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K-CONTACT AND SASAKIAN MANIFOLD WITH CONSERVATIVE
PROJECTIVE CURVATURE TENSOR

U.C. DE - I.C. GHOSH
Department of Mathematics, University of Kalyani, Kalyani - 741235, West Bengal- INDIA

Summary : The object of this paper is to study a K~contact and Sasakian
manifold with div P=0 whére P is the projective curvature tfensor and ‘div’
denotes divergence.

KONSERVATIF PROJEKTIF EGRILIK TENSORUNE SAHIP
E-KONTAKT SASAKiI MANiFOLDU

Ozet : Bu caligmada, P projektif egrilik tensériinii ve ‘div’ diverjansi
giistermek {izere, div P = 0 koguluna uyan bir K-kontakt Sasaki manifoldu
incelenmektedir,

1. INTRODUCTION

Let (M", g) be a contact Riemannian manifold with contact form n, the
associated vector field &, (1 - 1)-tensor field ¢, and the associated Riemannian
metric g. If £ is a killing vector field, then M” is called a K-contact Riemannian
manifold [Y], [*)]. A K-contact Riemannian manifold is called Sasakian ['] if
and only if

Ve ) (=2, N E—n(X M

holds, where V denotes the operator of covariant differentiation with respect to g.
A Sasakian manifold is K-contact but not conversely. However a 3-dimensional
K-contact manifold is Sasakian. This paper deals with K-contact and Sasakian
manifolds in which projective curvature tensor P of type (1,3) is conservative [,
i.e. the divergence of P is zero. It is shown that P (£, X) £=0 for every vector
field X when such a manifold is K-contact and P (&, X} ¥ = 0 for every X and
Y when it is Sasakian. A projective symmetric Riemannian manifold [}, i.e. a
manifold in which VP = 0, is evidently a manifold in which the divergence of
P is zero. Finally, it is shown that P(X, Y)Y Z2 =0 for all X, ¥, Z, when a
K-contact Riemannian manifold is projective symmetric.
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2. PRELIMINARIES

Let R, S, r denote respectively the curvature tensor of type (1.3), the Ricci
tensor of type (0,2) and the scalar curvature of M”", It is known that in a contact
manifold M” the Riemannian metric may be so chosen that the following relations.
hold [3, 1% :

pE) =0 2.1)
nE =1 (2.2)
PX=—X+nX)E 23
g@X, 0Y)=g(X, ¥) - n(X) n(Y) 2.4)
and .

g€ X) =n(X) (2.5)
for any vector fields X, ¥. '

If M" is a K-contact Riemannian manifold, then besides (2.1), {2.2), (2.3),
(2.4) and (2.5) the following relations hold ['}, [}, [ :

Vib=—¢X (2.6)
S, E) =@m—1)nx) (2.7
gRE X) Y, 5} =g(X, Y) —n(X) n(Y) (2.8)
REX)E=—X+n(X)E 2.9)

and
Vx ) () =RE XY (2.10)

for any vector fields X, ¥.

Further, since & is a killing vector, § and r remain invariant under it, that is

L
— 85=0 2.11
: (2.11)
and
L
[ r:()’ 2.12
: _ (2.12)

where L denotes Lie derivation.

3. K-CONTACT RIEMANNIAN MANIFOLD SATISFYING DIV P =0

We have

PO, Y) Z=R(X, ¥) Z— —

S(v,z2) x-S, Z2)Yl. {31

n—1
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Let us suppose that in a K-coniact Riemannian manifold
Div P =0. ' (3.2)
Then  from (3.1) we get

| .
S (Vo $) (¥, 2) X — (3.3)

— (Vg 9) (X, 2) Y].

Ve P) (X, Y) Z=(Vy B) X, Y) Z—

Contraction of (3.3) gives

n—

L (xS (D)= (VS (K2 (4

Dive) (X, Y) Z=

From (3.2) and (3.4) we have

(Ve S) (¥, 2) — (V3 8) (X, Z) =O. @3:5)
From (2.11) we have
(Ve 8) (¥, Z) = — S(Vy §, Z) — S(Y, Vz &) (3.6)
and from (2.12) we have
dr (&) = 0. (3.7
Putting X =& in (3.5) we get
(Ve ) (¥, Z) — (Vy 8) (£, Z2) =0. (3-8)
In virtue of (2.6), (2.7), (3.6) and (3.8) we get
SPZ,Y)—@m—-DY @)+ @m—1)nlyZ)=0. (3.9

Puiting Z = ¢Z in (3.9) we get
SHZ,Y)—(m—DYNPZ)+E—DnVydZ)—0.  (3.10)
Since & is killing vector, g (¢ X, £)=0. Hence using (2.3) and (2.7), the equation
(3.10) takes the form
S@ZY)=@—1) (@) 0 (V) + 0y ¢ Z). @3.11)

Bui (Vy ¢ D) =g(Vp 2, E)=g(R(E, ¥) Z,E). Therefore (3.11) can be
wriiten as

SZ V)=(n—1) g(Z ¥) [by @3] (3.12)
Hence in viriue of (3.12) we get
P(X,Y) Z=R(X,Y) Z— {g(¥, Z) X— g(X, Z) Y}. (3.13)

Putiing X = Z = £ in (3.13), we have

PENE=REDNE-{g(T.0E g€ 0T}
=0 [by (2.2), (2.5) and (2.9)].

(3.14)
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Thus P&, X) £ =0 for every X [written X for ¥]. Hence from (3.12) and
(3.14) we can state the following theorem:

Theorem 1. If in a K-contact Riemannian manifold M™ (r > 2) the relation
Div P = 0 holds, then the manifold is an Einstein manifold and P&, X) £=0
for every X.

4. SASAKIAN MANIFOLD SATISFYING DIV 2 =10

We now consider a Sasakian manifold satisfying Div £ = 0. Since the
manifold is Sasakian, from (1) we have

Vyd) M =X, D E-n(N)X
Hence, by (2.10), we get
REX) Y=g, N)E—n(1)X 1)
Now by putting X =E, Y=X and Z=1Y in (3.13) we have
PEX)Y=REXN Y- {gX, NE—gE V) X} =
=REX)Y—gX, NNE+ ()X =
=g, NE—()X—2X, V) E+ (X)X =0 [by (4]
Thus P (£, X) Y=0 for every X, ¥, Hence we can state the following theorem:

Theorem 2. If a Sasakian manifold M"(r > 2) satisfies Div P = 0, then
PE,X) Y=0 for every X, Y.

5. PROJECTIVE SYMMETRIC K-CONTACT RIEMANNIAN MANIFOLD

For a projective symmetric Riemannian manifold we have V P = 0. Hence
Div P = 0. Thus in a projective symmetric K-contact Riemannian manifold the
relation (3.13) holds. It follows from (3.13) that

VP )X, V) Z=(Vy B (X, V) Z (5.1
Since VP =0, it follows from (5.1) that
YVR=0. (5.2)

That is, the manifold is locally symmetric. But it is known that ¢l a locally
symmetric K-contact Riemannian manifold has constant curvature 1. Hence

RX,Y) Z=g(Y.Z) X—g (X, D) Y. (5.3)
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Therefore from (3.13) it follows that P(X, ¥) Z =0 for all X, ¥, Z. Hence we
can state the following theorem:

'
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Theorem 3. If M"(#n > 2) is a K-contact Riemannian manifold satisfying
VP =0, then P(X, ¥Y) Z =0 for every X, ¥, Z.
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