ON A TYPE OF SEMI-SYMMETRIC METRIC CONNECTION ON A RIEMANNIAN MANIFOLD

U. C. DE - B. K. DE

Department of Mathematics, University of Kalyani, Kalyani-741235, West Bengal-INDIA

Summary: In this paper a particular type of semi-symmetric metric connection on a Riemannian manifold satisfying certain condition on the Ricci tensor has been studied.

BİR RIEMANN MANİFOLDU ÜZERİNDE YARI SİMETRİK BİR METRİK BAĞLANTI TİPİ HAKKINDA

Özet: Bu çalışmada, Ricci tensörü belirli bir koşulu gerçekleyen bir Riemann manifoldu üzerinde özel bir yarı simetrik metrik bağlantı tipi incelenmektedir.

INTRODUCTION

Friedmann and Schouten [1] introduced semi-symmetric connection. Yano [2] synthesized the notion of semi-symmetric connection and a metric connection with torsion [3]. He also showed that a Riemannian manifold admits a semi-symmetric metric connection of zero curvature tensor if and only if it is conformally flat [2]. The object of this paper is to study a Riemannian manifold which admits a semi-symmetric metric connection with a certain form of Riccitensor.

Consider an *n*-dimensional orientable Riemannian manifold with a metric tensor g and its Levi-Civita connection ∇ . We consider all geometric objects on M be sufficiently smooth. Denote arbitrary vector fields on M by X, Y and Z. A linear connection $\overline{\nabla}$ on M is said to be semi-symmetric metric connection [2] if there exists a 1-form π such that the torsion tensor T is given by

$$T(X, Y) = \pi(Y) X - \pi(X) Y \tag{1}$$

and

$$\overline{\nabla}\,g \approx 0\;.$$

For such a metric connection [2]

$$\overline{\nabla}_X Y = \nabla_X Y + \pi (Y) X - g(X, Y) \xi$$
 (2)

1980 Mathematics subject classification (AMS): Primary 53C05

where ξ is a vector field such that $g(\xi, X) = \pi(X)$. We denote the curvature tensor, Ricci tensor of type (0, 2), the scalar curvature and the Weyl conformal curvature tensor of M with respect to ∇ by K, S, r, C respectively. A bar over them refers to $\overline{\nabla}$. We know that [2]

$$\overline{K}(X, Y) Z = K(X, Y) Z - \alpha(Y, Z) X + \alpha(X, Z) Y -$$

$$-g(Y, Z) AX + g(X, Z) AY$$
(3)

where

$$\alpha(X, Y) = (\nabla_X \pi) Y - \pi(X) \pi(Y) + \left(\frac{1}{2}\right) \pi(\xi) g(X, Y)$$
(4)

$$AX = \nabla_X \pi - \pi (X) \xi + \left(\frac{1}{2}\right) \pi (\xi) X. \tag{5}$$

In this connection we recall that $S(X, Y) = \sum_{i=1}^{n} K(X, V_i, V_i, Y)$ where $\{V_i\}$ is an orthonormal basis of the tangent space at each point of the manifold

$$C(X, Y) Z = K(X, Y) Z + l(Y, Z) X - l(X, Z) Y + g(Y, Z) LX - g(X, Z) LY$$
(6)

where

M.

$$l(X, Y) = -\frac{1}{n-2} S(X, Y) + \frac{r}{2(n-1)(n-2)} g(X, Y)$$
 (7)

and

$$g(LX, Y) = l(X, Y).$$
(8)

1. In this section we deal with the implication of the prescription $\overline{S} = \varphi S + \psi g$, where φ and ψ are real functions on M.

Lemma 1. If $\overline{S} = \varphi S + \psi g$, where φ , ψ are stated earlier then

$$(1 - \varphi) S(X, Y) = (n - 2) \alpha(X, Y) + (a + \psi) g(X, Y)$$
 (A)

$$(1 - \varphi) r = 2(n - 1) \operatorname{div} \xi + (n - 1)(n - 2) \pi(\xi) + n \psi$$
 (B)

$$\alpha(X, Y) = (\varphi - 1) l(X, Y) - \frac{\psi}{2(n-1)} g(X, Y)$$
 (C)

$$\nabla_X \xi = \pi(X) \xi - \left(\frac{1}{2}\right) \pi(\xi) X - (1 - \varphi) LX - \frac{\psi}{2(n-1)} X$$
 (D)

where a is the trace of A and $n \ge 3$.

Proof. From (3) we can write

$$g[\overline{K}(X, Y) Z, W] = g[K(X, Y) Z, W] - g[\alpha(Y, Z) X, W] + g[\alpha(X, Z) Y, W] - g[g(Y, Z) AX, W] + g[g(X, Z) AY, W].$$
(1.1)

Putting X = W in (1.1) we get

$$g[\overline{k}(X, Y) Z, X] = g[k(X, Z) Y, X] - g[\alpha(Y, Z) X, X] + g[\alpha(X, Z) Y, X] - g[g(Y, Z) AX, X] + g[g(X, Z) AY, X].$$
(1.2)

Let us take $X = V_t$, then (1.2) becomes

$$g[\overline{K}(V_{i}, Y) Z, V_{i}] = g[K(V_{i}, Y) Z, V_{i}] - g[\alpha(Y, Z) V_{i}, V_{i}] + g[\alpha(V_{i}, Z) Y, V_{i}] - g[g(Y, Z) AV_{i}, V_{i}] + g[g[V_{i}, Z) AY, V_{i}].$$
(1.3)

Hence from (1.3) we get

 $(1 - \varphi) S(X, Y) =$

$$\overline{S}(Y, Z) = S(Y, Z) - n \alpha(Y, Z) + 2\alpha(Y, Z) - ag(Y, Z).$$
 (1.4)

Now from the given hypothesis we have

$$(1 - \varphi) S(Y, Z) = (n - 2) \alpha(Y, Z) + (a + \psi) g(Y, Z).$$
 (1.5)

This completes the proof of (A).

Using the relation (4) we get from (A)

$$= (n-2) \left[(\nabla_{X} \pi) (Y) - \pi (X) \pi (Y) + \frac{1}{2} \pi (\xi) g(X, Y) \right] +$$

$$+ (a + \psi) g(X, Y)$$

$$= (n-2) \left[g(Y, \nabla_{X} \xi) - g(X, \xi) g(Y, \xi) + \frac{1}{2} g(\xi, \xi) g(X, Y) \right] +$$

$$+ \left(\text{div } \xi + \frac{n-2}{2} \pi (\xi) \right) g(X, Y) + \psi g(X, Y).$$
(1.6)

Putting $X = Y = V_i$ in (1.6) we get

$$(1 - \varphi) r = 2(n - 1) \operatorname{div} \xi + (n - 1)(n - 2) \pi(\xi) + n \psi.$$

This completes the proof of (B).

Putting $X = Y = V_i$ in (A) gives

$$(1 - \varphi) r = (n - 2) a + (a + \psi) n. \tag{1.7}$$

Using (A) and (1.7) in (7) we get

$$I(X, Y) = -\frac{1}{n-2} \left[\frac{1}{1-\varphi} \left\{ (n-2)\alpha(X, Y) + (a+\psi)g(X, Y) \right\} \right] + \frac{1}{1-\varphi} \left\{ (n-2)a + (a+\psi)n \right\} g(X, Y).$$

$$(1.8)$$

Now from (1.8) we have

$$\alpha(X, Y) = (\varphi - 1) l(X, Y) - \frac{\psi}{2(n-1)} g(X, Y).$$

This completes the proof of (C).

From (8) we can write.

$$g((\varphi - 1) LX, \xi) = (\varphi - 1) l(X, \xi). \tag{1.9}$$

Now using (C) we get from (1.9)

$$g((\varphi - 1) LX, \xi) = \alpha(X, \xi) + \frac{\Psi}{2(n-1)} g(X, \xi). \tag{1.10}$$

Using (4) in (1.10) we have

$$\pi ((\varphi - 1) LX) = (\nabla_X \pi) \xi - \pi (X) \pi (\xi) + \frac{1}{2} \pi (\xi) \pi (X) + \frac{\psi}{2(n-1)} \pi (X). \quad (1.11)$$

In virtue of (1.11) we can write

$$(\varphi - 1) LX = \nabla_X \xi - \pi(X) \xi + \frac{1}{2} \pi(\xi) X + \frac{\Psi}{2(n-1)} X,$$

i.e.,

$$\nabla_X \xi = \pi(X) \xi - \frac{1}{2} \pi(\xi) X - (1 - \varphi) LX - \frac{\psi}{2(n-1)} X.$$

This completes the proof of (D).

Now using (C) in (3) we get

$$\overline{K}(X, Y) Z = K(X, Y) Z - \left[(\varphi - 1) I(Y, Z) - \frac{\Psi}{2(n-1)} g(Y, Z) \right] X + \left[(\varphi - 1) I(X, Z) - \frac{\Psi}{2(n-1)} g(X, Z) \right] Y - g(Y, Z) AX + g(X, Z) AY.$$
(1.12)

Appropriate use of (5) in (1.12) gives us

$$\widetilde{K}(X, Y)Z = \varphi K(X, Y) Z + (1 - \varphi) C(X, Y) Z +
+ \frac{\psi}{2(n-1)} [g(Y, Z) X - g(X, Z) Y].$$
(1.13)

Thus we can state the following theorem:

Theorem 1.1. If a Riemannian manifold admits a semi-symmetric metric connection such that $\overline{S} = \varphi S + \psi g$, φ and ψ are real functions on M, then for n > 3 the following relation holds:

$$\overline{K}(X, Y) Z = \varphi K(X, Y) Z + (1 - \varphi) C(X, Y) Z + \frac{\Psi}{2(n-1)} [g(Y, Z) X - g(X, Z) Y].$$

If $\phi = 0$, $\psi = 0$, from Theorem 1.1 we have the following generalized version of the result of Imai [4] and therefore Yano [2]:

Corollary 1.1. If a Riemannian manifold admits a semi-symmetric metric connection with vanishing Ricci tensor, then the curvature tensor of the semi-symmetric metric connection is equal to the Weyl conformal curvature tensor.

2. Integrating (B) over M and using Green's theorem [5] we get

$$\int_{M} \left[\left\{ (1 - \varphi) \frac{r}{n - 1} \right\} - (n - 2) g(\xi, \xi) - \frac{n}{n - 1} \psi \right] d\nu = 0.$$
 (2.1)

Let $\overline{S} = S$ ($\varphi = 1$, $\psi = 0$) or r = 0, $\psi = 0$, then

$$\int_{M} g(\xi, \xi) d\nu = 0 \tag{2.2}$$

which implies $g(\xi, \xi) = 0$ and hence $\xi = 0$, as g is positive definite. Now $\xi = 0$ would mean $\overline{V} = V$ and hence V would not be semi-symmetric.

Thus we can state the following theorem:

Theorem 2.1. If M is a compact orientable Riemannian manifold without boundary then neither S is identically equal to S nor r and ψ both vanish.

REFERENCES

[1] FRIEDMANN, A. and: Über die Geometrie der halbsymmetrischen Übertragungen, Math. SCHOUTEN, J.A. Zeitschr., 21 (1924), 211-223.

[2] YANO, K. : On semi-symmetric metric connection, Rev. Roum. Math. Pures et Appl., 15 (1970), 1579-1581.

U. C. DE-B. K. DE

[3] HAYDEN, H.A. : Subspaces of space with torsion, Proc. London Math. Soc., 34 (1932), 27-50.

[4] IMAI, T. : Notes on semi-symmetric metric connection, Tensor, N.S., 24

(1972), 293-296.

[5] YANO, K. : Integral formulas in Riemannian Geometry, Marcel Dekker

Inc., N.Y., 1970.