ON AFFINE MGTION IN A RECURRENT FINSLER SPACE +)

A. KUMAR *

Consider an affine motion, that is to say an infinitesimal point transfor-
mation for which the deformed space has the same affine connection as
the original one, in a recurrent FINSLER space F), , i.e. in a FINSLER

space whose curvature tensor H;;jk(x, x) satisfies the differential system
: .
Hizm = M Hijos
where A; i a non zero vector, We prove that if this motion is of the form
(a) wi =t 4 wi(x) b

with v(]) fpfs p = p(x), then p(x) has to vanish and v’ spans a field
of parallel contravariant vectors. Futhermore, if a non-flat recurrent
FINSLER space F,, admils an affine motion (&) such that »¥ — 'v‘(x) gpan
a contra-field in F,, , the conditions

A% =0, Hijo* =0

are satisfied.

1, Introduction. Let us consider an n-dimensional FINSLER space
F_ ['1" equipped with a fundamental metric function F(x, x) positively

homogeneous of degree one in its directional arguments. The fundamental

" metric tensor ) gg(x, x) 2L 1 8.8, F?(x, x) of the space is symmetric in its

t} Communicated by Prof. Dr. RAM BEMARI on November 24, 1975.
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lower indices. The covariant derivative of a contravariant vector field
X'(x, #) in the sense of BERWALD is given by

(1.1) Xy = 0, X' — 0m X' G &” + X' Gy,

where Giy(v, ) are BERWALD’s connection coefficients. The curvature
tensor arising from the commutation formula involving the above covariant
derivative is given by

(1.2) Hfijk(% 5‘) f 2 {5[k ;;]h - G.':k[j Gy + G:i-[k G;]h}
and satisf{ies

(1.3) @) Hj,=—Hj, and b) (0 Hj) & =0.
Let us consider an infinitesimal transformation

(1.4) = & | vi(x) dt,

where v(x) being a vector field defined over the domain of the space
under consideration and dt is an infinitesimal constant. In view of the
above transformation and BERWALD’s covariant derivative the LIE-derivative
of any temsor field Tj(x, x) is given by

(1.5) £, Ti(x, %) = Tipyv* + (8, T} vly & + Tiofyy — Tholy.

We have the following commutation formulae:

(1.6) £,(0, Tj) — 0)(£, T)) = 0
and
(1'7) (£v G_;h)(k) - (£v G;ch)(j) = £u H}:]k + 2 :él G:l-h[j £u G};]I .

An n-dimensional FINSLER space is called a recurrent FINSLER space if its
curvature tensor H};jk satisfies the relation

(1.8) Hlixjk(l) =2 Hiijk ’

where 4; is a non-zero vector,

D 24y = Ae— Apss 2 Ay = Api -+ Agg.
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2. Affine motion and its compatibility. In view of the infinitesimal
point teransformation (1.4) we have a deformed space with affine conne-
tion GJ’:,‘ 4+ (£, ij) dt. If the original space and the deformed space have
the same affine connection, the transformation is called affine motion
of the space F,. Such a motion may be, of course, considered in recurrent
FINSLER space. In order that it be the case, it is necessary and suf-
ficient that, we have l

(2.1) £v G_;k = ‘vb)(k) —I— HI:J'k T)k + Gijk 'Uir) .ir = 0.

In view of the commutation formula (1.7) and affine motion, we get
necessarily

(2.2) £, Hiy = 0.
With respect to LIE-derivation, for any tensor, we have
(23) (£u 21_;;:(1,))_(:‘91: T;k)(l)= ;;c' £v G:n!uT;»k £v _;?_—' T;m£v ;5
L — (0, TR e, G,
where we have used the commutation formula (1.6) and the fact that

£ £ =0
In view of the equations (2.1) and (2.2) using the commutation formula
(2.3), for the curvature tensor H,’;jk(x, %), we get

(2.4) £, (Hipa) = 0.

Continuing this process, we can see that the Lifi-derivatives of the
curvature tensor and of their successive covariant derivatives must he all
zero. This fact suggests the following

Lemma: In order that an affinely connected space admit a group G, of
affine motions, it is necessary and suffieient that there exist a:positve number
K such that the first K sets of equations (2.2), (2.4),... be compatible in
the variables v* and vfj) and all suchk solutions satisfy the (K 4 1)-st set of
the equations,
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 The above lemma is due to M. S. KNERELMAN [5] -which gives us a
certification of existence of affine motion. But in our case for an affine
motion, we should have (2.1} and (2.2).

With the help of equations (1.8) and (2.2), we obtain the following
set of relations one after another :

£ﬂ 'k:O

It
£, (Hiay) = Hip 8,2,

(2.5) ) .
£, (Hinagay) = Hip A€, 24, + (€, 4) 0]

where we have used the commutation formula (1.6).

3. Contra-field in wecurrent FINSLER space. In view of the equation
(1.5) the LIE-derivative of curvature temsor Hj,(x, %) is given by

(3.1) £, Hfijk == Hfijh(s)'”s + (7, H.Fijk) ”fr) - H!fjk ”fs) +
H;;jk ”fh) + H.risk ”fj) + Hijs ”fh)

which in view of the equations (1.8) and (2.2) reduces to
(3.2) H}i;jk A" + (0, Hlijk) ‘ﬂir) &' —H, it ﬂia‘) + H:}k oy

Hj g o5 + Hijy vy = 0.
If a recurrent F, admits an affine motion of the form
where p(x) # 0, then in view of (3.3) and (1.3} b, the equation (3.2) reduces to
(3.4) (v* 4, +2p) Hiy =0.

Since Hf;jk # 0, from this, we get

T,

DU M R S R B LA S M MDD ]
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(3.5) plx, )= —5%v* 4.
Hence the motion (3.3) takeé the following form
(3.6) o=t foi(d) dt, vly=— 30" A, 8.

Substituting the latter of (3.6) in (2.1) and using the homogeneity property
of Gj(x, %), we get

(3.7) ‘H;Iih vh _— -;l—t- (23"‘(]:)— /'{m lk) 'vm 5; .

In view of the equation (1.8), the BIANCHI identity

(3.8) Hijuo + Hing + Hiygy =0
yields
(3.9) A Hiy 4+ A Hig -+ 2 Hiyy = 0,

Multiplying this identity by ¢’ and summing up with respect to I, we
shall get

(3.10) Hig o' =— Hi o' 3+ H P ay

where we have used the equation (1.3)a. Introdﬁcing (3.7) in the right
hand side of (3.10), we obtain

(3.11) H;;jk /11 T)l = '1§ {/1[0) ’1]: bt )'l(k) ﬂ?} ’Ul 5;3 .

_ With the help of the identity

(3.12) Hjy + Hjy, + Hiyy = 0,
we obtain
(3.13) Hiy 4ot + Hjy 4y v + H:i_rq Mol =0.

Substituting (3.11) in (3.12), we get
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(3.14) o' [6CAs A — Ay 4) + Sy A — Ay M) +
Siltigy & — Ay ) = 0.

Contracting with respect to the indices i and k, from this, it follows that
(3.15) o [(n—2) (hgy 4 — Ay AWl = O,
so, if =3, we get
(3.16) v {gy A — Mgy et = 0.
Compraring the above result with (3.11), we can ;;ee that
(3.17) Hjy o' 3= 0.
Since H_,ﬁjk #0, we have
(3.18) Ao =0,
Consequently with the help of equations (3.5) and (3.18), we get
(3.19) | p(x) = 0.
Thus, we have

Theorem (3.1): If ¢ non flat recurrent FINSLER space (n=3) admits

an affine motion of the form (3.3), p(x) has to vanish; that is to say that
vt has to span a field of parallel contravariant vectors,

We shall now try to find a necessary and sufficient condition in the
case of a special affine motion of the form

(3.20) xt = &' 4 o¥(x) di, 'v‘('}-) == Q,
In view of the above condition, the equation (2.1) of motion becomes
(3.21) £, Gh=—Hjuv"=0

and the integrability condition (2.1) becomes
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(3.22) £, Hiy = v, Hjy, = 0.

!

So, owing to the non-flatness of the space, from (3.22), we get
(3.23) v A = 0.

In view of equatiouns (3.21) and (3.23), we conclude that

:
1
Eﬁé
i

In order that a recurrent FINSLER space admit an gffine motion of
the form (3.20), it is necessary that, we have

(3.24) v A, =0, Hy,v* =0,
Conversely, if we have (3.24), using the identity
(3-25) . Hjikk + H}ikj + Hfijk =0
and the latter part of (3.24), we obtain

(3.26) Hi; ot = 0.

From the general theory of parallel vectors [7], v’ determines a contrafield
in a recurrent FINSLER space, say vfj) == 0, when and only when it satisfies
the equation (3.25).

Thus we may regard v as a contrafield in recurrent FINSLER space.

This gives rise to
Theorem (3.2). If a non flat recurrent FINSLER space admits an infi-

nitesimal affine motion x* = «° |- v'(x) dt such that the vector v/(x) spans a
contrafield in recurrent F,, then it is necessary and sufficient that

v' A, =0 and Hjv*=0

be valid.
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INDIA

OZET

Indirgenmeli bir FINSLER uzayinda, yani, %, stfir olmayan bir vektir olmak
iizere, H;;jk(l)(xp x) eirilik tensérii

Hijra = M Hyg,

diferansiyel sistemini saglayan bir FINSLER uzayinda bir afin hareket, di-
niigtiiriilmiis uzaym afin baginhhgm ilk uzayin afin bafmbbgma egit
brrakan bir infinitezimal nokta doniigimiidiir, ”Zj) =p5}, p = p(x) olmak
iizere, afin hareket

(@) EREREs v"(x) dt

geklinde ise, p(x) in sifir olmak zorunda oldugu, yani ¢ nin paralel kont-
ravaryant vektirlerden olugan bir alam dofurdufu kamtlanmistir. Ustelik,
diiz olmayan bir indirgenmeli Fy, PINSLER uzayinda, vi(x) ler ¥, de bir
kontra-alan dofuracak gekilde (@) gibi bir afin hareket verilecek olursa

v g = 0, Hijpo* =0

kogullar gergeklenir.




