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Summary : Effective mathematical method for solution of nonsta-
- ' - tionary dynamical problems of linear anisotropic viscoelasticity at arbitrary 

difference and nondifference hereditary kernels is developed in the paper. 
In case when theratio of kernels of relaxation is independent on time, the 
known theorems are generalized and the new theorems, by means of which 
the solution of fundemental dynamical problems of anisotropic inhomogene-_ 
ous viscoelasticity are reduced to solutions of corresponding problems of 

' elastodynamics and to solutions of some one-dimensional mixed value prob­
lems for integro-differential equation in partial derivatives hyperbolic type, 
are proved. The solutions of all necessary problems for arbitrary hereditary 
kernels are constructed. These results represent the principle of correspond­
ence of nonstationary dynamical problems solutions of elasticity and vis­
coelasticity theories in originals. 

DİNAMİK VİSKOZESNEKLİK P R O B L E M L E R İ N İ N Ç Ö Z Ü M Ü İLE İLGİLİ 
BİR. MATEMATİKSEL Y Ö N T E M HAKKINDA . 

Özet : Bu çalışmada, keyfi çekirdekli anizotrop. viskozesnek cisimler 
kuramının stasyoner olmayan dinamik problemlerinin analitik çözüm yön­
temi verilmektedir. 

1. 

Let us consider the state equations of anisotropic linear viscoelastic medium 

i 

o 
(D 

where Rtju(x) are known functions of three independent variables x i " , x 2 , x i , 
x — (.Xj , x 2 , x 3 ) , r is kernel of relaxation, a y and ê ; are components of stress 
and strain tensors. In. response to these relations and the dependence of defor­
mations with the displacement 
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2 \ Qxj 

into the equations of motions in the stress 

we obtain the equations of motion of inhomogeneous anisotropic viscoelastic 
medium in the displacement written in the vector form 

L(u)-J r ( f , $ ) Z ( o ) r f 5 = P ~ f , (2) 

o 

where u (x, t) = {«, , u2, « 3 } is a displacement vector, p (x) is density, L is an 
operator of the inhomogeneous anisotropic elastic medium. I n isotropic case 

L (u) = (A. + 2u) V (V, u) - n [V, [V, u]] + VX (V,u) + 2 (Vu, V) u + [VLI , [V, uj] f 

where X(x) and \i(x) are Lame's elastic coefficients, V is Hamiltonian operator. 

Assume that a viscoelastic body is bounded by the surface S. We shall 
consider the motion of this body when on the surface 5" is given either the 
force or the displacement, i.e. 

I 
^mjnj\s^Llm(a)\s-f r(t,QLlm(u)d^\s=fm(x)\sam(t) (i,j,m=\,2,3\ (3) 

o 
= (x)\sbm(t), (4) 

where L i m is a linearly differential operator corresponding to the equations o f 
state of anisotropic inhomogeneous elastic medium, nm are the projections of the 
outward unit normal vector to S (here by the index m is not summed). 

I t is required to find « (x , t) from the equation of motion (2) and one 
of the boundary conditions (3) and (4) with the inital conditions 

3 U 0. (5) 
= 0 ' a, 

i=0 of 
i=0 

For the solution of these problems i t is necessary to have the solutions o f 
some auxiliary problems. 

The first auxiliary problem is the following: 

L(»i) = P~^r > ^t = {un,ut2tut3}tul = 0 t ^ - = 0s T = 0, (6) 

W u , ) | 5 = / m ( * ) | a 5 M , 8 ( T ) , (7) 

where 8 (x) is the Dirac function, 8 m / are the Kronecker symbols. 
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The second auxiliary problem is the previous problem with the last boundary 
condition substituted to 

Umi Is = Fm (x) \ s 5 m / 5 ( T ) . 

As is seen these problems are the transient dynamical problems for elastic 
medium subjected to the action of impulsive influence. 

The third auxiliary problem is the one-dimensional problem for the homo­
geneous viscoelastic medium 

8 T 2 J V V 3x 2 dt2 

o (8) 

w,\ = 0, = 0, 
f=0: 

w 

1=0 St 

• i ( i , o ) - / r ( i ^ ) W i g f o ) ^ = fli(0; * , - > ( ) , * - » ~ . ' (9) 

The fourth auxiliary problem is the previous problem with the last condition 
substituted to wt (t, 0) = bt {t). 

2. RESULTS A N D DISCUSSION 

Theoremt 1. The solution of the problem (2), (3), (5) is 
CO 

u (x, t) = j u] (x, T ) Wu (t, T ) ch 0' = 1, 2, 3), (10) 
0 

where u! (x, T ) and wu (t, T ) are solutions of first and third auxiliary problems. 

Proof. Substituting (10) in (2), and assuming the possibility of twice 
differentiation with respect to co-ordinates under the integral sign, we obtain 

to t CO 

f L (uf (x, T ) ) Wu (t, T ) rfx - fT{t,l)fL (u) (x, t ) ) w„ & x) rfx rf£ = 

0 0 0 

0 

Since the function U(i satisfies the equation (6) the preceding equation 
can be written in the form 
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f 3 2 u r n 2 n 

' dt
2 ax

-

Noting that 

/ tfu)(x,x) f d2wu(t,x) 
y Wi; (/, T ) • —2 dx = J nj (x, x) — d-r, 
0 0 

which is obtained by integrating the first integral by parts considering the 
conditions of boundedness 

3ui dwu 

Wu -—— — u; — • • -> 0 when T <=o, 
3T ' 3-r 

we f ind 

/ ' r i) 2u;,.. /* a 2 u>../71 -rl 3 2W.. 1 
i*T = 0. 

J ' - L 3 f a J 3 T 2 . 3 i 2 

0 0 

On the basis of (8), the last equation is satisfied identically. 

The initial conditions are satisfied on the basis of initial conditions on. the 
function wt (t, 0). 

Let us show that, the boundary condition is satisfied too. Substituting (10) 
in (3), we obtain. 

CO / C O 

/ L h n (nj) \ s wu (i, x) dx - jT (t, Q f L l m (of) \ s wu & T ) dx d% =fm (x) \ s am (*). 
0 0 0 

According to the condition (7) this equation may be written in the form 

fm (*) \ s [wlm {U 0) - fr (/, Ç) wlm g, 0) d(j =fm (x) \ s am ( i ) . 
o 

According to the condition (9) the last equation is satisfied identically. 

The theorem is proved. 

Theorem 2. The solution of the problem (2), (4), (5) is 

CO 

M (x, t) = fu* (x, x) w2i (t, T ) dx (i = 1, 2, 3), (11). 
0 

where a2 and w2i are solutions of second and fourth auxiliary problems. 
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This theorem is proved as the previous. 

I f the displacements are given over the part of the surface S2 and the' 
externel forces over the remainder Sl , the solution of the considered problem 
is given by the sum of the formulas (10) and (11), where the function fm{x) 
is given on Sx and F.m (x) is on S2. 

In witness of these theorems assignment of the "boundary conditions is 
compulsory in the form of the production of two functions, one of which 
depends on the time, and the others on the space co-ordinates.' On the contrary 
we shall act as following: Assume that on the part Si of the surface the 
stressvector F = f (.v, t) and on the other part S2 the displacement vector 
u = F ( x , t) is given. Considering that / and F are twice differentiable functions 
we expand them to series 

p k = 2 f ' { x ) k a i ( 0 ' ' a ' * = 2 F ' - ( x ) ' * b i ( ° - ( 1 2 ) 

Theorem 3. The solution of the problem (2), (5), (12) is 

u(x, o = 2 / w (*' ^ w » f c ^ + u ? (x> t > ^(^yi > (l3> 
i 0 

where vS , uf, wti and W21 are solutions of the first, second, third and fourth 
auxiliary problems correspondingly. 

The formulas (10), (11) and (13) are principles of correspondence of the 
originals of solution of nonstationary dynamical problems for elastic and visco-
elastic mediums. 

3. THE SOLUTIONS OF ONE-DIMENSIONAL A U X I L I A R Y 
PROBLEMS 

The solutions of these problems wil l be constructed for difference function 
of kernel relaxation. Then it is not difficult to see that the solutions of these 
problems are obtained from the solution of the next problem of impact to the 
thin semiinfinite viscoelastic rod 

J dx2 C2 dt2 

0 

0, — - 0 when t = 0; (14) 
dt 

G (0, t) --- a 0 H{i); CT —> 0 when x -» <*> , 

d2u 

dx2 

u = 
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where u(x, r) is displacement, a(x, t) is stress, H{i) is Heaviside's unit function 
and c is velocity of wave. 

With the help of the Laplace integral transformation on the time we get the 
following solution of this problem in representation 

CT (x, p) = exp xp 
/ v . 1 

c 
(15) 

where the line above the functions shows their representations, p is parameter 
of transformation. 

The final solution is connected with the calculation of the original with the 
use of Mellin formula 

a (x, 0 = — / e^.o (x, p) dp. 
2ni J 

a.—jo 

I n case of simple relations between strain and stress this integral is calculated. 
Solutions of many problems are connected with this case from which we can 
show the works [ 3 , 3 ~ 6 ] . The contour integral used here becomes very difficult 
even in case of the smallest complications depending F (p) on p. Therefore 
the method of contour integration becomes unfit for more real relations be­
tween stresses and strains. I t is explained by this that to last time numerous 
practically important problems for real bodies were not investigated. Here we 
reduce a new solution method of indicated problems developed in [ 2 , 7 ] which 
completely excludes the named difficulties. 

As R e ( ^ / \ / l — r ) > 0, the formula (15) may be presented in the form 

o = ^ (1 - F) / d k . (16) 
up J p2 -\-X2 — X2T 

Considering the inequality | p2 Tj(X2 + p2) (1 — T) | < 1, which is valed for 
great values \p \, the integrand expression in (16) is expanded on series 

a « * 5 L f f (~P2T? _ X sin (**-) dX . (17) 
Tzp J Z , (X2 + p2)'^ (1 — T)" { c J 

0 n=0 

As integrand series uniformly converges in 0 < X < °° , and the terms of series 
are continuous functions X in indicated domain, then calculating the integrals and 
taking into account F ( l — F ) - 1 = K, where K(p) is the description of creep­
ing kernel K{t), we f ind 
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oiXtp)=^-e < [ i + 2 - k r 2 r ( ^ i ( v j • (18) 

« = 0 k=0 

Considering the representation in the series with Mcdonald's function 
K _J__(z) the formula (18) may be written in more simple form 

" 2 

5 f ^ , - ^ + N / 5 ^ 2 J r ( - ^ ) \ _ . ( ^ ) . 

I t is easy to establish that the ratio of absolute values of terms of series 
(18) | an+1 / an \ for all x and great \p \ is smaller than a unit, i.e. series (18) 
is absolutely convergent for great \p \ uniformly with respect to xe[0,oo). Let 
us estimate the remainder term of this series. From (17) we obtain for the 
remainder term Rn+1 the expression 

0 m=n+l 

Transforming i t by the following way 

0 «1=0 

and substituting there the sum of integrand series, we find 

2 rr — C Xsm(-^-\dX 
R n + i = ^ ( - ~ P 2 K ) ^ j \ c ) 

0 (^2 + P2)n+1 (^2 + P2 + P2 K) 

As it is seen, the remainder term has the sign of the first rejected term of the 
series. I t is easy to establish the inequality 

{X2 + p2)"+ï (X1 + p2 - f p2 K 
< / • 2 i « + f ) ( X , 4 + r 4 ) - l - V 

where r = \p\. Considering this in expression R„+ï and calculating the integral, 
we find 

\RR+1\< \K\«+i\o0\l\p\. 

The first term of formula (18) is the description of solution of corresponding 
problem for elastic rod and the others arise as the expence of viscoelastic property 
of the material. In [ 7] formula (18) is obtained by another way. I t may be 



54 Musa H. ILYASOV 

obtained also by expanding on series the exponent in (15) and by applying 
to every term of series the formula for fractional degree of operators. 

The series in formula (18) converges absolutely and its terms are continuous 
functions of. parameter />, therefore one can calculate termwise the inverse trans­
formation; as a result we have 

H— 1 

<y(Xy t)=aQff[t 
z l * 22"n\Z_y m\(n—m— 1)! \ c j 

(19) 

where Kn {t) are iterated kernels 

K;(t) = K(t), KnW &™ (0 = ^ ^ ( 0 -
o 

Theorem 4. formula (19) is the prescise solution of problem (14) for any 
difference kernel T (t — i ) . ,;, 

The theorem is proved by direct substitution. 

E 
Let K{t) = — H ( t ) , where £ is a Young modulus, LI is a coefficient of 

V-
viscosity. Then formula (19) is reduced to. the form 

o(x, t)=a0H[t~ — 
Ex 
2 u c 

s/ 
rz2~x2'c 2 

2\ic 
X/c 

dx 
x c 

, (20) 

where / v (z) is a modified Bessel function: 

This is a known solution for Maxwell model [ 3] . 

Then K(t) = [K0 + $ (t)], where K0^0,®(0)=0. Formula (19) is reduced 
to the form 

o(x , 0 = c r 0 Hit— - ^ 2c 

K, 
K ^ h ^ S i ^ - X

2
^ 

x/c 

dx 

. 1 

2m m\ 
<p,f, (*, 0 (21) 
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I 

fn,„(t-
i)Fm(x,i)dx, 1 1 , ( 0 = -

d® (0 
dt 

nM(o - n, (o) n^, (0 + / nm_, ••(/ - T ) rfiL/Cc), 

1—m KQ I 2 \'«—1 

e 2 i 2 ^ 2 /, 

I n [ 7] i t is proved that formula (21) is a precise solution of formulated 
problem for indicated creeping kernel, absolutely converging for any finite values 
of time. This solution generalizes the results of problem [ 6 ] , which are found 
approximately. 

Let K(t) be an Abel kernel K(t) = At~a , A = const > 0, 0 < a < 1. Then 
formula (19) has the form 

-^')-«' ."('-f)i i -f( '-7r + " : + 

+ 

X 

[-AT{\-a)Y 
22nn\ 

2x 

n—] 

A=0 

( 2 » - f c - 2 ) l 

7c! (n~k~\)\ 
- X (22) 

x \ ( l - a ) n - * - l 

[ r ( « - B a - f e ) ] - » ( / - — j -r - y 

Here all terms are crossed out with entire negatives (1 — a) n — k and F(z) is 
Euler's gamma function. 

For small t — xjc we obtain from (22) 

x o(x,t)~o0H{t- — 
c I n\ T (1 — na) 

1 Ar(l-a)x (f 

2c 

Here, taking into account the formula 

1 _ J _ 
T(z) _

 2TC 

where the contour y goes around the positive semi-axis, we obtain 

x \ i 

Introducing the notations 
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(-çr1 =/ft),11 - - Y = x, ̂ r ( 1 a ) * (- %f+ i = S©, 
c / 2c X 

the last formula is written in the form 

x 
CT(X, t) « %H\t -

c I 2TC 

Since for small t—xjc the parameter X, becomes great, then for calculation o f 
integral one can use a saddle-point method. Without reducing a standard scheme 
of this method we shall write the principal term of asymptotic expansion 

i a(x, t) « aQH\t~ — ) [ 2 i î ( l - a ) ] - f / 2 2c 

A r (1 —a) ax 
2 ( l - « ) ( , | 2 < l - « > x 

X exp 
1 - a A r (1 — a) ax 

2c 
1—a ( f - y ) x > 0 - (23) 

Curved dependences (23) are reduced in fig. 1-3. From these graphs it follows 
that the solution in front of the wave has no jump, i.e. in spite of the form 

Fig. 1. A = 0.8 . 103 s1/*, c — 3.3 .10 3 m/s, a=0.5. The fiist curve corresponds to x=0.1 
the second 0.25 m, the third 0.5 m. 

of boundary condition the front of strongdiscontinuity waves does not exist. I t 
is easy to show that this is connected with infinite growth of dissipation func­
tion for t — xjc -» 0. With receding from the end x — 0 the length of region 
on which the dissipation function is infinity increases. Fig. 2 illustrates the i n ­
fluence of parameter of A kernel on dependence on solution from difference. 
t — xjc at a fixed point x = 0.25 m. I t is seen, that the more A, the stronger 
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A Z ?> t n o "•i 

Fig. 2. a = 0.3, x = 0.25 m. The firstcurve A = 400 , the second 800 jV* the third 
1600 . 

of the aboveindicated effect appears. I n Fig. 3 the influences of parameter a 
on the solution are reduced. The nearer a to a unit the steepness of the wave 
front is eroded; at convergence of a to zero the front becomes steeper (for a—0 
Maxwell's model is obtained). 

^ i f> % 

Fig. 3. A = 800 s*/', x = 0.25 m. The first curve cc >= 0.3, the second 0.5, the third 0.7. 

Formula (23) is obtained by another method in £8]. 

Finally note that by means of formula (19) under corresponding choice of 
kernel Kit), initial and boundary conditions, one can obtain all known solutions 
of one-dimensional problems obtained by other authors. 
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Let us introduce the denotation w {t, -c) = a (x, t)\c0, x = T , C =- 1. Then 
the solution of the fourth auxiliary problem for difference relaxation kernel is 
written in the form 

I 

w, (t, T ) = J w (t — s, t ) d b, (s). 
0 

I f in this formula the function bi (t) is substituted for 

o 

then one can obtain the solution of the third auxiliary problem. 
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