İstanbul Üniv. Fen Fak. Mat. Der. 52 (1993), 23 - 27

CONTACT RIEMANNIAN MANIFOLDS SATISFYING $R(\xi, X)$. $\overline{C} = 0$

U.C. DE - D. KAMILYA

Department of Mathematics, University of Kalyani, Kalyani - 741235, West Bengal, INDIA

Summary: The object of this paper is to characterize a contact metric manifold satisfying $R(\xi, X)$. $\vec{C} = 0$ where \vec{C} is the conharmonic curvature tensor and $R(\xi, X)$ denotes the derivation of the tensor algebra at each point of the tangent space.

$R(\xi, X) \cdot \overline{C} = 0$ BAĞINTISINI GERÇEKLEYEN KONTAKT KIEMANN MANİFOLDLARI

Özet : Bù çalışmada, \vec{C} konharmonik eğrilik tensörünü ve $R(\xi, X)$ tensör cebrinin teğet uzayın her bir noktasındaki türevini göstermek üzere, $R(\xi, X)$. $\vec{C} = 0$ bağıntısını gerçekleyen bir kontakt metrik manifold karakterize edilmektedir.

1. INTRODUCTION

In this paper we consider a contact metric manifold M^{2m+1} (ϕ, η, ξ, g) with characteristic vector field ξ belonging to the K-nullity distribution. If ξ is a killing vector field then the M^{2m+1} is said to be Sasakian. In a recent paper [3] the first author and N. Guha proved that a Sasakian manifold satisfying $R(X, Y) \cdot \overline{C} = 0$ where R(X, Y) denotes the derivation of the tensor algebra at each point of the tangent space and \overline{C} is the conharmonic curvature tensor [4] is locally isometric to the unit sphere S^{2m+1} (1). In section 2 of this paper we extend this result to contact metric manifolds and prove that either M^{2m+1} is locally isometric to the Riemannian product $E^{m+1} X S^m$ (4) or M^{2m+1} is locally isometric to S^{2m+1} (1). Contact Riemannian manifold satisfying $R(X, \xi) \cdot R = 0$ has been studied by Perrone [⁶].

2. A contact manifold is a $C^{\infty}(2m+1)$ manifold M^{2m+1} equipped with a global 1-form η such that $\eta X(d\eta)^m \neq 0$ everywhere on M^{2m+1} . Given a contact form η it is well-known that there exists a unique vector field ξ on M^{2m+1} satisfying $\eta(\xi) = 1$ and $d\eta(\xi, X) = 0$ for any vector field X on M^{2m+1} . A Riemannian metric g is said to be an associated metric if there exists a tensor field ϕ of type (1.1) such that

194000000000-0444 are explanated to develop the second of the second states of the second states of the second

$$d\eta(X, Y) = g(X, \phi Y), \ \eta(X) = g(X, \xi)$$

and

$$\phi^2 = -I + \eta(X) \,\xi.$$

The structure (ϕ, η, ξ, g) on M^{2m+1} is called a contact metric structure and M^{2m+1} equipped with such a structure is said to be a contact metric manifold. We refer the reader to [1] as a general reference for the ideas of this paragraph.

Denoting by L Lie differentiation, we define a tensor field h by $h = \frac{1}{2}L_{\xi}\phi$.

h is symmetric and satisfies $\phi h = -h\phi$. So if λ is an eigen value of *h* with eigen vector *X*, $-\lambda$ is also an eigen value with eigen vector ϕX . We also have $T_r h = T_r \phi h = 0$ and $h \xi = 0$. Moreover if ∇ denotes the Riemannian connection of *g*, the following formulas hold

$$\nabla_X \xi = -\phi X - \phi h X \tag{2.1}$$

$$\nabla_{\rm E} \phi = 0 \tag{2.2}$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y).$$
 (2.3)

The vector field ξ is killing with respect to g if and only if h = 0. A contact metric manifold $M^{2m+1}(\phi, \eta, \xi, g)$ for which ξ is killing is said to be a k-contact manifold. If the almost complex structure J on $M^{2m+1} X R$, defined by $J\left(X, f\frac{d}{dt}\right) = \left(\phi X - f\xi, \eta(X)\frac{d}{dt}\right)$ where f is a real-valued function, is integrable then the structure is said to be normal and $M^{2m+1}(\phi, \eta, \xi, g)$ is said to be Sasakian. If R denotes the curvature tensor, a Sasakian manifold may be characterized by $R(X, Y) \xi = \eta(Y) X - \eta(X) Y$. A Sasakian manifold is k-contact, but the converse is true only when dim $M^{2m+1} = 3$.

The k-nullity distribution [7] of a Riemannian manifold (M, g) for a real number K is a distribution

$$N(k): p \to N_{p}(k) = \{ Z \in T_{p} M | R(X, Y) Z = k [g(Z, Y) X - g(X, Z) Y] \}$$

for any X, $Y \in T_p(M)$. Suppose that $M^{2m+1}(\phi, \eta, \xi, g)$ is a contact metric manifold with ξ belonging to the K nullity distribution. That is,

$$R(X, Y) \xi = K[\eta(Y) X - \eta(X) Y].$$
(2.4)

From (2.4) we have

$$Q\xi = (2mk)\xi \tag{2.5}$$

where Q denotes the Ricci operator defined by

$$S(X, Y) = g(Q X, Y)$$
(2.6)

and S is the Ricci tensor.

24

CONTACT RIEMANNIAN MANIFOLDS SATISFYING $R(\xi, X)$. $\vec{C} = 0$ 25

3. CONTACT MANIFOLD SATISFYING $R(\xi, X)$. $\overline{C} = 0$

The first author and N. Guha have considered in their paper [3] Sasakian manifold M^{2m+1} satisfying R(X, Y). $\overline{C} = 0$. In this paper we have considered the weaker hypothesis $R(\xi, Y) \cdot \overline{C} = 0$ instead of $R(X, Y) \cdot \overline{C} = 0$.

We suppose that

$$R(\xi, X) \cdot \overline{C} = 0. \tag{3.1}$$

We have

$$\overline{C}(X, Y) Z = R(X, Y) Z - \frac{1}{2m-1} [g(Y, Z) Q X - g(X, Z) Q Y + (3.2) + S(Y, Z) X - S(X, Z) Y]$$

where S is the Ricci tensor and Q is defined by (2.6).

Now

$$g(\overline{C}(\xi, Y) \cdot Z, \xi) = \frac{1}{2m - 1} [(2m + 1) K \eta(Y) \eta(Z) - kg(Y, Z) - S(Y, Z)].$$
(3.3)

Using (2.4), (2.6) and (3.2) we have

$$(R(\xi, Y), \overline{C}) (U, V) W = R(\xi, Y) \overline{C}(U, V) W - \overline{C}(R(\xi, Y) U, V) W - \overline{C}(U, R(\xi, Y) V) W - \overline{C}(U, V) R(\xi, Y) W.$$
(3.4)

In virtue of (3.1) we have

$$R(\xi, Y) C(U, V) W - C(R(\xi, Y) U, V) W - - - \overline{C}(U, R(\xi, Y) V) W - \overline{C}(U, V) R(\xi, Y) W = 0.$$
(3.5)

This gives

$$g(R(\xi, Y), \vec{C}(U, V), W, \xi) - g(\vec{C}(R(\xi, Y), U, V), W, \xi) - g(\vec{C}(U, R(\xi, Y), V), W, \xi) - g(\vec{C}(U, V), R(\xi, Y), W, \xi) = 0.$$
(3.6)

Now putting $Y=U=e_i$, where $\{e_i\}$, i=1, 2, ..., 2m+1 be an orthonormal basis of the tangent space at any point of the manifold and taking sum for $1 \leq i \leq 2m + 1$ of the relation (3.6) we get

$$g(R(\xi, e_i) \ \overline{C}(e_i, V) \ W, \ \xi) - g(\overline{C}(R(\xi, e_i) \ e_i, V) \ W, \ \xi) - g(\overline{C}(e_i, R(\xi, e_i) \ V) \ W, \ \xi) - g(\overline{C}(e_i, V) \ R(\xi, e_i) \ W, \ \xi) = 0.$$
(3.7)

But

$$g(R(\xi, e_i) \ \overline{C}(e_i, V) \ W, \xi) = -\frac{kr}{2m-1} g(V, W) - kg(\overline{C}(\xi, V) \ W, \xi) \quad (3.8)$$

by (2.4), (2.6) and (3.2)

$$g(\bar{C}(R(\xi, e_i) e_i, V) W, \xi) = 2m k g(\bar{C}(\xi, V) W, \xi),$$
(3.9)

by (2.4) and (3.2)

$$g(\bar{C}(e_i \ R(\xi, \ e_i) \ V) \ W, \ \xi) = -k g(\bar{C}(\xi, \ V) \ W, \ \xi), \tag{3.10}$$

by (2.4) and (3.2)

$$g(\bar{C}(e_i, V) R(\xi, e_i) W, \xi) = -\frac{kr}{2m-1} \eta(V) \eta(W), \qquad (3.11)$$

where r denotes the scalar curvature. Now from (3.7) using (3.3), (3.8), (3.9), (3.10) and (3.11) we get

$$K[2m(2m+1) K \eta (V) \eta (W) - 2m k g(V, W) - 2m S(V, W) + + r g(V, W) - r \eta (V) \eta (W)] = 0.$$

Then either $\mathbf{R} = \mathbf{0}$ or

$$S(V, W) = \left[(2m+1) K - \frac{r}{2m} \right] \eta(V) \eta(W) + \left(\frac{r}{2m} - K \right) g(V, W) \quad (3.12)$$

in which case this means that the structure is η -Einstein. If k = 0, then from (2.4) we get

$$R(X, Y) \xi = 0. \tag{3.13}$$

But we know the following results :

Result 1 [²]. Let $M^{2m+1}(\phi, \eta, \xi, g)$ be a contact metric manifold with $R(X, Y) \xi=0$ for all vector fields X, Y. Then M^{2m+1} is locally the Riemannian product of a flat (m + 1)-dimensional manifold and *m*-dimensional manifold of positive curvature 4.

Result 2 [⁵]. Let M^{2m+1} be an η -Einstein contact metric manifold of dimension $2m + 1 \ge 5$. If ξ belongs to the k-nullity distribution, then K = 1 and the structure is Sasakian.

Result 3 [3]. Let $M^{2m+1}(\phi, \eta, \xi, g)$ be a Sasakian manifold satisfying $R(X, Y) \cdot \overline{C} = 0$. Then the manifold M^{2m+1} is locally isometric to $S^{2m+1}(1)$.

Hence from the above three results and (3.12), (3.13) we can state the following theorem :

CONTACT RIEMANNIAN MANIFOLDS SATISFYING $R(\xi, X)$. $\overline{C} = 0$ 27

Theorem 1. Let $M^{2m+1}(\phi, \eta, \xi, g)$ be a contact metric manifold with ξ belonging to the K-nullity distribution satisfying $R(\xi, X)$. $\overline{C} = 0$. Then either M^{2m+1} is locally the Riemannian product of a flat (m+1)-dimensional manifold and an *m*-dimensional manifold of positive curvature 4 or M^{2m+1} is locally isometric to S^{2m+1} (1).

Note: From (3.12) and Result 2 the theorem of [3] follows.

REFERENCES

[']	BLAIR, D.E.	:	Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics 509, Springer-Verlag, Berlin, 1976.
(')	BLAIR, D.E.	:	Two remarks on contact metric structures, Tohoku Math. J., 29 (1977), 319-324.
(']	DE, U.C. and GUHA, N.	:	Conharmonically recurrent Sasakian manifolds, to appear in Indian Journal of Mathematics, Vol. 2/3, 1992.
[*]	ISHII, Y.	:	On conharmonic transformations, Tensor, N.S., 7, 73 (1957).
[5]	KOOFOGIORGOS, T.	:	Contact metric manifolds, preprint.
[*]	PERRONE, D.	:	Contact Riemannian manifolds satisfying $R(X, \xi)$. $R = 0$, The Yokahama Mathematical Journal, 39 (1992), 141-149.
[']	TANNO, S.	:	Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J., 40 (1988), 441-448.