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AN F-PERIODIC FUNCTION AND A PLANE CURVE 

Stanislaw GOZDZ 

Instytut Matematyki UMCS, P1.M. Curie-Sklodowskiej 1., 20-031 Lubiin-POLAND 

Summary : In this paper F-periodic functions are defined. The Fourier 
scries for F-periodic functions are considered. Applications of F-periodic 
functions to plane curves are given. 

BİR F-PERÎYODİK FONKSİYON VE BİR DÜZLEM EĞRİSİ 

Özet: Bu çalışmada F-periyodik fonksiyonlar tanımlanmakta ve 
bunların Fourier serileri gözönüne alınmakta, ayrıca bu tür fonksiyonların 
düzlem eğrilerine uygulamaları verilmektedir. 

INTRODUCTION 

A reaî function/defined on R = (— °o, -f- °°) is called F-periodic with re
spect to a certain special function F if the equality holds: 

f(F(t))=f{t\ 

Next we define a Fourier series for these functions. In the second part of the paper 
we apply F-periodic function to a plane curve. 

Namely, let a plane curve be represented by (compare (16) f1]) 

rj, k (s) = I / (* ) k (t) eiK& dU Î G R 

and let the Fourier series (15) ['] f o r / b e given by 
CO 

fiş) = ~- A0 + ^ i^n cos nK(s) + Bn sin y- nK(s^j . 

Then the coefficients of the series are invariants of the curve. 
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1. ON AN F-PERIODIC FUNCTION 

Let (a, b) denote an opened interval included in the real line Tl— (-oo,-j-oo). 
We consider a one-to-one map F: (a, b) <—> (a, b) such that 

(A) t < F (t) for all t e (a, b), 
(B) F is a strictly increasing function, 

(C) F has the derivative on the whole interval (a, b). 

Definition 1. Let us fix the function F. A function / : (a, b) • R will be 
called F-periodic i f and only if 

f{F{t)) =f(t) for all ts(a, b). (1.1) 

I f F(t) = t L , O ^ i e R , then the above-mentioned definition gives 
usual periodic function. 

Now we prove that there exists an F-periodic function. 

Theorem 1. I f the function F is given, then there exists an F-periodic 
function different from a constant. 

Proof. To prove it, we define 

F v ( 0 ^ F ( F ( - ( F ( Q ) . . . ) ) 
v— times 

and 
F~* (t) = F-ijF-* (...(F^(t)),..)) 

v—times 

for v = 1, 2, 3, where F~l is the inverse function for F and F° (t) = t. 

By (A) and (B) for each fixed number t0 e (a, b) the interval is the following; 
sum 

( t f , 6 ) = <F(t0), j w i ( g ) , (2.1) 
V=—to 

where < r, s) = {X e R : r <; X < s}. 

Let y: < t0, F(tJ) — • R be a real function. We observe that for an arbitrary 
t e {a, b) there exists exactly one number s e < tQ , F (t0)) such that t = F1 (s), 
for exactly one integer v. Hence we define 

a ( 0 M y ( i ) (3.1) 

for all te(a,b). Obviously a (F (t)) = a (/), because F(r) = - F v + 1 (^)- This, 
means that a is an F-periodic function. 
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F-periodic functions have properties similar to usual periodic functions. 
f 

Clearly, i f / , g are two F-periodic functions, then fig,fg and — (whenever g^= 0) 
g 

are F-periodic functions, too. For different functions F we can consider different 
F-periodic functions. 

Example. The map / > t1 with the domain (0,1) or (1, + 0 0 ) satisfies the 
assumptions (A) and (B). Thus there exists a ^-periodic function / different from 
a constant, i.e. fit1) =/(?)• 

Theorem 2. I f F is a continuous function, then there exists a continuous 
F-periodic function different from a constant. 

Proof. We consider decomposition (2.1) of the interval {a, b). Next taking 
the continuous function y: < ta , F(t0)) • K. such tahat 

lim Y(0 = Y W (4-1) 
<->F(fu> 
KFUo) 

we define by (3.1) the continuous F-periodic function t >>a(i). 

To introduce the Fourier series for an F-periodic function we prove the fol
lowing 

Proposition 1. Let/be a continuous F-periodic function with respect to the 
function F satisfying (A) - (C) and let the function H(s) be defined as follows: 

s yff(s)= J a(t)f(t)dt, (5.1) 

where t —-> a (/) is a certain function. Then the function H is constant if and 
only if 

a{F(t))F'(i) = a(t) for all te(a,b). 

Proof. We have 

H' (s) = (a (F (J)) F (s) - a (s))f(s). 

Proposition 2. I f the function F is given and F satisfies conditions (A) - (C), 
then there exists a positive function a such that 

F(f) = - ^ - . (6.1) 

Proof. We apply notions from the proof of Prop. 1. Considering the 
decomposition (2.1) we define 
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« ( 0 = 

y(0, i f te<tQ> F{Q) 

Y (s) 

ds 

, if t = Fv(s), v = 1,2,3,... 
F] (s) (7.1) 

Y ( i ) ( - ^ - f * | ( i ) , if t = Fu(s), u / - - 1 , - 2 , - 3 , . . . 

where y (i) is a positive function. 

Y(0 

a(F(t)) = 
Y(J) 

, if i e < i 0 , F(i 0 )) 

, i f t = F*(s), v = 1,2, 3,... 

y F l l + 2 ) ( ^ i f u = - 2 - 3 , - 4 . . . . 

y ( 5 ) , if t = F - 1
 ( J ) . 

Hence 

o (0 
a ( f ( 0 ) 

= F' (F" (s)) - F' (t), if t = Fv (s\ v = 1, 2, 3,... 

i " ( F E ( j ) ) = J : , , ( t ) , i f f = f * ( j ) , u = - 1 - 2 , - 3 , . . . . 

So it is verified that 

a ( 0 

a ( F ( i ) ) 

CoroSïary 1. I f the function y satisfies the condition (4.1), then the function 
a(t) defined by (7.1) is continuous. 

Now we present the Fourier series for an F-periodic function whenever F 
satisfies the conditions (A) - (C). We fix a positive continuous F-periodic function 
t —>• /c(i) and we fix a positive continuous function a (t) satisfying the condition 
(6.1). By Proposition 1 the number p defined as follows 

HO 

P = / a(s)k(s) ds 

is not dependent on the variable te(a,b). 
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iiiion 3. I f g is a function defined on R with the period p, then the 
following function 

/<0 = *<*</)), 

where K(t) = J a(s)k(s)ds, t,t0e(a,b), is F-periodic. 
to 

Indeed 
no t FO) 

f(F(t)) = g(K(F(t)))=g(f a(s)k(s)ds)=g(f + / ) = 
to t0 t 

= g(K(t) + ft=g(K(t))=fO). 

For each fixed t e (a, b) we consider the real Hilbert space if , , F(t)i [k a] 
of all functions defined in the interval [t,F(t)] with the scalar product: 

FO) 

(f,g)= J k(s)a(s)f(s)g(s)ds. 

Proposition 4. The sequence of F-periodic functions: 

" 7 f T V j c o s ~l~K(s)> \ l J S I N ^ T L k { s ) ' n = 1>2>3"~ w 
with the domain se[t, F (t)j is the orthonormal and complete system in the real 

Hilberi space L^, *•(,)] [k o.] f ° r e a c n tG(a,b). 

Let / : (ct, 6) • R be an F-periodic continuous function. The Fourier series 
for / restricted to the interval t <= s < F(s) is given by the formula 

Proposition 5. The coefficients An (f), Bn (t) of series (5.2) are independent 
of the variable t. 

• The coefficients are expressed by the following formulas : 

An(t) = — J / (« ) k (a) a (a) cos ~ n K (u) du 

and 
Hi) 

B„(t) — / /(w) AT («) a («) sin — « .AT («) äfw. 
ß •/ ß 

By the relation (6.1) those coefficients are constant functions for n = 1, 2 
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2. APPLICATIONS TO A PLANE CURVE 

Let F be a function satisfying (A) - (C). We denote by L F the set of all positive 
continuous functions such that 

o(F(0) 

Next we denote by C F the set of all F-periodic continuous functions defined on 
(ct,b). In this section we examine the following class of all C 1 -curves of the form 

t 

z it) = U,k (0 = f a (s) ds, (1.2) 
to 

where a e L F , /c e CF. 

Let denote the set of all positive continuous periodic functions defined 

on R with the period L . I f / , pe CL and a = p / , k = } then formula(1.2) 

gives the representation for plane curve considered in I 1 ] . 

For every curve r a > k e we can compute the curvature in the following 
meaning: Let to denote the angle between tangent vectors z \s) and z' (s-\-h) and 
/ denote the length of the arc of the curve between the points z(s) and z (s+h). 
Then there exists the bound 

iim — = k (s), (2.2) 

Indeed 

co co sin co sin co lim — = lim = lim 
A-*O / sin co' / h-*o I 

[z' (s), z* (s + A)] 
hm 

\z>(s)\\z>(s + h)\f\z>{t)]dt 
s 

where [z, w] is the determinant of the vectors z and w. 

ft-0 / I z' (i) I 3 fr*0 A 

But z' (0 = a (0 e'*<'> (def X ( i ) see Prop. 3). 
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Thus 

s 

Finally 

l i m — 
/i->o / 

T = ~T7T a ^ a (•? + /?) — / a (u) /c («) i/w = /c (s). 
/ a3 0) A J 

s 
So a counterpart of theorem about integration of the curvature has the form: 

Proposition 6. Let a curve /'aifce9R be represented by (2.3). Then the angle 
between tangent vectors z' (tt) and z' (i 2) is equal to: 

Now we present a certain geometrical property common to all curves from 
the class Sti. To express it, we consider a positively oriented oval T I 2 ] . Let X 
denote a point lying on T which moves on F conformable to the orientation of F. 
I t is easy to see that i f the point X passes the way equal to the length of T, then 
the tangent vector at the point X rotates on the angle equal to 2%. Now we show 
the following generalization: 

Proposition 7. An arbitrary curve raike^Sl has the following properties: 

(I) is a locally strictly convex curve, 
(II) the curve determines two numbers m # 0 and 3 # 0 such that i f a 

point Xe passes the way equal to m, then the tangent vector at the point 
X rotates on the angle equal to p. 

Proof. (I) Let a plane curve /«>fce9Jl. Now, if r a f c (/') is a fixed point on 
r a > / c then the unit tangent and normal vectors are equal to e'^ and ieiK<-''\ 
respectively. The vector v hooked to raik ( f) with the end in the arbitrary 
point ra-k (t") is expressed by 

whenever i ' < t". 
The determinant of v with the unit vector has the following form : 

t" 

i' 

Hence putting w = K (s), du = a (s) k (?) ds we have 
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K(t") 

J k(K 1 («)) 

where K~v denotes the inverse function to K. 

Next putting X = u — K(t% dX = du, we have 

[eiK(n V ] = /" 1 sin A, A.. 
J / c ( ^ ( X + ^( i ' ) ) ) 
o 

This means that the determinant is non-negative. Thus raik (f) and ra.,k(t>>) are in 
the same half-plane determined by the tangent vector eiJii''>. Therefore raik is 
a locally convex curve. 

(II) By Prop. 6 i f a point X moves on i \ i k and passes the way equal to 

HO 

m = j a (?) ds, 
t 

HO 

then the tangent vector at X rotates on the angle equal to p = j a (s) k (?) ds. 

Let a plane curve eSSi be represented by formula (2.3). Obviously ~ is 

F-periodic function and it has the Fourier series in the form 
CO 

— = — An + " V (AU cos — nK+BN sin — n K) . (3.2) 
k 2 ° Z , { " P P j 

I t is easy to verify that i f rajc eSOl is a closed curve, then the perimeter of ra>k is 
equal to nA0 . Thus the coefficient AQ is an invariant of the curve. Generalizing 
this fact we give the following 

rem 3. For each curve rajc the Fouries coefficients of series (1.6) are 
invariants for the curve. 

Pnral This means that An, B N (n—0A,2,...) do not depend on translation 
and rotation and parameterization. The proof of the first part of the theorem 
is easy and we omit it. To prove that the coefficients do not depend on paramete
rization we consider two equivalent curves. Let a one-to-one function 
a: (c, d) <—> (a,b) be given. We assume that CT'(T) > 0 for % e (c. d). Then the 
curve ra>k (G(T)) is equivalent to the curve raik (t). Exactly ra>k (O(T)) e W, i.e.: 
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U,k (O-(T)) = r a i , k l (x), 

where a t (x) = a (CT (T)) a' (T) and kt (T) = /c (<r {%)). Indeed, with the aid of 
the standard change of variable rule s = cr (u,) we obtain 

ra,k(a(x)) = j a(s)e"> ds = j a (a (u)) c' (u) e ' u rfu ; 

'o TO 

secondly we put u — <j (p) and i/« = CT' (p) d p 

i f « (p) A: (p) o" (p) d p 
j a(a(ii))o-'(ii) e

 , 0 rfji. 

Denoting at (T) = a (ry (T)) a' (T) and (T) = /C (CT (X) ) we have 

r*,k (°"00) = r a i , k l (T). 

It is easy to verify that kl e C F l , a t e L F l , where = cT1 (F (a (V))). 
Let a curve AeSDÎ have two equivalent representations: z ~ r^k (t) and 

(T), where Î=CT(T). Let , , -5^0 denote the Fourier coefficients 

for . Then we obtain the equalities 
K 

A0 = 4 » , An = .4»), 5„ = ZÇ>, 77 = 1, 2,... . 

By the definition of the Fourier coefficient we have 

P i ' p 
X 

a - i ( F ( o - ( T ) ) ) 

2 

p y* a (a (v)) cos n ^ a (a (p)) /c (a (p)) o"' (p) d p j a' (v) dv, 

now we change variable putting /• = a (p) and dr = a' (p) d" p 

y a (<T(V)) cos \~~ n J a (r) k ( r) ^ " j a ' ( v) 

next we put p = a (v) and d JJL = a' (v) <iv 
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= j a (u) cos j — - n j a(r)k (r) drj d \i; 

but K(ii) = j a (r) k (/•) dr, so finally we obtain 

= — J a (fa) cos - y - 7i K(\i) d\i — A„ . 

Similarly we verify the equalities = A0 and = Bn , This means that 

the Fourier coefficie 

completes the proof. 

the Fourier coefficients of ~ are independent of parameterizations. This 
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