SOME STATIC AND TIME DEPENDENT SOLUTIONS OF ZERO
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The present authors have taken up investigation of some static and time
dependent solutions of ’

GiJ:.—RiJ—?g,-JR :—‘STET;J;
and '

for the case of a metric used by Kompaneeis,

1. Imtroduction. Recently the solutions of Einstein’s field equations con-
taining zero-mass meson fields have been subject to investigation by various
authors. In particular, Janis, Newman and Winicour ['] considered spherically
symmeiric solution of these field equations with a view to preseni an exiension
of Israel’s [*] idea of singular eventi horizons. Buchdahl [*] has constructed re-
ciprocal static solutions for axially and spherically symmetric fields and studied
the physical interpretation of these solutions. Penny ['] and Gautreau [*] have
furiher extended the siudy io the case of axially symmetric static fields and have
found that the scalar field obeys a flai space Laplace equation such that a large
class of solutions exist. Exact cylindrical wave solutions of Einstein’s field equa-
tions containing zero-rest-mass scalar fields have been discussed by Lai and
Singh [6]. Recenily plane symmetric zero-mass meson solutions of Einstein’s
equations have been presented by Patel [7].

The field equations of general relativity containing zero-mass meson fields
are given by .

GUERIJW-;_gUR: ‘*81TTU, (1.1)

giv;=0, ' (1.2)

where ¥V is the scalar field having zero-rest-mass and T};,

the energy momen-
tum tensor of this field is given by
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Ty = VaVy=8aVa Vin g™ 13
A semicolon indicates covariant differentiation and a comma followed by an
index ¢ denotes partial differentiation with respect to x’. The present authors
in this paper have taken up investigation of some static and time dependent so-
lutions of (1.1) and (1.2) for the case of a metric used by Kompaneets [*].-Our
investigation also includes a static solution of coupled Einstein-Maxwell-scalar
fields. The solutions in the static case have been shown to exhibit the resulis ob-
tained by Patel [7] and Taub [*] as particular cases. As regards the time depend-
ent case, a method has been given by which one can obtain, under certain con-
ditions, solutions of the field equations (1.1) and (1.2) from known cylindrically
symmetric solutions of the empty space field equations of Einstein’s theory of
gravitation, Ii.is also found that one of the solutions of the zero-mass meson
field equations is non singular in the sense of Bonnor.

2. Metric and the field equations. We consider a space time whose geometry
is defined by the metric [8]

ds® = — A@dx'Y: — Cdx?? — D3 — 2Bdx? d® + A(dxY, (2.1

where A, B, C, D are functions of x! and x*! only and x*,i=1,2,3, denote
space coordinates whereas x? corresponds to time coordinate ¢ If =0, (2.1)
corresponds to the cylindrically symmetric Einstein-Rosen metric and if in
addition C = D, it refers to plane symmetric metric of Taub [7].

The non vanishing components of the Ricci tensor Ry corresponding to
(2.1) are found to have the following values :

R, =0, 20—, /402 (L, — L, )H(BP—C; D) 2a—(4, a,+ 4, 0,) /440,
Ry=0,/20—02 /40> —(L,;— L)+ (B —C, D))[20—(4, a,-+ 4, 0,)/440,
Ry, = ay,/40 — oya,/da® - 2B, B, — C} D, — C; D)4a — (4,0, 1 A0,)/44a,
Ry = A (C;a, P), Ry == (24A) 1 (D; o, P), Ry, = (24)71 (B; 0, P), -
where the notations used are as follows :
' (C;a,P)=[Cp, + Cpy — Qo)1 {Cyoy — Cyt, + 2CP} , ... etc,
P=B2—B2—-(C,D,—C, D),

(2.2)

and we have used

A=t a=(CD—BY. 2.3
A simple calculation shows that (1.1) together with (1.3) yields, on contraction,
R=—8aV, ¥V,

consequently (1.1) takes the form
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Ry;=—8V,V,. 24

Taking the scalar field ¥ as a function of x! and x* and using (2.1), equations
(1.2) and (2.4) simplify to

Vip— Vs + (0,/20) V) — (0,/20) ¥, =0, (2.5)
Ryy=~8nV?, Ry=—8nV?, Ry=—8xaV, V,, Ry = Ry = Ry; =0, (2.6)

where ¥, = ¥V, and the lower suffixes 1 and 4 after unknown functions corre-

spond to partial differentiation with regard to xt and x* respectively. Using (2.6),
multiplying R,, by D, R,,; by C and R,, by - 2B and adding, in view of a being
expressed as in (2.3), we obtain

(Va), — (Vo) = 0. 2.7

3. A static solution. In this section we restrict ourselves to the static case.
Thus assuming that the unknown functions involved in the above equations are
independent of x* and depend on x! only and substituting the values of R;;
from (2.2), equations (2.5), (2.6) finally simplify to

V' — v o' 20=0,L" — L'o’[20. — (B — C'D)[20 = — 8a V"%,

L'+ L0 f20=0,C"—Ca'f20— (Cla) 0 =0, D — D'a’/2a — (Dfu) 0 = 0,
| ' (3.1
B' — B'a'{20 — (Bja) 0 =0,

where Q = (B2 — C'D") and a dash overhead indicates differentiation with
respect to x'.

Equation (2.7) for the static case yields a solution
a = (kx' + k) (3.2)
On the other hand equations (3.1) by virtue of (3.2) exhibit on integration
V= (k/kplog (e, x' + k) + &, , L = (ksthey) log (ky xt -+ k) + ki,
Ce* =D e = (k x' 4 ky) Cosh {(k;/ky) log { (k) x' + ky)}, (3.3)
B = (k, x' + k,) Sinh {(k;/k,) log (k, x' + k)},

where &k and all ks are constants of integration and ky, k,, ks and %; are re-
lated as

K24 4k ks = 16mk? + k2, ki # 0. (.4)

Thus (3.3) and (3.4) along with (2.1) and (2.3) chgract_erize a static solution of
(1.1) and (1.2). However, on analyzing this solution following interesting cases

- arise,
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() If &y = k; =0, (3.3) reveals that B =0, C = ¢** D which by a suitable
coordinate transformation can be reduced to €' = D. In this case the metric
(2.1) transforms to static plane symmetric metric of Taub, and the correspond-
ing solution is given by (2.1}, where

L=1/21log A = (ks/k)) log (ky xt -+ k) + K,

_ (3.5a)
C=D=(x"+k) B=0,
and the scalar field ¥V is expressed in the form
V —\/lk, + dkg/lomk, log (kx* + k) + &, (3.5b)

Thus (3.5a) and (3.5b), together with the metric (2.1), on proper identification
with static plane symmetric metric of Taub, describe the solution of zero-mass
meson fields presented by Patel [7].

@y If k, =k =ky;=ky =0, ,in view of (3.3), (3.4} and the discussions
held in (i), we have Jis/k; = — 1 /4, so that the corresponding solution .is ob-
tained as

A= (kx4 k) '?, C=D=(kx'+ k), B=0. (3.6)

Thus the metric (2.1) together with (3._6) characterizes an empty space-time dis-
cussed by Taub [?].

4, A static solution of the coupled Einstein-Maxwell equations. Following
the method described by Pandey ['°], we can construct a solution of coupled
Einstein-Maxwell equations containing zero-mass meson fields from the solu-
tions we have obtained in Sec. 3. Pandey has shown that if a solution of the field
equations containing zero-mass meson field is given by the metric

ds? == e (dx*V — ¥ by, dx’ dx’ (i,j=1273), @.1n
then the metric

ds? = e (dx')? — 2 by dx' dx/ ' 4.2)
where v, w and h;; are functions of x* and e” =} Sech v, A being a constant, de-
scribes a static solution of the field equations representing coupled gravitational,
electromagnetic and zero-mass meson fields, Also the electromagnetic field

tensor F;; is given by
F,;=1U;, where U =) Tanhv. - 4.3)

"This electromagnetic field is nonvanishing.

It is easy to witness that the metric (2.1) in view of (2.3) can be expressed
as

dst = @ (dx*V - e 2L [eh(dx) + 2L {C(dx®)® +

4.4
+ 2Bdx*dx3 4+ D (dx*)}].
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As already discussed in Sec. 3, the metric (4.4) with L, B, C, D and ¥ given
by (3.3) and (3.4) describes a static solution of the zero-mass meson field equa-
tions and is of the form (4.1). Therefore applying the technique mentioned
above, we can obtain a solution of the coupled Einstein-Maxwell equations. The
geometry of the solution thus obtained is described by the metric

ds? — ez'"(dx4)2 — 2w [e“L(dx‘)z +
+ 22 {C(dx?* + 2Bdx? dx* + D(dx*V}],

where e* =4 Sech L and L, B, C, D and ¥ are given by (3.3) and (3.4). It is
evident from (4.3) that the only surviving component of F; is obtained as

“53)

 Fy = (M tanh L) ; = Meg (b x! + k)7
x Sech? {ks/k, log (kk,x* + k) + kg}.-
If we take k, = &; =0 in (3.3), (4.5) and (4.6), we easily observe in the light
of the discussion held in (i) Sec. 3, that the solution of the coupled Einstein-
Maxwell fields is given by the metric

@9

ds? = @ (dxdf — e [HHdxF + M (@22 @], @)
where
e¥ =\ Sech L, L = ksfk; log (kyx! + k) + kg, C = D = ™M = (kx! + k),
_ (4.8)

V = Iy fk, loglegxt 1 k), Fyy = Meslhx + k) 1
% Sech?® {(ks/k,) log (k,x' + ky) + kg}.

Thus (4.7), (4.8) and (4.9) describe the static plane symmetric solution of the
coupled Einsteih-Maxwell equations obtained by Patel [7].

(4.9)

5. Some time dependent solutions of (1.1) and (1.2). We. now consider the
equations (2.5) - (2.7) when 4, B, C, D, and ¥ are functions of x! and x* Fol-
lowing the method used by Einstein-Rosen [!!] we choose a coordinate system
given by ' ' V

F=FGLxi—1,4 and ¥ —=x,j=23 .1
It is easy to see that the metric (2.1) remains form' invariant under the transfor-
mation (5.1)if %! and ** satisfy
a) 3% — 9,7,

b) 8,% = 8,x" (@, = a/ox)

(5.2)

or that x' may be choosen arbitrarily to satisfy
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ux 04X '=o, ' (5.3)

whereas x* is to be determined from (5.2). On the other hand « must satisfy (2.7).
Hence, comparing (2.7) with (5.3), we can take :

Va=7%" (5.4)
Then X' is obtained from (5.1).

Thus there exists a transformation (5.1) associated with (5.2) and (5.4) for
which the metric (2.1) readjusts to

ds? = — A (dx")? — C (dx2)? — D(dx®?* — 2Bdx* dx® + A d5x*?, (5.5)

where A = A4 [(3,%P — (6154)2]. Consequently equations (2.5)-(2.7) with R;;
given by (2.2) suffer only in 4 being replaced by A, as a result L, in view of
(2.3) being changed to L = 1/2 log A. Therefore using (5.4) equations (2.5)-(2.7)
in the new coordinate system after little simplification reduce to (omlttmg bars
now for the sake of simplicity)

Vi — Vg + Viixt =0, (5.6)
YL — @Y 2 B2+ B2 —CD, — CD)=4n (V2 + V.9, .7
YL, — (2D (2B, B, — C\D, — C, D) = 8aV, V,, (5.8)
(C;P)=(D;P)=(B;P)=0, (5.9

where we have used the notations as follows :
Y;P)=[Y,, — Yyu— Y/x* —Y/(x)*P]; P=(B2—B?— CD, + c,D),

and the suffixes 1.and 4 correspond to partial differentiation with respect to new
x! and x* coordinates. First we solve the three equations given by (5.9). Thus
taking
B = (CD — (x")'~, S (5.10)

as obtained from (2.3) and (5.4) and introducing two new variables given by

6= C(CD — (Y12, § = D (CD — (x")) 172, (5.11)
the equations (5.9) resume the form
O — Oy + 0yfx! — (9'5 - ‘1)_1 [o {0y 6y — 0,8, + 8‘ (0';2‘“ )] =0, (5.12)
Oy — Cg +8/x' — (08—~ 1) [6(0;8, —0,8)+0(B2—8H=0.

Equations (5.12) correspond to two non-linear interacting cylindrical waves.
It is difficult to get the most general solution of the equation (5.12). However
we make some simplifying assumptions. As such we assume that

o =" f(y),d=ePry), (5.13)

where B is a constant and vy is a function satisfying
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Vi — Yy Wy /xt = 0. . (5.14)
Equations (5.12) in view of (5.13) and (5.14) reduce to _
" =207 — DI — v =0, (5.15)

where a dash overhead denotes differentiation with respect to \p In view of (5.15)
we have two cases :

a) vy —wy’=0 or b) fM—20I(f-1D=0. (5.16)
By inspecting (5.16) a) it is evident that y is function of (x! — x% or (x! 4 x%),
which in combination with (5 14) Imphes that Yy is a constant. This is a trivial
case. '

On the other hand (5.16) b) on integration vields f—= Coth (Kvy), where
K is a constant. Consequently (5.10), (5.11) and (5.13) in this case present the
‘values of B, €, P in the form

C = x! ¢® Cosh (Kvy), D = x! ¢ Cosh (Ky) , B = x! Sinh (K\p), (5.17)

where v is given by (5.14). Applying (5.17) two of the remaining equations, i.e.
(5.7) and (5.8) transform to

Ly = (B4 X" (y> + wd) + 4n T+ VH—1/4 (xl)_

(5.18)
L= () x* vy oy, + 8nxt ¥, V.

Equations (5.6) and (5.14) which determine ¥ and y respectively, serve as
the integrability condition of (5.18).

There are infinite number of possible combinations of ¥ and v that can
be used io integrate the equation (5.18) and thus to generate a solution of the
zero-mass meson field equation. However, if we restrict ourselves to the case
when ¥ and y are functionally related then (5.6) and (5.14) yield

y=al+b, : : (5.19)

where a and b are constants. In view of (5.19) equation (5.14) reduces to (5.6)
which determines the form of the scalar field V. Now making the substitution

L4 (/4 logxl — M, and V—0/d, (5.20)

where d?= (Ka?/2 4 8x)is a constant, equation (5.6) and (5.18) resume the form
8, — By + 6;/x" =0, .21

M, ={/2)x* 072 + 86, ‘ (5.22)

M,=x'9,8,. ' (5.23)

The integrability condition of (5.22) and (5.23) is satisfied by virtue of (5.21).
Hence whenever v is known from (5.21), ¥ is determined from (5.20), B, C, D
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and 1. are obtained from (5.17), (5.20), (5.22) and (5.23) in terms of v, which
can be written in the form

v =(a/ VK@) F8n) 6 + b, (5.24)
where 0 is given by (5.21). -
Consider nowl the cylindrically symn;etric EinstéimRoseh metric [Y]
ds? = M=% [(dx*)? — (dx')?] — (x")? &7 (dx?) — & (dx®)?, (5.25)

where M and 0 are functions of x' and x* x' (f=1,2,3,4) correspond to r,
¢, z,t. The empty space field equations. of Einstein’s theory corresponding to
(5.25) reduce to (5.21), (5.22) and (5.23). Thus we established the following
result :

“For every solution of (5.21) - (5.23) corresponding to the Finstein-Rosen
metric (5.25) and representing empty space-time in Einstein’s theory of gravi-
tation, we have a solution for a more general case given by (2.1), (5.17), (5.20),
(5.24), 8 and M remaining the same, which represent coupled gravitational and
zero-mass meson fields.

6. A non-singular selution of (1.1) and (1.2). Einstein and Rosen ["] and
Rosen ['2] have obtained solutions of the wave equations of the type (5.21) cor-
responding to progressive or stationary gravitational waves. These solutions
contain singularity along the axis of z, presumably representmg the source of
the gravitational waves. Later Bonnor [**] obtained a non-singular solution
of (5.21) by adopting the procedure applied by Synge [**]. Bonnor has shown
that equations (5.21) - (5.23) have a non—smgular solution given by

0— 2s/2c(p+\/p T2+ e,
M= —2e2 (R (p* = ¢ (p* + g2 + (6.1)
+ (e’ [{(x*)z (Y — m?} (P + g2 2 + 1],

where p = (x> — (x%? + m2 g = 2w, ¢ and m bemg arbltrary constants.
Therefore, correspondlng to a non-singular solution of Einstein’s empty space
field equations given by (5.25) and (6.1), we have a solution for the more gen-
eral case given by (2.1), (5.17), (5.19), (5.20) and (6.1), which is also non-singular
in the sense of Bonmnor [V].
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i
1)y 81 R =3y

gl V=0

denklemlerinin, Kompaneets tarafindan kullanilan bir metrik altinda istik-
rarli ve zamana baglt bazi ¢bzlmleri incelenmektedir.




