
ON W A V E SOLUTIONS OF T H E U N I F I E D F I E L D EQUATIONS OF FINZI IN A 
G E N E R A L I Z E D P E R E S SPACE-TIME 

K . B . L A L - A N I R U D H P R A D H A N 2 ) 

The wave solutions of the field equations of the unified field theory of FINZI 
have been investigated in a generalized P E R E S space-time, represented by 
the metric 

ds2 — Adx2 — Bdy2 — (1 — E) dz1 — lEdzdt + (1 + E) di2
t 

where A, B and E are functions of {x, y,z — (), Also, in this set-up, we have 
determined two different electromagnetic fields based on the definition of 

G R A I F F which are null and transverse in nature. 

1. Introduction. Several generalizations of the field equations of gene­
ral relativity have been attempted since W E Y L [ ]] showed that a fusion of 
electromagnetism with gravitation can be effected by enlarging the geomet­
rical basis of the theory. Accordingly, E I N S T E I N [a] developed a theory based 
on the geometrical interpretation of gravitation and electromagnetism by in­
troducing a non-symmetric fundamental tensor g{j and a non-symmetric af­
finity r'lj taking a priori the torsion vector ri = = 0. S C H R O D I N G E R [ 3 ] , 
B O N N O R [*], B U C H D A H L [5] and many others also have given unified field 
theories taking a priori the torsion vector Fi = 0. 

FlNZI [ 6], on the other hand, without assuming the torsion vector to be 
zero, has given the following set of unified field equations: 

( i - 1 ) ëijik = gij,k ~ 8ij rik — 8u rlj = °> 
+ — 

(1.2) B j ^ O , 
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(1.3) rot R*[iji ^ R^k + R;Mi + Rlki]. = 0, 

(1.4) div R*M = R*f + R*M rs
Us) = 0, 

where R*j = R~ -\- Fi;j and R.j is the generalized RlCCI tensor defined by 

(1.5) R.. = r ? . „ - riSi._ r j r j , + r t t 

Here round and square brackets denote the symmetric and antisymmetric 
parts, respectively. A -f- or — sign below an index fixes the position of the 
covariant index h in the connection as ftk and J ^ ' respectively. A comma pre­
ceding an index i denotes partial differentiation with respect to xl and a se­
micolon stands for covariant differentiation with respect to i " ^ . 

IKEDA [7] in 1954 found a skew-symmetric tensor in terms of the 
non-symmetric fundamental tensor g^ satisfying the properties 

(i) that the total rotation of is zero 
and 

(ii) that has a non-zero divergence. 

He named this tensor the electrcmagnetic field tensor. In order that the 
skew-symmetric tensor H(j- may satisfy the property (i), IKEDA assumed 
ri = 0 and defined the electromagnetic field tensor H y - by the relation 

where efj-w takes the values -f-1 or — 1 according to ijkl is an even or odd per­
mutation of 1234. Thus (1.6) is valid only in the case of such field equations 
which assume a priori T ; = 0. But in case of the field equations of FlNZl in 
which r ; 0, H{j given by (1.6) does not satisfy the property (£) and hence 
it cannot represent the electromagnetic field tensor in the sense of IKEDA. 

I n 1955 GRAIFF [8] gave two possible relations between the non-sym­
metric tensor g^ and the skew-symmetric electromagnetic field tensor 
each satisfying both the properties (i) and (ii) without imposing the condition 
-T; = 0. The two forms of the electromagnetic field tensor given by GRAIFF are 

and 
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(1.8) F^^s^R^^g^-r^ 

where the symbols used are as defined above. 

I n this paper we propose to find out the plane wave-like solutions of the 
field equations (1.1) - (1-4) in a generalized P E R E S space-time [ s], represen­
ted by the metric 

(1.9) ds2 = — Adx*—Bdyz — (l — E) dzz — 2E dzdt + ( ! ; + £ ) tft3, 

where A, B and E are functions of (x, y, Z); (Z = z — t) and also to obtain the 
electromagnetic fields based on the definition of G R A I E E [ b ] . 

2. Solution of the field equation (1.1). In the space-time metric (1.9), 
the components of the non-symmetric tensor g}j as calculated by P R A D -
H A N [1 0] are 

-A 0 p - p 

0 - B a — a 
(2.1) (Sij) = (Sij) = 

- p - a - (1 - - E 

p a ~ E 1 - f E 

where p and a are arbitrary functions of [x, y, Z). The 
ponents gIJ are given by 

~- If A 0 Pi A pJA 

0 - IjB ujB ' a-jB 
(2.2) 

- pjA - <T(B - 1 + W W 

- p\A - u\B w 

where W = [A<T* — Bp2)/AB — E. 
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Equation (1.1) of FlNZl's field equations is one of the equations in 
EiNSTEIN's unified field theory which has already been solved in [ I 0] and 
the components of the connection JT|- have been uniquely determined. 

3. Calculation of the tensor R*j. Using the values of Tj f c from [ 1 0 ] , the 
components of ri are computed as 

(3.i) r, = r 2 - o and r 3 = — r 4 - — (H + / ) , 

where 
H = ( - P x - f pAJlA - <;Ay\2B)\A, 

(3.2) 
I = (— °, + "ByPB — PBJ2H)/B. 

Here and in what follows the lower suffixes x and y attached to any func­
tion denote its partial derivatives with respect to x and y respectively. A sing­
le and double overhead bars stand for partial derivatives with respect to Z 
once and twice respectively. 

Putting ri;k — 6ik, and using the values of T £ and from (3.1) and [ I 0] 

the components of 0ik are given by 

hi = — = — (Hx + 4 ) , e3Z = - e 4 2 = - (Hy + iy), 
(3.3) 

^ 3 3 = — <?34 = — « 4 3 =0u = —(H+ I ) , other - 0. 

Substituting the values of By from [ I 0] and calculating -T;.fe witk th* kelp 

of equation (3.1) we find that the symmetric components of R*j are given by 

Ru = — L/B, R'(l2) = R[n) = 0, R\2 - - L/A, 

(3.4) R*(U) = - Bjuj « iV/B, i2<*23) = - R*{2i) = - MjA 

•^33 = — ^ ( 3 4 ) = ^ 4 4 = y> 

while the skew-symmetric components of Ry are given by 
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•^[12] = -^[34] ™ 0» 

(3-5) 
•R[13] = B[U] — « » ^ [ 2 3 ] = ^ [ 2 4 ] = & 

where 

2L ^ 4 y + B x x - ^ (A2
Y + ^ BX)¡A — + ^ By)¡B, 

2M= AY—±Ay{AiA + ~B¡B\ 

2N=-BX + ^ BX(A¡A + B / B ) , 

2y = — ( J — A2/2A)/A — ( B — B 2 / 2 B ) / B + 2(S, + T y + H + 7 + H * + P ) 

+ 6 ^ U + + BJB) + + B y / B ) , . 
(3.6) 

a ^ + M f f - J ) BJB-~^byIB-~l{AyIA-~ByIB) b/B, 

p^IY-^(H-I) AJA-±bJA + ±{AJA-BJB) b¡A, 

b^ax-\-py—pAJA — CTBJB, 

S =. {¿ JE, + 2p( - /> , + PAJ2A)/A - a{b + pAY{A)¡B}¡A, 

T={iEy + 2 f f ( - ^ + aBy¡2B)¡B - p(6 + <TBJB)/A}/B. Using (2.2) and (3.5), the skew-symmetric contravariant components B * ^ 
j are found to be of the tensor J R ^ J are found to be 

(3.7) 

4. Solutions of the field equations (1.2), (1.3) and (1.4). Substituting 
the values of JR̂ - from (3.4) in (1.2) we have 

(4.1) L = 0, 

(4.2) N = 0, 
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(4.3) M = 0, 

(4.4) y = 0. 

Equation (4.1) can also be written as 

(4.5) (BJ>fAB)x + (Ayi^AB)y = 0. 

Equations (4.2) and (4.3), after integration become 

(4.6) Ayi<J~AB — klt 

(4.7) BjjAB = ks] 

respectively, where in general k1 and k2 are functions of [x, y). Equations 
(4.4) - (4.7) are mathematically complicated and it is difficult to get the exact 
solutions. However, without violating the assumptions taken for the line -
element (1.9), we can take 

(4.8) A=Bf , ( / = / (Z ) ) , 

which renders it possible to find the exact solutions of the said field equations 

From (4.6) and (4.7) we get 

(4.9) Bx Ay = AB kl kz. 

"With the help of (4.8), equation (4.9) reduces to the form 

(4.10) p q = MP =Bx,q = By,$=hlkt B 2 ) , 

which can be solved by using CHARPIT's method [ n ] . 

B y virtue of (4.8), equation (4.4) reduces to 

2B /B + B JjB r+Jlf-^ISf-^Qfff — l^BJB—iTBJB^ 
(4.11) _ _ 

2(S'X + T'y - f H'z + I'2 + H' + /') — b'2\B2j = 0, 

where S', T ' , i f ' , / ' and b' are the values of S, T, H, I and 6 respectively 
when (4.8) is used in the expressions for S, T, H, I and b. 
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Thus the values of g{- given by (2.1) represent the plane wave-like solu­
tions of the field equation (1.2) under conditions (4.5), (4.8) and (4.11). 

It is worth mentioning here that the values of A and B can be found ex­
plicitly provided kx and kz are chosen properly. For instance: 

Case (i). I f fcj and kz are two non-zero scalar constants, then from (4.10) 
the values of A and B satisfying (4.5), (4.6) and (4.7) are given by 

log B = W 7 + W 7 + M 

log A = x V / + 2y/V / + log f + p, 

where X and fx are any scalar constants. 

In this case the values of given by (2.1) represent the plane wave-like 
solutions of the field equation (1.2) under conditions (4.11) and (4.12). 

Case (ii). I f kx =-0 = k2, then from (4.6) and (4.7) we find that A —G = B X 

in which case the gtj given by (2.1) with A = A(x, Z ) , B = B(y, Z) and 
E = (x, y, Z) represent the plane wave-like solutions of the field equation 
(1.2) provided the condition 

(A — AZI2A)IA — ( B — B a / 2B) / B — S* AJA — T* B Y / B — 
(4,13) 

2 ( £ + r ; + H*2 + J * 2 + + O - + P . ) 2 M B = o, 

holds where S*, T*, H* and I * are values of S, T, i f and I respectively when 
Ay = 0 = Bx are used in the expressions for S, T, H and f. 

Theorem 4.1. A necessary and sufficient condition that gy- given by (2.1) 
be a solution of FlNZl's field equation (1.3) is 

(4.14) a, 

Proof. Substitution of i ? ^ from (3.5) in equation (1.3) gives the requi­
red condition (4.14). Conversely, if (4.14) holds then the field equation (1.3) 
is identically satisfied. 
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Theorem 4.2. A necessary and sufficient condition that gy- given by (2.1) 
be a solution of FllNZl's field equation (1.4) is 

(4.15) log a + i log (B/A) = ft3 and % jS + £ Zog (A/B) = k4 

where k3 and k4 are functions of (%, y). 

Proof. Substituting the values of from (3.7) and rjlc from [1 0] in 
the field equation (1.4) we get the required condition (4.15). Conversely, 
if the condition (4.15) holds then the field equation (1.4) is identically satis­
fied. 

5. The electromagnetic fields. Calculating the values of from (3.1) 
we get 

[ I t 2 ] — ^[3 ,4] = 0' ^ [1 ,3] = ^[1,4] — 2 (Hx + 4)> 

(5.1) 
•^[2,3] = F[2,4] = 2 ( fy " h -fy)' 

Considering the form (1.7) for the electromagnetic field tensor F^ and 
substituting in it the values of B t* f j ] and from (3.5) and (5.1) we get 

(5.2) F13 = — F14 = Ut F 2 3 = — Fu = F a n d other F{j =-0, 

where U = a — ± (Hx-\- IX) and V = 0 — £ {Hy + I Y ) . 

Considering the form (1.8) for the electromagnetic field tensor and subs­
tituting the values of R*[in, gIJ and from (3.5), (2.2) and (5,1) respecti­
vely in (1.8) we get 

(5.3) F{3 = — F{4 = — Uf, Ffa = —F'u = V and other _F y- = 0, 

where U' = £ (<S/B — B , — J J and V' = % (a/A + H y + 

The contravariant electromagnetic field tensor FlJ and the dual tensor 
Fy corresponding to Fi}- given by (5.2) are 

(5.4) F 1 3 = F 1 4 = VjA, FZ3 = F24 = F / B , other F* = 0, 

and 
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(5.5) F*n =—F*u=—V^AiB, F'2Z = — F 2 * 4 = ujB/A, other F j : = 0. 

Thus from (5.2), (5.4) and (5.5) it is easily seen that F{j Fij = F j - Fij ± 0, 
and hence the electromagnetic field tensor given by (5.2) is null in the sense 
of S Y N G E [ 1 2 ] . Moreover Fl2 = F 3 4 = 0, the electromagnetic waves are of 
transverse character. 

The contravariant electromagnetic field tensor F'tJ and the dual tensor 
Ffj corresponding to (5.3) are given by 

(5.6) F ' 1 3 = FlU = — JJ'fA, F ' 2 3 = F ' 2 4 = V'jB, other F ' f j - =.0,. 

and 

(5.7) F[l = — F{1 = — V S/IJB, F£ = — F£ = U> ^ B J A , other F-j = 0. 

Thus from (5.3), (5.6) and (5.7) it is clear that F-j F* = F y * Ftij = 0 
and hence the electromagnetic field tensor given by (5.3) is also null. Here 
again F [ 2 — F'^ ~ 0 shows the transverse character of the electromagnetic 
waves. 

Hence the unified field theory of FlNZI in the generalized PERES space-
time (1-9) gives two different electromagnetic fields given by (5.2) and (5.3) 
both of which are mill and transverse. 
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Ö Z E T 

FlNZl 'nin birleştirilmiş alan teorisinin alan denklemlerinin dalga çözüm­
leri, A, B ve E katsayıları :x, y,-z—t değişkenlerinin fonksiyonları olmak 
üzere 

ds 2 = —A dx2 — B dy2~{l~ E) dz2 — 2E dzdt + {1 + E) dı2, 

metriği ile verilen bir genelleştirilmiş uzay-zaman evreni için incelenmiştir. 
Aynı çerçeve içinde, G R A I F F ' i n tanımına dayanarak davranışları bakımın­

dan sıfır ve çapraz olan iki farklı elektromanyetik alan belirlenmiştir. 


