 9 contained in the sample. 
This consideration leads to the sufficiency principle. Consider experiment 
E — [Xj_, X 2 X n , 8, {f(x ; 8)}} and suppose T(X) is a sufficient statistics 
for 9. If x and y are sample points satisfying T(x) = T(y), then evidence of 
(E, x) is equal to evidence of (E, y). The likelihood principle states that the 
same conclusion about 6 should be drawn for any two sample points satisfying 
T(x) = T(y). Consider two experiments E,_ and Ez, where the unknown 
parameter 8 is the same in both experiments. Suppose x, and xt are sample 
points from Ey and , respectively, such that ¿(0; x ±) = CZ.(0; xs) for all 8 
and for some constant C which may depend on xx and xs but not 9. Then 
evidence of , xL) is equal to evidence of (E3, x a). This is the formal 
likelihood principle. The invariance principle describes inference technique 
in slightly different way. There are two different invariance considerations. 
The first type of invariance might be called measurement invariance. The 
second type of invariance is called formal invariance. It states that if two 
inference problems have the same mathematical structure then the same 
inference procedure should be used in both problems. 

All three techniques restrict the set of allowable inferences and, in 
this way, simplify the analysis of the problem. 

1. T H E SUFFICIENCY PRINCIPLE 

A sufficient statistics for a parameter 0 is a statistics that, in a certain sense, 
implies all the information about 0 contained in the sample [ 4 ] . Considering this 
definition, i f Y(X) statistics is sufficient for 0, any inference related to X sample 
about 8 is made by Y(X). I n other words, i f x and z are two sample points so 
that Y(x) = Y(z), then i t makes no difference to observe X = x or X — z in 
any inference about 0. This thought is called the sufficiency principle. The 
formal definition of sufficient statistics is as follows: 
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Definition. A statistics Y(X) is a sufficient statistics for 8 i f the conditional 
distribution of the sample X given the value of Y(X) does not depend on 9 [ ' ] . 

Beginning from this definition, being Po(Y(X) = y) > 0, let's think of the 
conditional probability Pe(X=x\ Y(X)=y). I f at the point x Y(x)^y then 
Pe(X=x\ Y(X) = >) = 0. Considering the definition,, i f Y(X) is a sufficient 
statistics, the conditional probability mentioned here is the same for ah values 6. 

Suppose there are two researchers. First researcher is observing X = x and 
calculating Y(X) = Y(x). This researcher will make inference about 0 by using 
information of X— x and Y(X) — Y(x). The second researcher, on the other 
hand, knows without observing the value of X that Y(X) = Y(x) and 
P(X = z | Y(X)~ Y(x_)) is the probability distribution defined on Ay(x) = 
= \Z\ Y(z) = Y(x)}. Because this probability can be calculated by using the 
model without knowing the true value of 9, Therefore, the second researcher 
by using this distribution, can get the z value which maintains P(Z — z | Y(X)= 
~ Y(x))=P(X = Z | Y(X)= Y(xJ) equality from a random number gen­
erator. Inversely thinking, for each value of 9, X and Z have the same probability 
distribution. As a result, the first researcher knows the value of X that he has 
observed, the second researcher knows the value of Z that he has derived, and 
both of them have the same degree amount of information for 8. To complete 
this claim we must show that for each x and 9 values, X and Z have the 
same unconditional distribution as Pe (X = x) = Pe (Z — x). 

The events {X—x} and { Z = z } are both subsets of the event 
{Y(X) ~ Y(x)}. Their conditional probabilities do not depend on 0. Thus we 
have 

P(X= x | Y(X) - Y(x)) = P(Z = x \ Y{X) = Y(x)) 

and so, 

Pe(X =x) = P6(X = x and Y(X) = Y(x)) 

and by conditional probability definition, i t can be seen that 

Pe(X= x ) = P ( I = x | Y{X) = Y(xJ) P{Y{X) - Y(x)) 

= P(Z = x \ Y(X) = Y(x)) P(Y(X) = Y(x)) 

= P(Z= x and Y(X) = Y(x)) 

= P(Z=x). 

Beginning from the last definition, when proving that Y(X) is a sufficient statistics 
for 0, i t must also be proved that for any two constant sample points x and z, the 
probability of P&(X = x j Y(X) = z) is the same for all Values of 9. Therefore, 
only i t must be proved that the probability P0(X — x \ Y(X) = Y(x)) does not 
depend on 0. But, because the event (X = x) is a subset of {Y(X) — Y(x)}> 
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P e ( 7 ( ^ ) = r ( x ) ) 

?(r(*) |e) . . 
where p (x | 0) is the joint probability density function of the sample X and 
^(Y(x) \ 0) is the joint probability density function o f Y(X). 

Thus, Y(X) is a sufficient statistics for 9 i f and only i f for every x the above 
ratio of probability density functions is constant as a function of 9. 

Factorization Theorem [ I 0 ] . Let f(x\Q) denote the joint pdf of a sampleX 
A statistics Y(X) is a sufficient statistics for 9 i f and only i f there exist functions 
'g(y i 8) and h(x) such that, for all sample points x and all parameter points G, 

f(x\Q)=g(y\B)h(x). 

This theorem is very useful in proving the existence of sufficient statistics. 

Minimal sufficient statistics. I n any problem more than one sufficient sta­
tistics can be found for the unknown parameter 9. Being as a sufficient statistics 
i f Y(X) is a function of any other sufficient statistics Y'{X\ then Y(X) is 
called the minimal sufficient statistics [ 1 4 ] . 

Ancillary Statistics. The statistics S(X) whose distribution does not depend 
on 0 is called an ancillary statistics. This definition has been brought by 
Basu in 1959. Robert J. Buehler defined ancillary statistics for many distributions 
on its own article in 1982. An ancillary statistics contains no information about 
0. But it gives important information for inferences about 9. For example, i f 

9 is the sufficient statistics and S(X) is an ancillary statistics then the statistics 

(0, S(X)) becomes minimal sufficient statistics. Besides, Var (Q\S(X);Q) only 
depends on $(X), does not depend on 9 [ 4 ] . 

A minimal sufficient statistics is a statistics that contains all the informations 
about 9 and reduces maximum data. On the. other hand, ancillary statistics is a 
statistics that does not contain information about, 0. In this case it can be expected 
that they are independent of each other. But in independency concept completeness 
and Basu's theorem are very important. 

Definition. Let {f(y; 9), 9 e f } } be a family of pdf for a statistics Y(X). The 
family of probability distributions is called complete i f Ebg(Y)=0 for alJ 9 implies 
p0(g(Y)=0)=l for all 9. Equivalent^, Y(X) is called a complete statistics [ 1 5 ] . 
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Basu's Theorem. I f a statistics Y(X) is minimal sufficient and completes 
statistics then it is independent of every ancillary statistics [ 4 ] , 

Inverse of this theorem is not true, but Lehmann (1981) gave a further 
definition about ancillary statistics and with respect to this definition inverse o f 
Basu's theorem can be improved. Lehmann's definition is as follows: 

Definition. A statistics S(X) is called first-order ancillary i f EQ(S(X)) is. 
independent of 8. 

Lehmann then proves the following theorem, which is somewhat converse 
to Basu's Theorem: 

Theorem. Let T be a statistics with Var T< °°. A necessary and sufficient 
condition for T to be complete is that every bounded first-order ancillary S is 
uncorrelated (for all 8) with every bounded real-valued function of T. 

Lehmann also notes that a type of converse is also obtainable if, instead o f 
modifying the definition of ancillary, the definition of completeness is modified [ 1 4 ] . 

2. THE L I K E L I H O O D PRINCIPLE 

The likelihood principle in data reduction is explained starting from the 
hkelihood function. Let f(x; 8) denote the joint pdf of sampleX=(X } , X Z X n ) . 
Then given that X = x is observed, the function of 8 defined by 

£ ( 0 ; x ) = / ( x ; 8 ) 

is called the likelihood function. I f X is a discrete random vector then L (9; x)= 
= Pa(X = x). I f we compare the likelihood function at two parameter points 
and find that 

P*M = x) = ¿ ( 8 , ; x) > L ( 8 2 ; x) = Ptt(X = x) 

then the sample we actually observed is more likely to have occurred i f 9 = 0 1 

then i f 8 = 9 2 which can be interpreted as saying that 8X is a more plausible 
value for the true value of 8 than is 8 2 . I t can be reasonable to examine the 
probability of the sample we actually observed under various possible values o f 
8. I f X is a continuous, real-valued random variable and i f the pdf of X is 
continuous in x then, for small e, PB (x — e < X < x + s) is approximately 
2ef(x; 8) = 2eL(Q; x) with respect to the definition of derivative. Thus, 

Po,(x — s < X < x + s) _ L(81 ; x) 

Pei(x — E<X<x + e) L ( 8 2 ;x)' 

Definition. I f x and y are two sample points such that L(Q; x) is propor­

tional to L (8; y), that is, there exists a constant C (x, y) such that 
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L(Q;x) = C(x_,y)L(Q;y) 

for all 8, then the conclusions drawn from x and y should be identical. This 
principle is called the likelihood principle [ 5 ] . 

Note that the constant C (x, y) may be different for different (x, y) pairs but 
C(x, y) does not depend on 0. I n the special case i f C(x, y)=l then the likelihood 

principle states that i f two sample points result in the same likelihood function 
then they contain the same information about 9. I f Z(9 2 ; x ) = 2 L ( 8 1 ; x) then, i n 
some sense, 8 2 is twice as plausible as 0 t and it is also true that L(BZ ;y)~2L(Bl ;y). 
Thus, whether we observe x or y we conclude that 9 2 is twice as plausible as 9 t . 
Furthermore, although f(x; 8), as a function of x, is a pdf, there is no guarantee 
that L(Q; x), as a function of 9, is a pdf. On this point one form of inference, 
called fiducial inference, explicitly interprets likelihoods as probabilities for 0 [ 1 6 ] . 

CO 

That is, L ( 0 ; x) is multiplied by M(x) — and then 

M(x) L(Q; x) is interpreted as a pdf for 0. Most statisticians do not subscribe 
to the fiducial theory of inference but it has a long history, dating back at least 
to the work of Fisher in the 1930 [ 1 6 ] . 

For example let XA , X 2 X n be a random sample from 77(u, a 2), a 2 known. 
The fiducial distribution of unknown parameter \x is n(X, <j2fn) and calculations 
are done with assuming that the distribution of (n — X) / (<r / \J ri) is n (0, 1). 
I n this distribution our random variable is \i. 

Let's suppose a three-dimensional experiment or observation model by 
considering likelihood principle and sufficiency principle alltogether : Being E 
as experiment, X as sample, 0 as parameter to be estimated and f(x;Q) as density 
of x observations defined on a subset of parameter space i i , let 
E=(X, 6, { / O x ; 8)}). Starting from X=x_ observation, the result obtained for 9 
is Ev(E,x). I n this connection, the definition of sufficiency principle, for two 
different x and y observations, becomes Ev {E, x) = Ev (E, y). From this point 

the formal likelihood principle is as follows [ 2 ] , [ I 6 j , [ 5 ] : 

Definition. Let Ex = (X, , 9, {ft (x, , 0)}) and E2 = (X, , 9, {f2 (x2,8)}) be 
two experiments. C being constant for all 8 values and i f x* and x% are sample 
points in El and E2 respectively so that 

L ( 8 , x*) = C £ ( 8 ; xf) 
then 

Ev(Eltx*) = Ev(E2tx*). 
The reason for the difference between formal likelihood and likelihood principles 
defined at the beginning is that the formal likelihood principle is for two 
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different experiments. I f E^E^, then likelihood principle and formal likelihood 
principle is the same. I n this case E2 is called shadow (dummy) experiment. 
For supplementary reasons this can be mentioned : I f E = (X; 6; {f(x; 0)}) is 
an experiment, the result Ev(E,x) which is obtained from this experiment 
depends on E and x only by L (9 ; x ) . 

Many statistical studies violate^the formal likelihood principle. Wi th these 
studies, different conduisons would be reached for the same parameter in two 
different experiments. 

3. T H E INVARIANCE PRINCIPLE 

I n data reduction, two different invariance can be defined. First type of 
invariance is measurement invariance. According to this, let a researcher measure 
the same objects by using English measuring units and the other researcher measure 
them by using metric measuring units. I f the measuring tools, which they use, 
have the same sensitivity, the results wi l l be the same when the measuring units 
are transformed to each other. More remarkable, when using a measuring tool 
whose one side has mm. scale and the other side inch scale, the result doesn't 
change when either of side are used. 

The second type of invariance is called formal invariance. I f in two inference 
problems, the same formal structure is used on the basis of mathematical model 
then the results of both problems are tied to the same process. Formal invariance 
is about mathematical inputs and rejects the physical definitions of the experiment. 
Let the parameter space D, ~ {0; 0 > 0 } be used in two different problems. Suppose, 
one of the problems is about the weights of people in Turkey and the other is 
about the heights of giraffes in Africa. The same real numbers set has been de­
fined for 0 in both of the problems. Casella, G . and Berger, R.L. (1990) has 
defined the invariance principle as follows : 

Definition. I f Y = g(X) is a change of measurement scale such that the 
model for Y has the same formal structure as the model foiX, then an inference 
procedure should be both measurement invariant and formally invariant. 

Under the invariance principle, a set of transformation functions, which is 
defined on the sample space, must be a group (see Lehmann (1990), pp; 19-26). 

Definition. A set of functions {g (x) : g e G} from the sample space S onto 
S is called a group of transformations of S i f 

(i) For every geG there is a gr e G such that gf (g (x))=x for all x e S, 

(ii) For every geG and g' e G there exists a ^ s G such that g' (g(x)) = 
== g" (x) for a l l x e S, 

(iii) The identity, e (x), defined by e (x) — x is an element of G, 
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Definition. Let F = { / ( * ; 8) : Qe&) be a set of pdf for X and let' G be a 
group of transformations of the sample space S. Then F is invariant under the 
group G i f for every Qefl and geG there exists a unique 6 ' G U such that 
Y = g(X) has the d i s t r i b u t i o n 8 ' ) i f Xhas the distribution f(x; 8). 

I f we explain the last definition by a simple example; in a Bernoulli trial 
with the size n, because of X ~ binomial (n, p), gl (X) ~ n — X ~ binomial 
(n, 1 — p), g2(X)—X ~ binomial (n,p), in the inference made for p, p' — n — x 
can also be used and the result does not change. Because under the group 
G={%i) Sz)i s e t °f binomial distributions has the characteristics of invariance. 

4. C O N C L U S I O N 

The three principles presented in this work are the principles not ceasable 
on the basic subject matters of statistical inference, namely, point estimation, 
interval estimation and hypothesis testing. Hogg and Craig (1970) built in their 
book the subject matter of point estimation on the principle of sufficiency. 
Lehmann (1990) has studied the matter as a whole by considering the three 
principles in point estimation. 

Most analysts perform some sort of "model checking" when analyzing a 
set of data. Most model checking is, necessarily, based on statistics other than 
a sufficient statistics. I t is common practice to examine residuals from a model, 
statistics that measure variation in the data not accounted for by the model. Such 
a practice immediately violates the sufficiency principle, since the residuals are 
not based on sufficient statistics. Of course, such a practice directly violates the 
likelihood principle also. Thus, it must be realized that before considering the 
sufficiency principle or the likelihood principle, we must be comfortable with 
the model. 

A l l three principles prescribe similar relationships between inferences at 
different sample points. Thus, all three data reduction techniques restrict the set 
of allowable inferences and, in this way, simplify the analysis of the problem. 
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ASSISTANT PROFESSOR O F N U M E R I C A L METHODS 
MARMARA U N I V E R S I T Y 
I S T A N B U L - T U R K E Y 

Ö Z E T 

Yeterlilik, olabilirlik ve değişmezlik, istatistiksel vardamanın üç temel 
ilkesidir. Bir araştırmacı, örneldemdeki bilgileri, bilinmeyen parametre 0 hak­
kında vardamada bulunmak, için kullanır. Herhangi bir istatistik T(X), veri­
lerin Özet formunu tanımlar. 9 parametresi için bir yeterli istatistik, örnek-
lemdeki 6 ile ilgili tüm bilgileri kapsayân bir istatistiktir. Bu düşünce, yeter­
lilik ilkesine ışık tutar. E={XX, X3, ..., Xn , 0, {f(x; 6)}} deneyi ve 0 için bir 
yeterli istatistik T(X) düşünülsün. Eğer x ve y örneklem noktaları T(x) = T(y) 
şartını sağlıyorsa (E, x) kanıtı - ile (E, y) . kanıtı birbirine eşittir. Olabilirlik 
ilkesi de. T(x) = T(y) şartını sağlayan herhangi iki Örneklem noktası x ve y 
için 0 hakkında aynı. sonucu söyler. Ex ve Ez, aynı 0 parametresi için iki 

. deney olsun. Bütün 01ar için ve 0 ya bağlı olmayan, fakat Et den gelen xx ve 
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Es den gelen x2'ye bağlı olabilen C sabit fonksiyon olmak üzere L(Q; xd = 
= CL(&; A„) oluyoısa (E, , x^ kanıtı ile (Ea ,xs) kanıtı birbirine eşittir. Bu, 
foımel olabilirlik ilkesidir. Değişmezlik ilkesi oldukça farklı vardama tek­
niğini açıklar. İki farklı değişmezlik ilkesi düşünülmektedir. Birincisine ölç­
me değişmezliği, ikincisine formei değişmezlik denir. Buna göre, eğer iki 
vardama problemi aynı matematiksel yapıya sahip ise iki problemde de aynı 
vardama yöntemi kullanılmıştır. 

Bütün bu üç teknik, kabul edilebilir sonuçları kısıtlayarak, bu yolla, 
problemin analizini basitleştirirler. 


