
ON W A V E SOLUTIONS OF T H E U N I F I E D F I E L D EQUATIONS OF FINZI IN A 
G E N E R A L I Z E D P E R E S SPACE-TIME 

K . B . L A L - A N I R U D H P R A D H A N 2 ) 

The wave solutions of the field equations of the unified field theory of FINZI 
have been investigated in a generalized P E R E S space-time, represented by 
the metric 

ds2 — Adx2 — Bdy2 — (1 — E) dz1 — lEdzdt + (1 + E) di2
t 

where A, B and E are functions of {x, y,z — (), Also, in this set-up, we have 
determined two different electromagnetic fields based on the definition of 

G R A I F F which are null and transverse in nature. 

1. Introduction. Several generalizations of the field equations of gene
ral relativity have been attempted since W E Y L [ ]] showed that a fusion of 
electromagnetism with gravitation can be effected by enlarging the geomet
rical basis of the theory. Accordingly, E I N S T E I N [a] developed a theory based 
on the geometrical interpretation of gravitation and electromagnetism by in
troducing a non-symmetric fundamental tensor g{j and a non-symmetric af
finity r'lj taking a priori the torsion vector ri = = 0. S C H R O D I N G E R [ 3 ] , 
B O N N O R [*], B U C H D A H L [5] and many others also have given unified field 
theories taking a priori the torsion vector Fi = 0. 

FlNZI [ 6], on the other hand, without assuming the torsion vector to be 
zero, has given the following set of unified field equations: 

( i - 1 ) ëijik = gij,k ~ 8ij rik — 8u rlj = °> 
+ — 

(1.2) B j ^ O , 
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(1.3) rot R*[iji ^ R^k + R;Mi + Rlki]. = 0, 

(1.4) div R*M = R*f + R*M rs
Us) = 0, 

where R*j = R~ -\- Fi;j and R.j is the generalized RlCCI tensor defined by 

(1.5) R.. = r ? . „ - riSi._ r j r j , + r t t 

Here round and square brackets denote the symmetric and antisymmetric 
parts, respectively. A -f- or — sign below an index fixes the position of the 
covariant index h in the connection as ftk and J ^ ' respectively. A comma pre
ceding an index i denotes partial differentiation with respect to xl and a se
micolon stands for covariant differentiation with respect to i " ^ . 

IKEDA [7] in 1954 found a skew-symmetric tensor in terms of the 
non-symmetric fundamental tensor g^ satisfying the properties 

(i) that the total rotation of is zero 
and 

(ii) that has a non-zero divergence. 

He named this tensor the electrcmagnetic field tensor. In order that the 
skew-symmetric tensor H(j- may satisfy the property (i), IKEDA assumed 
ri = 0 and defined the electromagnetic field tensor H y - by the relation 

where efj-w takes the values -f-1 or — 1 according to ijkl is an even or odd per
mutation of 1234. Thus (1.6) is valid only in the case of such field equations 
which assume a priori T ; = 0. But in case of the field equations of FlNZl in 
which r ; 0, H{j given by (1.6) does not satisfy the property (£) and hence 
it cannot represent the electromagnetic field tensor in the sense of IKEDA. 

I n 1955 GRAIFF [8] gave two possible relations between the non-sym
metric tensor g^ and the skew-symmetric electromagnetic field tensor 
each satisfying both the properties (i) and (ii) without imposing the condition 
-T; = 0. The two forms of the electromagnetic field tensor given by GRAIFF are 

and 
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(1.8) F^^s^R^^g^-r^ 

where the symbols used are as defined above. 

I n this paper we propose to find out the plane wave-like solutions of the 
field equations (1.1) - (1-4) in a generalized P E R E S space-time [ s], represen
ted by the metric 

(1.9) ds2 = — Adx*—Bdyz — (l — E) dzz — 2E dzdt + ( ! ; + £ ) tft3, 

where A, B and E are functions of (x, y, Z); (Z = z — t) and also to obtain the 
electromagnetic fields based on the definition of G R A I E E [ b ] . 

2. Solution of the field equation (1.1). In the space-time metric (1.9), 
the components of the non-symmetric tensor g}j as calculated by P R A D -
H A N [1 0] are 

-A 0 p - p 

0 - B a — a 
(2.1) (Sij) = (Sij) = 

- p - a - (1 - - E 

p a ~ E 1 - f E 

where p and a are arbitrary functions of [x, y, Z). The 
ponents gIJ are given by 

~- If A 0 Pi A pJA 

0 - IjB ujB ' a-jB 
(2.2) 

- pjA - <T(B - 1 + W W 

- p\A - u\B w 

where W = [A<T* — Bp2)/AB — E. 
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Equation (1.1) of FlNZl's field equations is one of the equations in 
EiNSTEIN's unified field theory which has already been solved in [ I 0] and 
the components of the connection JT|- have been uniquely determined. 

3. Calculation of the tensor R*j. Using the values of Tj f c from [ 1 0 ] , the 
components of ri are computed as 

(3.i) r, = r 2 - o and r 3 = — r 4 - — (H + / ) , 

where 
H = ( - P x - f pAJlA - <;Ay\2B)\A, 

(3.2) 
I = (— °, + "ByPB — PBJ2H)/B. 

Here and in what follows the lower suffixes x and y attached to any func
tion denote its partial derivatives with respect to x and y respectively. A sing
le and double overhead bars stand for partial derivatives with respect to Z 
once and twice respectively. 

Putting ri;k — 6ik, and using the values of T £ and from (3.1) and [ I 0] 

the components of 0ik are given by 

hi = — = — (Hx + 4 ) , e3Z = - e 4 2 = - (Hy + iy), 
(3.3) 

^ 3 3 = — <?34 = — « 4 3 =0u = —(H+ I ) , other - 0. 

Substituting the values of By from [ I 0] and calculating -T;.fe witk th* kelp 

of equation (3.1) we find that the symmetric components of R*j are given by 

Ru = — L/B, R'(l2) = R[n) = 0, R\2 - - L/A, 

(3.4) R*(U) = - Bjuj « iV/B, i2<*23) = - R*{2i) = - MjA 

•^33 = — ^ ( 3 4 ) = ^ 4 4 = y> 

while the skew-symmetric components of Ry are given by 
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•^[12] = -^[34] ™ 0» 

(3-5) 
•R[13] = B[U] — « » ^ [ 2 3 ] = ^ [ 2 4 ] = & 

where 

2L ^ 4 y + B x x - ^ (A2
Y + ^ BX)¡A — + ^ By)¡B, 

2M= AY—±Ay{AiA + ~B¡B\ 

2N=-BX + ^ BX(A¡A + B / B ) , 

2y = — ( J — A2/2A)/A — ( B — B 2 / 2 B ) / B + 2(S, + T y + H + 7 + H * + P ) 

+ 6 ^ U + + BJB) + + B y / B ) , . 
(3.6) 

a ^ + M f f - J ) BJB-~^byIB-~l{AyIA-~ByIB) b/B, 

p^IY-^(H-I) AJA-±bJA + ±{AJA-BJB) b¡A, 

b^ax-\-py—pAJA — CTBJB, 

S =. {¿ JE, + 2p( - /> , + PAJ2A)/A - a{b + pAY{A)¡B}¡A, 

T={iEy + 2 f f ( - ^ + aBy¡2B)¡B - p(6 + <TBJB)/A}/B. Using (2.2) and (3.5), the skew-symmetric contravariant components B * ^ 
j are found to be of the tensor J R ^ J are found to be 

(3.7) 

4. Solutions of the field equations (1.2), (1.3) and (1.4). Substituting 
the values of JR̂ - from (3.4) in (1.2) we have 

(4.1) L = 0, 

(4.2) N = 0, 
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(4.3) M = 0, 

(4.4) y = 0. 

Equation (4.1) can also be written as 

(4.5) (BJ>fAB)x + (Ayi^AB)y = 0. 

Equations (4.2) and (4.3), after integration become 

(4.6) Ayi<J~AB — klt 

(4.7) BjjAB = ks] 

respectively, where in general k1 and k2 are functions of [x, y). Equations 
(4.4) - (4.7) are mathematically complicated and it is difficult to get the exact 
solutions. However, without violating the assumptions taken for the line -
element (1.9), we can take 

(4.8) A=Bf , ( / = / (Z ) ) , 

which renders it possible to find the exact solutions of the said field equations 

From (4.6) and (4.7) we get 

(4.9) Bx Ay = AB kl kz. 

"With the help of (4.8), equation (4.9) reduces to the form 

(4.10) p q = MP =Bx,q = By,$=hlkt B 2 ) , 

which can be solved by using CHARPIT's method [ n ] . 

B y virtue of (4.8), equation (4.4) reduces to 

2B /B + B JjB r+Jlf-^ISf-^Qfff — l^BJB—iTBJB^ 
(4.11) _ _ 

2(S'X + T'y - f H'z + I'2 + H' + /') — b'2\B2j = 0, 

where S', T ' , i f ' , / ' and b' are the values of S, T, H, I and 6 respectively 
when (4.8) is used in the expressions for S, T, H, I and b. 
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Thus the values of g{- given by (2.1) represent the plane wave-like solu
tions of the field equation (1.2) under conditions (4.5), (4.8) and (4.11). 

It is worth mentioning here that the values of A and B can be found ex
plicitly provided kx and kz are chosen properly. For instance: 

Case (i). I f fcj and kz are two non-zero scalar constants, then from (4.10) 
the values of A and B satisfying (4.5), (4.6) and (4.7) are given by 

log B = W 7 + W 7 + M 

log A = x V / + 2y/V / + log f + p, 

where X and fx are any scalar constants. 

In this case the values of given by (2.1) represent the plane wave-like 
solutions of the field equation (1.2) under conditions (4.11) and (4.12). 

Case (ii). I f kx =-0 = k2, then from (4.6) and (4.7) we find that A —G = B X 

in which case the gtj given by (2.1) with A = A(x, Z ) , B = B(y, Z) and 
E = (x, y, Z) represent the plane wave-like solutions of the field equation 
(1.2) provided the condition 

(A — AZI2A)IA — ( B — B a / 2B) / B — S* AJA — T* B Y / B — 
(4,13) 

2 ( £ + r ; + H*2 + J * 2 + + O - + P . ) 2 M B = o, 

holds where S*, T*, H* and I * are values of S, T, i f and I respectively when 
Ay = 0 = Bx are used in the expressions for S, T, H and f. 

Theorem 4.1. A necessary and sufficient condition that gy- given by (2.1) 
be a solution of FlNZl's field equation (1.3) is 

(4.14) a, 

Proof. Substitution of i ? ^ from (3.5) in equation (1.3) gives the requi
red condition (4.14). Conversely, if (4.14) holds then the field equation (1.3) 
is identically satisfied. 
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Theorem 4.2. A necessary and sufficient condition that gy- given by (2.1) 
be a solution of FllNZl's field equation (1.4) is 

(4.15) log a + i log (B/A) = ft3 and % jS + £ Zog (A/B) = k4 

where k3 and k4 are functions of (%, y). 

Proof. Substituting the values of from (3.7) and rjlc from [1 0] in 
the field equation (1.4) we get the required condition (4.15). Conversely, 
if the condition (4.15) holds then the field equation (1.4) is identically satis
fied. 

5. The electromagnetic fields. Calculating the values of from (3.1) 
we get 

[ I t 2 ] — ^[3 ,4] = 0' ^ [1 ,3] = ^[1,4] — 2 (Hx + 4)> 

(5.1) 
•^[2,3] = F[2,4] = 2 ( fy " h -fy)' 

Considering the form (1.7) for the electromagnetic field tensor F^ and 
substituting in it the values of B t* f j ] and from (3.5) and (5.1) we get 

(5.2) F13 = — F14 = Ut F 2 3 = — Fu = F a n d other F{j =-0, 

where U = a — ± (Hx-\- IX) and V = 0 — £ {Hy + I Y ) . 

Considering the form (1.8) for the electromagnetic field tensor and subs
tituting the values of R*[in, gIJ and from (3.5), (2.2) and (5,1) respecti
vely in (1.8) we get 

(5.3) F{3 = — F{4 = — Uf, Ffa = —F'u = V and other _F y- = 0, 

where U' = £ (<S/B — B , — J J and V' = % (a/A + H y + 

The contravariant electromagnetic field tensor FlJ and the dual tensor 
Fy corresponding to Fi}- given by (5.2) are 

(5.4) F 1 3 = F 1 4 = VjA, FZ3 = F24 = F / B , other F* = 0, 

and 
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(5.5) F*n =—F*u=—V^AiB, F'2Z = — F 2 * 4 = ujB/A, other F j : = 0. 

Thus from (5.2), (5.4) and (5.5) it is easily seen that F{j Fij = F j - Fij ± 0, 
and hence the electromagnetic field tensor given by (5.2) is null in the sense 
of S Y N G E [ 1 2 ] . Moreover Fl2 = F 3 4 = 0, the electromagnetic waves are of 
transverse character. 

The contravariant electromagnetic field tensor F'tJ and the dual tensor 
Ffj corresponding to (5.3) are given by 

(5.6) F ' 1 3 = FlU = — JJ'fA, F ' 2 3 = F ' 2 4 = V'jB, other F ' f j - =.0,. 

and 

(5.7) F[l = — F{1 = — V S/IJB, F£ = — F£ = U> ^ B J A , other F-j = 0. 

Thus from (5.3), (5.6) and (5.7) it is clear that F-j F* = F y * Ftij = 0 
and hence the electromagnetic field tensor given by (5.3) is also null. Here 
again F [ 2 — F'^ ~ 0 shows the transverse character of the electromagnetic 
waves. 

Hence the unified field theory of FlNZI in the generalized PERES space-
time (1-9) gives two different electromagnetic fields given by (5.2) and (5.3) 
both of which are mill and transverse. 
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Ö Z E T 

FlNZl 'nin birleştirilmiş alan teorisinin alan denklemlerinin dalga çözüm
leri, A, B ve E katsayıları :x, y,-z—t değişkenlerinin fonksiyonları olmak 
üzere 

ds 2 = —A dx2 — B dy2~{l~ E) dz2 — 2E dzdt + {1 + E) dı2, 

metriği ile verilen bir genelleştirilmiş uzay-zaman evreni için incelenmiştir. 
Aynı çerçeve içinde, G R A I F F ' i n tanımına dayanarak davranışları bakımın

dan sıfır ve çapraz olan iki farklı elektromanyetik alan belirlenmiştir. 


