PROJECTIVE AFFINE MOTION IN A PRF,-SPACE, IV

A . KUMAR

In this paper an infinitesimal special projective affine motion in a
PRF,-space is studied.

1. Introduction. Let us consider an n-dimensional affinely connected and
non flat Finsler space F,[']" having symmetric Berwald’s connection coefficient
Gy (x, X). The covariant derivative of any tensor field T%;(x, ¥) in the sense
of Berwald with respect to x* is given by -

Tij(k} = ak' Tij - am Tl..f Gm'rk xY + Tsj Gisk - Ti.s‘ ffk - (ll)
The commutation formula involving the above covariant derivative is
given by
v 2 Tifi(h) Ul — T v Tij i Ylu‘: + T H i.mk — Tfa ey, 9, - (1)
where

iy G, 2YE0 2 {8y, Gy — Gl Gy + Gy Gy} (1.3)

is called Berwald’s curvature tensor field and satisfies the following relation [']:

Hfhii = H:’;_i . (1.4
Hflrfk + H[J'Ich + Hikkl‘ =0 (15)

and
Hih.fk = - Hihkf - (16)

Let us consider an infinitesimal point transformation

M =x Vi) d, (1.7

'} Numbers in square brackets refer to the references at the end of the paper.
D 2 Apik] = Auk — Akn
8 3, ==9fox! and 9;==9dxt.
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where v (x) is any vector field and df is an infinitesimal point constant. In view
of the above point transformation and Berwald’s covariant derivative, we have
the following well known results [?] :

£v Tl = Ty v — Tl Vigy -+ T Vi, + 8, Ty Vi X7 (1.8
and
Ev Gy = Vi — Hligg V' 4 Gy vy X7, 1.9

where G';, = 3, G';, and £v denotes Lie- operator. We have also the following
well known commutation formula :

£v (Tij('h)) —Ev Ty, =0. (1)
In an F, -space, if the Berwald’s curvature tensor satisfies the relation
Hjpy = h Hlpy s (1.11)

where A, is any covariant vector field, then the space is called projective
recurrent Finsler space of first order or PRF - space.

The gradient vector of PRF, - space is given by

1
Ay =— 3, A 1.12
. (1.12)

In a previous paper we have concluded as follows :

If a PRF,-space admits an infinitesimal affine motion X' = x' 4 v/ (x) d¥,
we have A, v = 0, say the function A being a Lie invariant one.

This fact will be revised concretely and eloquently in the following
manner: It is well known that when F, admits a projective affine motion
characterized by

v Gl = (1.13)

then the two operations, that is, Lie derivation £v and covariant differentiation
(j) are commutative with each other. Then let us operate £v to the both sides
of the fundamental and starting condition (1.11) of PRF -space, we get

(f,V Hf.n'!jf{)(s) = (f,V A'.l) H‘.flj.k + ls £v Hl‘lrjfc > (1' 14)
where we have used the equation (1.10).

The integrability condition of the projective affine motion (1.13) is given
by

£V Hiy — 0. (1.15)
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In this way, with the help of the above formula, the equation (1.14) takes the
form

(EvA) Hy =0, (L.16)
which for the non-flatness property of the space reduces to
Evh, —0. | (1.17)
However, from the above equation in the present gradient case, we have

?\’x(m) = 7\’m(s‘) - (1'18)

The above formula can be also written as

s VY = 0, (1.19)
ie.

A,V =c¢ or £vh = ¢, ¢ — arbitrary const. (1.20)

2, Some Appendices to the Reewrrent Motion. The present author has
already studies on the projective affine motion in PRF -space [¢]. In the same
paper, I have pursued the concrete form of such a motion and obtained the
following two cases :

a) A, +wy,=0 and b) H, v=0, 2.0

his

But, 1 have, throughout the sections, only taken up the former case. And, in fact,
differentiating (2.1b) covariantly with respect to x™ we can see

Ohm + w}?l) H}ls Vs = 0 * (2'2)

Thus, (&, + w,) may be taken arbitrarily. In this meaning, the former case
means only a special case contained in (2.1b). Thus, we know that, in order to
discuss generally the projective recurrent. affine motion in a PRF,-space, we
must take up the case where (2.1b) holds good. We shall consider this general
case in the following lines. In view of the equation (1.4), the relation (2.1b) can
also be written as

Hi v =0. .3)

hsi
Contracting the Bianchi’s first identity (1.5) for. I, (v, ¥) with respect to the
indices / and k&, we obtain

Hiyyy = — Hiyy — Hiy; (2.4)

Transvecting the above result by v/ and taking care of the equation (2.3)
we find c
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Hi v+ H,vi=0, (2.5)

By virtue of the equations (1.6), (1.9) and (1.13), the last formula reduces to

— Hipvi+ Vi gy =0. (2.6)
Being vy, =y, v/, we have
Voo = @ ¥y - )
In view of the above relation, the formula (2.6) can be written as
Hy v = (9, vy, - (2.3)
On the other hand we have the following relation :
Vi =¥V . (2.9)
In this way, taking the covariant derivative of (2.8) with respect to x™ and using
the equations (1.11) and (2.9), we get
(J\‘m + Wm) ka V= (\I’s Vs)(k) (n) * (2']0)

Now, eliminating the term Hy, v/ with the help of the equations (2.8) and (2.10),
we obtain

O\'m + \I’m) (‘Ps vs)(h) = (ws Vs)(lz) () - (2] ])

By virtue of the symmetric properties of the connection coefficient ¢*;, we can
conclude

Vs V0t = W Vi - (2.12)
Consequently with the help of the equations (2.11) and (2.12), we can have
(o + W) (s vy = e+ Wi (W, Vi - (2.13)
In view of the equations (2.1b) and (2.8), we can construct
W, ¥ Vi = (H,, VY vt =(H ,v)v"' =0, .14

Thus, transvecting the equation (2.13) by v¥ and taking care of last formula, we
have

Ou + W)V (v, VI = 0. 2.15)
In this way, we can obtain here two cases :
a) (A, +y)vk=0 or b) q)s v¥ = const. (2.16)

Thus, from the last equation, we can say :
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If a PRF -space admits a projective affine motion of recurrent form then
there exist the following two interesting fields :

() A case of (0, 4 w,) v =
2.17)
(i) A case of y, v* = constant.

If we take especially y, = — &, so as to satisfy (2.16a), we can develop the
existence theory written in [¢]. Thus, we know that there are able to emst three
categories of projective recurrent affine motions such as

A) ¥ =x'+v(x)d, Vigy = ¥ v, @, V' = const.,

(B) 'i:f =x +V (x) dt, V'iU') =V v » (\lf;, + ?\'}) vi=10 s

© x= x + v (x) dt, Vigy=w; v, (¢, + 1) =0
being derived from (B) formally. In Chapter 5, we shall try to make the concrete

relation existing between (B) and (C) clear.

3. Study on the Case (A).

§1. Necessary conditions. In this case we have
v, v = const. 3.D

Differentiating this condition covariantly with respect to x* and using the
condition (A), we find

Yaa¥" W W V=00 N €))
In view of the equations (1.9), (1.13) and the condition (A), we can get

A = (V) = Vi VWYV (3.3)

By virtue of the fact H',; v/ v¢ = 0, transvecting the last formula by vk, we
obtain

Yigy VE+ Wy, vE=0. (3.9
Thus comparing the last result with (3.2), we find
Wiy — V) Ve = 0. ' (3.5)

In an affinely connected F, the second Bianchi’s identity for Berwald’s curvature
tensor field -H7,, (x, X) takes the form :

Hiypo + Hloty + Hhpjuy = 0. (3.6)

By virtue of the definition (1.11) the last equation can be written as
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7\,3 Hihj.’c vk + Hihks- vk ?“j + Hihsj }‘k vk=10. (37)

Interchanging the indices A, 5 and j cyclically of the above equation, we get two
more similar relations. Adding all these equations with (3.7) and taking care
of the formulae (1.5) and (1.6), we have

(H e vF — Hjy V) Ay - (H' gy v — HYpy vE) Ay + -
_ A+ (Hl g V6 — Higy v¥) by = 0. (3.8)
In view of the équations (1.9) énd-(1.13), the above formula reduces to
A Goya — Vioyw) + M Voo — Ve o +
+ M Py — Vi) = 0. (3.9)
By virtue of the conditions (2) the last equation can be written as '
Ay Wiy — Vi) ¥+ 2 Way — Vi) ¥V 4 2 Wiy — Yo} V=0 (3.10)
Now contracting the above relation with respect to the indices 7 and A, we have
VA (Wi — W) = 0, (3.11)
where we have used (3.5). |
With the help of the last equations, we find here the following conditions ;
M AvP=0 or (i) wiy= V- (3.12)
Thus we can state : |

When a PRF, -space admits a projective affine motion of recurrent form
the condition (3.1) is necessitated. But, in spch a case, we have the following :

(A) i, vh=
(BY Defining vector y; (x) of the motion should be gradient vector.
§2. The case of y; — gradient vector,
In such a case, the form of the motion is given by
F=xi v (@) dt vig,=w; v, y;(x) = gradient vector.  (3.13).
On the other hand, let us introduce the following commutator :
MRV 6~ Ve o) G149
By virtue of .the equation (3.13), the above formula takes the form

My = Wy V4 W Vigy — Wy v+ W Vi, = 0, (3.15)

where we have used the gradient property of w;, ie.
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Wiy = Weiis - ' : (3.16)

Furthermore, in view of the commutation formula (1.2) and the relation (3.15),
the equation (3.14) may be replaced by

o vh=0. . G.17)

By the general theory of fields of parallel vectors [*], the last equation
shows that v/ (x) determines a field of parallel vector. Consequently the motion
characterized by (3.13) is not a pure recurrent motion, but a contra-motion in
the general sense,

Now if (3.13) denotes exactly a projective affine motion, it has to satisfy
the integrability condition

£v Hipy = Hijove 0 — By Vi + Higy vy + Hipy Vi +
+ HYyp Vg + és Hpjy Vin X1 =0 (3.18)
of the equation (3.13).
By virtue of the equation (3.13) the last formula takes the form
Ao VO H o — H W v Higeow, vo o+ Hig vy v+ Hiyoy v=10. (3.19)
But, in view of the equation (3.17), the above relation can be written like
AV H O, — H v+ HO oy, v + Hi oviy, =0, (3.20)
Contracting the above formula with respect to the indices 7 and k, we find
| AV Hy + vy Hy v =0, (3.21)
where we have used (1.4). .

Now, our present theory is based on the condition (2.1b). Therefore, the
last relation yields

AV H,;=0. (3.22)
Being A, v* # 0, the last formula can also be written as

H,;=0. (3.23)
From the above discussions, first of all, we have :

Theorem 3.1. If a PRF, -space admits a special recurrent motion or
contra-motion in the general sense of the form derived from (A) :

X=X V)L Vi =V Vg = Y

with A, v* ¢ 0, the space has a property given by the equation (3.23).
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4. Study on the case (B). For this case the starting condition is given by

v, +2)vi=0, ' 4.1)

Transvecting the integrability condition (3.19) of projective affine motion by
vk and taking care of the condition (B) and (4.1), we get

— W ¥ (Y0 VA v — V(0 v W v Y) ’
+ o VW Vo W V) WV (W VY V) (4.2
W VE (W v E W W V) =0,
where we have also used '
Hig Vv =V » — Cw Vo X = Wn =YV + vy . @3)
After little simplification the formula (4.2) may be replaced by
=YV VY YV G Y WY G VR ey v vk =00 (44)
Commutating the last formula with respect to the indices 4 and j, we find
= W ¥ (W) — Vi) + Wi (s — Vi) Vo W5 o — W) VV =0, (4.9)
where we have neglected the non-vanishing v/ (x).

Contracting the relatlon (3.10) with respect to the indices i and s and noting
the condition (4.1), we obtain .

=WV (Wagy — Vi) = Ry (Wagy — W) ¥* = 2 Wiy — W) vV =0 (4.6)
On the other hand subtractmg the above formula from (4. 5), we find |
(‘If; + A (\Ifms) Yegm) V° -+ (‘I’n + l.n) Wy — Vi) V¥ = 0 N ).
Let us put
E =W~V V' - (4.8)

Now when and only when E, 3 0, there exists a suitable proportlonal
scalar function a(x) such that

WM = E, @9
where E satlsfles the relation 7

Ev=0, . 4.10)

By virtue of the equations (2.1b) and (4.8), we can have
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Eovi = {(w, v} — Wi Vi) — (U, vy + W, iy } v
= My — Va Vs ¥ — Vi oy T W W, VY
= (Vg — Vi g vV = " HE ) v

= (H, vV v = (H,  v)v" =0,

@.11)

“where we have used (1.4) and the commutation formula (1.2).

This completes the proof of the condition (4.10). Being E, given, as
above, by

v, (4.12)

E, = H Qo v" = H,
we can derive

By = Oy + w0 ;. , (4.13)
In view of the definition (4.9), the last result can be written as

Ey = 0 B L (4.14)

Thus, by virtue of the equations (4.1) and (4.10), the last formula vields
Eyy Ve =0. ' (4.15)
On the other hand, with the help of the equations (2.8) and (4.12), we can find
Ev =, vVi)yv. (4.16)

'l

By virtue of the identity (y,, v") v° = 0, the above formula reduces to (4.10).
Furthermore, for a projective affine motion, we have always

Ev i, = hgp ¥V + A, Vi =0 4.17)
or

BV, = (Agpy T A, W) VT =0. ' (4.18)

Introducing the value of A, from the formula (4.9) into the above equation,
we get
((1 Eﬁ‘ - \I!s)(m) Vm + (a JE,-n - \I!m) Vs V= c"{m) ES v +a Es(m) v —
— Wit \a +a ‘Em W v - Vo W vi=0
Efva (JC) +a Es(nl) v (WS(m) v+ Y Vs Vm) +a ‘Em Y vi=0. 4 19)

Hereupon, if we take care of the equations (3.3), (4.10) and (4.15), we can
obtain a remarkable property :

Efva(x)=0, (4.20)
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From the above equation, in case of (4.1), we find
fva{x) =0. @.21)
5. Stand Point of the Paper II (Recurrent Case). The author has already

studied the existence of projective recurrent affine motion in a PRF, -space in
[6]. In that paper the basic property for this condition was

(v, + %) =0. 6.1
Here, we shall write down a diagram of the main course discussed in that
paper [9]:
v, +2)=0>H v=0—->H, =Ap, or A, vi=0, {5.2)
where p, means a suitable gradient vector defined by

1 i
Po= = pw— “a,p. P P() )
p p

and also satisfies the following relations :

a p,v=0 and b) Puw = Py Ps- 5.4
Now, we have introduced a vector E, and this has taken the form
E =y, = €. 5.5
where
e debyr, Vi, (5.6)
Hence E, denotes a gradient vector.

In view of the equations {4.10), (4.14), (5.5) and the gradience property of
p,{x) and E, we can conclude that £, is a vector very similar to p, .

Now let us remember the assumption of the integrability conditions of
projective affine motion :

Ev Hipy = — vy, v Hly — vy v H -y, v HE g o
+ W.f v* Hf’léf( + Wi \s Hfhjs =0. (57)

Contracting the above equation with respect to the indices / and & we find

— Y,V Hy ok, v H =0, (5.3)

where we have used the equations (1.4), (2.1b) and (4.1). By virtue of the
equation (4.12) the last formula reduces to
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W v H;'rf =¥, Ef ' (59)

Now in the present case, W, v’ denotes a non-constant scalar function e (x).
Then we shall assume the resolvability of H,; of the form

1
Hy= M Eps by = = L/ (5.10)

Furthermore substituting the value of X, from the above equation into the
formula (4.1), we get

{
(C v, + %) Vi 0 G.11)
or

(1l +e)y,vi=0. (5.12)

Being (I +¢) # 0, so we have w, v = 0, this contradicts our assumption. In
the second step, we try to resolve f,; in the form

Hyy=Mmys (5.13)

where

1
a) T g — Ej and b) Nisy = N My - (5'14)

=

With the help of the equations (5.10) and (5.13), comparing the forms of
H,;, we have

1 1
Hyp=_ Vi Ei =X (— o Ej) (5.15)
or

1
& (W, + 1) £ (5.16)

say, we are trying to have (y, + A,) = 0 for a non-zero F;. That is, we want
to get a set which we have showed in the diagram :

Viu‘) =—N v, H,; = Apms TNjsy = Ny Ny - (5.17)

If this is possible because of (4.10), we obtain
7, VP =0, (5.18)

Such a case has been really the main part in the paper [¢] in question. We shall
assume this fact and seek for a necessary condition for this case hidden in our
theory.
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The formula (5.14a) can also be rewritten as _
Ej= —emu;. (5.19
Differentiating the above formula covariantly with resprect to x* and taking
care of the equations (5.4), (5.14b) and (5.19) itself, we find
Bjg=—Eny—emmn=—En;—(en)n;=—En; + En;=0. (520

On the other hand, from (4.14), we can say that in order that the present
theory contains the main theory of the paper [%] it is necessary that we have
¢ = 0, furthermore, o = 0 satisfies (4.21) certainly, hence it is reasonable to
consider such a case.

Conversely, if o =0, we get (y,+ 1) =0 and the paper [¥] comes in
front of us.

Thus we can state here :
Theorem 5.1, In order that a projective recurrent affine motion, in a
PRF -space
FM=af Vi@ dt, Vi =, v,
admitted under assumptions (2.1b) and (4.1) becomes a main motion of the same
kind :
¥ = xf + v (x) dt ’ Vi(h) = A’J‘z \4 ’ HM == lh MNis Ty = Ny T

it is necessary and sufficient that we have o(x) =0, where o(x) denotes a
proportional factor such that

Ay F vy =alx) Hy v and £vo(x) =0.

6. Appendices to Chapter 3. At the end of Chapter 3, the author has
omitted to say some conclusions. In case of y; — non-gradient vector, we can
state Theorem 6.1. When w, v* — constant and w; is not a gradient vector, the
PRF, -space is able to admit a projective recurrent motion of the form

¥=x+vid, vigy=wy,v with A, vi=0.
All process of calculation developed in §1 and §2 of Chapter 3 holds

similarly when w; is replaced by - A; formally. Hence we have :

Theorem 6.1, In the existence theory of special recurrent affine motion
of the form

F=x v dt, vig +i,vi=0, (6.1)

if we put an additional condition
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A, v = const. {6.2)

we can obtain naturally the following two independent categories of the motion

satisfying

satisfying

['1
1
[°1
|
[°1

'
§

=x+vitd, vig+nv=0 (6.3)
Kh vi £ 0, x'Ms) = m‘s(h) and HIU' =0, (64)
¥=x+vi@)dr, Vi +h, v =0 (6.5)
AV = 0. ©.6)

These two results appeared actually in the paper [6]. The former occurs
when p, = 0. In the forthcoming paper we shall go into details about these two
motions and revise some points in the paper [6] .
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INDIA

OZET

Bu ¢aligmada bir PRF, - uzayindaki ozel bir infinitezimal bareket

incelenmektedir.




