ON WAVE SOLUTIONS OF THE UNIFIED FIELD EQUATIONS OF FINZI IN A
GENERALIZED PERES SPACE-TIME »

K.B. LAL - ANIRUDH PRADHAN 2)

The wave solutions of the field equations of the unified field theory of FINZI
have been investigated in a generalized PERES space-time, represented by
the metric

ds? = — Ads? ~ Bdy? — (1 — E) di® — 2Edudt + (1 + E)di2,

where .4, B and E are functions of (, ¥, s — ¢), Also, in this set-up, we have
determined two different electromagnetic fields based on the definition of
GRAIFF which are null and transverse in nature.

1, Introduction. Several generalizations of the field equations of gene-
ral relativity have been attempted since WEYL ['] showed that a fusion of
electromagnetism with gravitation can be effected by enlarging the geomet-
rical basis of the theory. Accordingly, EINSTEIN [?] developed a theory based
on the geometrical interpretation of gravitation and electromagnetism by in-
trodueing a non-syminetric fundamental tensor g; and a non-symmetric af-
finity I i; taking a priori the torsion veector I'; = I {,-}-‘= 0. SCHRODINGER [?],
BowNNOR [*], BUCHDAHL [?] and many others also have given unified field
theories taking a priori the torsion vector I'; = 0.

FINZI [®], on the other hand, without assuming the torsion vector to be
zero, has given the following set of unified field equations:

LRy 8ijsk = 8ijhe = 8y Fﬁr_c — g T =0,

(1.2) R, =0,
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* * - *
(1.3) rot Ry = Ry + B + By = 0,
(L.4) div R'1 = RW1 4 R 7, — 0,

where R; = Ry + I';; and R;; is the generalized RIGCI tensor defined by
+

(1.5) R Oy, — It — Iyt 4 I T

i = T — 1l
Here round and square brackets denote the symmetric and antisymmetric
parts, respectively. 4 - or — sign below an index fixes the position of the
covariant index k in the connection as I, and I} respectively. A comma pre-
ceding an index i denotes partial differentiation with respect to x° and a se-
micolon stands for covariant differentiation with respect to ;k.

IKEDA [7] in 1954 found a skew-symmetric tensor H,; in terms of the
non-symmeiric fundamental tensor g; satisfying the properties

(i) that the total rotation of Hj; is zero
and
(¢¢) that H; has a non-zero divergence.

] He named this tensor the electrcmag;letic field tensor, In order that the
skew-symmetric tensor Hij may . satisfly the property (@), IKEDA assumed
I';=10 and defined the electromagnetic field tensor H;; by the relation

(1.6) ' Ht_,! = (%) g v gl 8%

where g, takes the values 41 or — 1 according to jkl is an even or odd per-
mutation of 1234. Thus (1.6) is valid only in the case of such field equations
-which assume a priori I'; = (. But in case of the field equations of FINZI in
which I'; # 0, H;; given by (1.6) does not satisfy the property (i) and hence
it cannot represent the electromagnetic field tensor in the sense of IKEDA,

In 1955 GRAIFF [?] gave two possible relations between the non-sym-
metric tensor g; and the skew-symmetric electromagnetic field tensor F;
cach satisfying both the properties (i) and (i) without imposing the condition
I';=0. The two forms of the electromagnetic field tensor given by GRAIFY are
(L.7) F § = R;ijl — I [i:41

and
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(1.8) F,, = % By Rqu] ka g"q — Ly

where the symbols used are as defined ahowve.

In this paper we propose to find out the plane wave-like solutions of the
field equations (1.1) - (1.4) in a generalized P]"RFS space-time [9], represen~
ted by the metric

(1.9) dst=—Adx*—Bdy’—(1—E) d? —2F dzdt -} (1 -- E) di?,
where A, B and E are functions of (x, v, Z); (Z == z-—t) and also to obtain the

electromagnetic fields based on the definition of GRAIFF [2].

2. Solution of the field equation {(1.1). In the space-time metric (1.9),
the components of the non-symmetrlc tensor gu as calculated by PRAD-
HAN [1°] are

4 0 p —p
6 — B a — G
(2.1) (gy) = s
—p —06 —(1—E) — E
p o - E 14K

where p and ¢ are arbltrary functions of {x, v,

ponents g7 are given by

z). The contravariant com.-

[~ 1d 0 pid  p/4
0 =B 0B oB|
(2.2) (&%) = : ,
' - —pld —a/B -1+ W W
| - plAd —e/B W .. | 1 -{.—.W_
where W = (do? — Bp?)/AB — E.
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Equation (1.1) of FINzI’s field equations is one of the equations in
EINSTEIN’s unified field theory which has already been solved in ['°] and
the components of the connection I'; have been uniquely determined.

3. Calculation of the tensor R; Using the values of _;:k from [19], the

components of I'; are computed as

(3.1) M=Ty=0and I=—T,=—(H+ D),

where

H=(—p, + p4,J24 — oA, 2B)/A,
(3.2) ‘
I = {—o0, + oB,/2B — pB,/2B)/B.

~ Here and in what follows the lower suffixes x and y attached to any func-
tion denote its partial derivatives with respect to x and y respectively. A sing-
le and double overhead bars stand for partial derivatives with respect to Z

once and twice respectively.

Putting I';., == 0;,, and using the values of I'; and F;:k from (3.1) and [*]
+
the components of 8, are given by

O =— 0y =—(H, + L), 0= — by =—(Hy+Iy)’
(3.3) - _
O3 = — 034 = — 045 = 0y = — (H + I), other 0, =0,
Substituting the values of Bij from ['°] and calculating I' ik with the help

+
. of equation {3.1) we find that the symmetric components of R;- are given by

Ry = —L/B, Riy = Ryy= 0, Ry =—L/4,
(3.4) REIS) = Bzu) = N/B, Rzza) = R;M) =— M4
Rga = RZ&:-) = R;:- =7

while the skew-symmetric components of R; are given by
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* *
Ry = Ryy =0,

* * ¥ L3
Rpg) = By = o Riggy= — Ry =1,

L= A, +B,—3(4+4,B)A—1(B+ 4, B)/B,

2M= A,—% A(A/A+ B/B),

aN=—B,+}B(A4/4+ B/B),

%y = — (A— A2/24)/A— (B— BY2B)/B + 2(S, + T, + H+ T+ H2 4 I?)

+b/AB + S(4,/4 + B,/B) + T(4,/4 + B,/B),

O o M+ 3(H—1) BJB— 30—y (4 A—DB) 0B,
BT, (H—I) AJA—3bJA+3(A,/A—B,B) bjd,
b:@+%—MJLWQW? _
S (3o + 20 pot pA2AYA—olb 4 pA, [ AY/BY A,
T= {4 E, + 20(—0, + oB,[2B)/B— p(b + oB,/B)[A}/B.

Using (2.2) and (3.5), the skew-symmetric contravariant components B'V]

of the tensor R;-j} are found to be
R — R'BH — 0, R = R'IM — ofd,

(3.7)
R gy B/B.

4. Solutions of the field equations (1.2), (1.3) and (1.4). Substltutmg
the values of RlJ from (3.4) in (1.2) we have

(4.1) L=0,

(4.2) N=0,
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(4.3) M=o,
(4.4) 7 = 0.

Equation {4.1) can also be written as

(45) (BNAB), + (4, AB), =
Equations (4.2) and (4.3), after integration become
(4.6) AJNAB =k,

- (47) | B/VAB =k,

respectively, where in general k; and k, are functions of (x, y). Equations
(4.4) - (4.7) are mathematically complicated and it is difficult to get the exact
solutions, However, without vielating the assumptions taken for the line -
element (1.9), we can take

(4.8) A=Bf , (f=£2),
which renders it possible to find the exact solutioﬁs of the said field equations
From (4.6) and (4.7) wo get
(4.9) B, A, = AB k.
With the help of (4.8), equation (4.9) roduces to the form
(4.10) pq=.(p =B g =B, =k k; B,
which can be solved by using CHARPIT’s method [!1]. ; t

By virtue of (4.8), equation (4.4) reduces to

2B/B+ B fIB f + f|f—(BIBR — 4 (fIf—25'B,/B—2T'B /B —
(4.11)
%S, 4 T, + H*+ " H' + I ) — br2[BEf = 0,

where S, T, H', I' and b’ are the values of S, T, H, I and b respectlvely
when (4.8) is used in the expressions for S, T, H, I and b.
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Thus the values of g; given by (2.1) represent the plane wave-like solu-
tions of the field equation (1.2) under conditions (4.5), (4.8) and (4.11).

It is worth mentioning here that the values of 4 and B can be found ex-
plicitly provided %, and k; are chosen properly. For instance:

Cuase (i). If &, and k, are two non-zero scalar constants, then from (4,10)
the values.of 4 and B satisfying (4.5), (4.6) and (4.7) are given by

log B=xv f+y/Nf+u

(4.12)
log 4 = x/f + ly/~/f+10gf+n,

where A and ;L are any scalar constanis.

In this case the values of g;; given by (2.1) represent the plane wave-like
golutions of the field equation (1.2) under conditions (4.11) and (4.1Z).

Case (ii). 1l k) =0 =1k, , then from (4.6) and (4.7) we find that 4, = 0= B,
in which case the g; given by (2.1) with 4 = A(x, Z), B = By, Z) and
E = (%, vy, Z) represent the plane wave-like solutions of the field equatlon
(1.2) provided. the condition :

(4 — A/24)/4 — (B — B*2B)/B— S' 4,4 — T" B,/B —
(4.13) o
’. 28, -+ T, + H* + 17+ H + I') — (o, + p,)}/AB = 0,

holds where S*, T", H" and I” are values of S, T, H and I respectively when
Ay = 0 = B, are used in the expressions for S, T, H and 1.

Theorem 4.1. A necessary and sufficient condition that g; given by (2.1)
be a solution of FINZI's field equation (1.3) is

(4.14) ay— B, = 0.

Proof, Substitution of R ; from (3.5) in equation (1.3) gives the requi-
red condition (4.14). Conversely, if (4.14) holds then the field equation (1.3)
is identically satisfied.
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Theorem 4.2. A necessary and sufficient condition that g; given by (2.1)
be a solution of FINZI’s field equation (1.4) is

(4.15) log o + % log (BfA) = ky and log §+ L log (A/B) =k,
where ky and b, are functions of (x, v).

Proof. Substituting the values of R'Y) from (3.7) and Iy, from [1°] in
the field equation (1.4) we get the required condition (4.15). Conversely,
if the condition (4.15) holds then the field equation (1.4) is identically satis-
fied.

5. The clectromagnetic fields. Calculating the values of I'; ;; from (3.1)
we get
Fyg =gy ="0 Ty =—7Tpg = + 1),

F[2,31 = F[2,41 = % (Hy + Iy)'

Considering the form (1.7) for the electromagnetic field tensor F; and

substituting in it the values of B;,-J-] and I';  from (3.5) and (5.1) we get
(5.2) F13:—‘F14: U, F23=—F24: Vandother FIJ ='0,
where U =0 — L (H, 4 L) and V = — 3 (H, + I).

Considering the form (1.8) for the electromagnetic field tensor and subs-
tituting the values of R;-j], gV and I’ iy from (3.5), (2.2) and (5.1) respecti-
vely in (1.8) we get
(5.3) Fiy=—F,=—U", Fj3 =—F}, = V" and other F;j:(),

where U = % (B/B— H,— I)and V' = % (/4 + lHy + L)

The contravariant electromagnetic field tensor FY and the dual tensor
Fi} corresponding to Fy; given by (5.2) are

(5.4) F13 — F14 = U/, F® = F* = V/B, other Fi = 0,

and
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(5.5) F}, = —Fy, =—V+/A[B, Fy, ——F,,= UYB/A, other F;=0.

Thus from (5.2), (5.4) and -(5.5) it is easily seen that F; Fl = F Fi =0,
and hence the electromagnetic field tensor given by (5.2) i lS null in the sense
of SYNGE ['2]. Moreover F|, = F3, = 0, the electromagnetic waves are of
transverse character.

The contravariant electromagnetic field tensor F ¥ and the dual tensor
F corresponding to (5.3) are given by

if
(5.6) Fe13 — frld Ur/A, Fres o= fre2d — V.'/B’ other F’ij —
and
(5.7 F=—Fl;=—V'AB, Fjy=—F}; = U'\/B/A other Fj}

Thus from (5.3), (5.0) and (5.7) it is clear that F}; F’-'J' = F[] -'F’i-’. =1
and hence the electromagnetic field tensor given by (5.3) is also null. Here
again Fl, = F{, —= 0 shows the transverse character of the ele¢tromagnetic
waves. | | '

Hence the unified field theory of FINZI in the generalized PERES Sﬁace-
time (1.9) gives two different electromagnetic fields given by (5.2) and (5.3)
both of which are null and transverse.
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GZET

FINZI’nin birlestirilmis alan teorisinin alan denklemlerinin dalga ¢#ziim-
leri, 4, B ve E katsaylar-x,w, z—t -degiskenlerinin fonksiyonlar1 olmak
{izere

ds? = — A dx® — Bdy? — (1 — E) &2 — 2E dedt + (1 + E)de,

--metrifii ile verilen :bir:genellegtirilmis nzay-zaman evreni igin incelenmistir.

Aym gergeve iginde, GRAIFI’in tammna :dayanarak davramslar balamm- L
dan sifir ve gapraz olan iki farkl elektromanyetik alan belirlenmigtir. :




