İstanbul Üniv. Fen Fak. Mat. Der., 53 (1994), 81 - 88

INVESTIGATION OF NONLINEAR SINGULAR INTEGRAL EQUATIONS WITH HILBERT KERNEL BY THE METHOD OF MECHANICAL QUADRATURE

S. M. AMER

Department of Mathematics, Faculty of Science, Zagazig University, EGYPT

Abstract: The paper concerns the investigation of a class of nonlinear singular integral equations with Hilbert kernel by means of mechanical quadrature method.

HILBERT ÇEKİRDEKLİ, LİNEER OLMAYAN SİNGÜLER İNTEGRAL DENKLEMLERİN MEKANİK KARELEME YÖNTEMİYLE İNCELENMESİ

Özet : Bu çalışmada Hilbert çekirdekli, lineer olmayan bir singüler integral denklem sınıfı, mekanik kareleme yöntemiyle incelenmektedir.

INTRODUCTION

In the present paper we investigate the approximate solution of the following class of nonlinear singular integral equations (NSIE) in Holder spaces [2, 6, 7], by mechanical quadrature method [1, 2, 4, 7].

$$u(\sigma) = f(\sigma) + \frac{\lambda}{2\pi} \int_{0}^{2\pi} F[\tau, u(\tau)] \cot \frac{\tau - \sigma}{2} d\tau + \frac{\lambda}{2\pi} \int_{0}^{2\pi} Q[\sigma, \tau, u(\tau)] d\tau.$$
(1)

Definition 1 [2, 3].

a) We denote by Φ the class of all continuous monotonic increasing functions $\varphi(\delta)$ defined on $[0, 2\pi]$ such that $\varphi(\delta) \neq 0$ at $\delta > 0$ and $\varphi(0) = 0$.

b) Let E_n be an *n*-dimensional space with norm

$$|u||_{E_n} = \max_i |u_i|.$$

c) We denote by $H_{\varphi,n}$ the space of 2π -periodic continuous vector functions $u = \{u_1, ..., u_n\}$ such that

$$\omega_{\mu}(\delta) = O(\varphi(\delta)),$$

with norm:

$$|u||_{\varphi, n} = \max \left\{ \max_{\sigma} ||u(\sigma)||_{E_n}, \sup_{\delta} \frac{\omega_u(\delta)}{\varphi(\delta)} \right\}$$

where

$$\omega_{\mu}(\delta) = \sup_{\substack{|\sigma_1 - \sigma_2| \leq \delta \\ \delta > 0}} || u(\sigma_1) - u(\sigma_2) ||_{E_n}.$$

d) We define

$$H_{\varphi, n}(M) = \{ u \in H_{\varphi, n} : || u ||_{\varphi, n} \le M, M > 0 \}.$$

e) The space $H_{\varphi,n}^{(N)}(\varphi \in \Phi)$ - 2N-dimensional space of vectors

 $z = (z_0, z_1, ..., z_{2N-1})$ with the norm

$$||z||_{\varphi,n}^{(N)} = \left\{ \max_{k=0, 2N-1}^{||z_k||_{E_n}}, \max_{\varphi\left(\frac{\delta}{N}\right)}^{(\delta)} \right\}.$$

f) Let $\nu(\varphi)$ be the set of numbers $\beta: 0 < \beta < 1$ for which

$$\lim_{t\to 0} \frac{\varphi(t)}{t^{\beta}} \ln^3 \frac{1}{t} = 0.$$

Note that $\nu(\phi)$ is nonempty, if $\phi(\delta) \in \Phi$ then

 $\varphi(t) = O(t^{\beta_0})$ for some $\beta_0 > 0$.

For NSIE (1) we have the following:

i) The vector functions:

$$u = \{u_1, ..., u_n\}, f = \{f_1, ..., f_n\},$$

$$F[\tau, u] = \{F_1[\tau, u_1, ..., u_n], ..., F_n[\tau, u_1, ..., u_n]\},$$

$$Q[\sigma, \tau, u] = \{Q_1[\sigma, \tau, u_1, ..., u_n], ..., Q_n[\sigma, \tau, u_1, ..., u_n]\}$$

and the components of the vector $Q[\sigma, \tau, u]$ has the form

$$Q_{II} = \sum_{j=1}^{n} Q_{Ij} [\sigma, \tau, u_1, ..., u_n].$$

ii) The function $F[\tau, u(\tau)]$ defined at $0 \le \tau \le 2\pi$, $||u||_{E_n} \le M$, 2π -periodic in τ and has partial derivaties up to second order and satisfies the following condition:

$$\left|\frac{\partial^{p} F[\tau_{1}, \overline{u}]}{\partial \tau^{\alpha_{0}} \partial u_{1}^{\alpha_{1}} \cdots \partial u_{n}^{\alpha_{n}}} - \frac{\partial^{p} F[\tau_{2}, \overline{u}]}{\partial \tau^{\alpha_{0}} \partial u_{1}^{\alpha_{1}} \cdots \partial u_{n}^{\alpha_{n}}}\right| \leq \leq \mu \left(p\right) \left\{\varphi\left(\mid \tau_{1} - \tau_{2}\mid\right) + \mid\mid \overline{u} - \overline{u}\mid\mid_{E_{n}}\right\}$$

$$(2)$$

where $\alpha_0 + \alpha_1 + \ldots + \alpha_n = p$, p = 0, 1, 2 and $\mu(p)$ is a constant.

INVESTIGATION OF NONLINEAR SINGULAR INTEGRAL EQUATIONS... 83

iii) The function $Q_{ij}[\sigma, \tau, u]$ defined at $0 \le \sigma \le 2\pi$, $||u||_{E_n} \le M$, 2π -periodic by σ and τ and has derivatives up to the second order by σ moreover it satisfies the following condition:

$$\left|\frac{d^{p} Q_{ij}[\sigma_{1},\tau,\overline{u}]}{\partial \sigma^{p}} - \frac{d^{p} Q_{ij}[\sigma_{2},\tau,\overline{u}]}{d \sigma^{p}}\right| \leq \qquad (3)$$

$$\leq \mu'(p) \{\varphi_{1}(|\sigma_{1}-\sigma_{2}|) + ||\overline{u}-\overline{u}||_{E_{n}}\},$$

where $\mu'(p)$ is a constant.

iv) The 2 π -periodic vector function $f \in H_{q_{e,n}}(M)$.

From Definition 1 and conditions (2) and (3), it is clear that the vector functions $F[\tau, u]$ and $Q[\sigma, \tau, u]$ belong to the space $H_{\varphi, u}(M)$.

This work consists of the following three sections:

1. The solution in the Holder space $H_{\varphi,n}$

Theorem 1.1. Let the functions $F[\tau, u]$ and $Q[\sigma, \tau, u]$ satisfy the conditions (2) and (3), then for $|\lambda| < |\lambda_0|$ (λ_0 arbitrary small) equation (1) has a unique solution in $H_{\varphi, n}(M)$. This solution can be obtained by the method of successive approximations and uniformly converges in the space $L_2^{(N)}$.

Proof. Let $u \in H_{\varphi,n}(M)$, then from [1, 4] the operator

$$(\operatorname{Au})(\sigma) = f(\sigma) + \frac{\lambda}{2\pi} \int_{0}^{2\pi} F[\tau, u(\tau)] \cot \frac{\tau - \delta}{2} d\tau + \frac{\lambda}{2\pi} \int_{0}^{2\pi} Q[\sigma, \tau, u(\tau)] d\tau$$

$$(1.1)$$

transforms $H_{\varphi,n}(M)$ into $H_{\varphi,n}(\lambda M')$. Therefore, if $|\lambda| M' < M$, hence the operator (1.1) transforms $H_{\varphi,n}(M)$ into itself. From conditions (2), (3) and using M. Riesz's theorem [5], for arbitrary $u_1, u_2 \in H_{\varphi,n}(M)$, we have:

$$\begin{split} \|\operatorname{Au}_{1} - \operatorname{Au}_{2}\|_{L_{2}} &\leq \left\{ \int_{0}^{2\pi} \left| \frac{\lambda}{2\pi} \int_{0}^{2\pi} [F[\tau, u_{1}(\tau)] - F[\tau, u_{2}(\tau)]] \times \right. \\ &\times \cot \frac{\tau - \sigma}{2} d \iota \right|^{2} d \delta \right\}^{1/2} + \left\{ \int_{0}^{2\pi} \left| \frac{\lambda}{2\pi} \int_{0}^{2\pi} [Q[\sigma, \tau, u_{1}(\tau)] - Q[\sigma, \tau, u_{2}(\tau)]] \right|^{2} \right\}^{1/2} \leq |\lambda| \mu(0) (1 + c(2)) || u_{1} - u_{2} ||_{L_{2}}, \end{split}$$

S.M. AMER

where c(2) is a constant.

If $|\lambda| \mu(0) (1+c(2)) < 1$, then the operator (1.1) is contraction mapping. Taking

$$\lambda_{0} = \min\left\{\frac{M}{M'}, \frac{1}{\mu(0)(1+c(2))}\right\}$$

then the equation (1) has a unique solution in $H_{\varphi,n}$ and this solution can be found by the method of successive approximations.

Theorem 1.2. Let u_q , $u \in H_{\varphi,n}(M)$ and $\lim_{q \to \infty} ||u_q - u||_{L_2} = 0$ then $\lim_{q \to \infty} ||u_q - u||_C = 0$.

Proof. Let $G \in H_{\varphi,n}(M)$ can be written in the form

$$G(s) = \frac{1}{h} \int_{s}^{s+h} G(x) \, dx - \frac{1}{h} \int_{s}^{s+h} [G(x) - G(s)] \, dx,$$

then we have

$$|G(s)| \leq \frac{1}{h} \int_{s}^{s+h} |G(x)| dx + \frac{1}{h} \int_{s}^{s+h} |G(x) - G(s)| dx.$$

Using Holder inequality on the first term in the right part of the last inequality we have

$$|| G(s) ||_{C} \leq \frac{1}{h} \left(\int_{s}^{s+h} |G(x)|^{2} dx \right)^{1/2} h^{1/2} + \frac{1}{h} \int_{s}^{s+h} || G ||_{\varphi, n} \varphi(|x-s|) dx \leq h^{-1/2} \left(\int_{-\pi}^{\pi} |G(x)|^{2} dx \right)^{1/2} + \frac{|| G ||_{\varphi, n}}{h} \varphi(h) h.$$

Putting $G(s) = u_q(s) - u(s)$, $h = ||u_q - u||_{L_2}$ we obtain

$$|| u_q - u ||_C \leq || u_q - u ||_{L_2}^{1/2} + 2M \phi(|| u_q - u ||_{L_2}),$$

then $||u_q - u||_c \to 0$ as $q \to \infty$, that is the successive approximations converge.

2. The solution in the discrete Holder space $H_{\varphi,n}^{(N)}$

In [1, 4], for singular integral

84'

INVESTIGATION OF NONLINEAR SINGULAR INTEGRAL EQUATIONS... 85

(Ju) (s) =
$$\frac{1}{2\pi} \int_{0}^{2\pi} u(\sigma) \cot \frac{\sigma - s}{2} d\sigma, \ u(\sigma) \in H_{\varphi, n}$$

construct the quadratic formula:

$$(Ju)(s) = \frac{1}{N} \sum_{k=0}^{2N-1} u_k \operatorname{Sin}^2 \frac{s-s_k}{2} \cot \frac{s_k-s}{2}, \qquad (2.1)$$

where

$$u_k = u(s_k), \quad s_k = \frac{k\pi}{N}.$$

Formula (2.1) at node points s_k takes the form:

$$(Ju) (s_k) = \frac{1}{2N} \sum_{\substack{k=0\\k+t}}^{2N-1} u_k \left[1 - (-1)^{k-1}\right] \cot \frac{s_k - s_t}{2}.$$
 (2.2)

Applying the quadratic formula (2.2) to first and second integral of equation (1) we get

$$u(t_{i}) = f(t_{i}) + \frac{\lambda}{2N} \sum_{\substack{k=0\\k+l}}^{2N-1} F[t_{k}, u(t_{k})] [1 - (-1)^{k-l}] \cot \frac{t_{k} - t_{l}}{2} + \frac{\lambda}{2N} \sum_{\substack{k=0\\k+l}}^{2N-1} Q[t_{l}, t_{k}, u(t_{k})] + R_{N}[F] + \lambda R_{N}[Q], l = \overline{0, 2N - 1},$$

neglect the remainder terms, hence we arrive to the following system of algebraic equations

$$z_{i} = \frac{\lambda}{2N} \sum_{\substack{k=0\\k+l}}^{2N-1} F[t_{k}, z_{k}] \left[1 - (-1)^{k-l}\right] \cot \frac{t_{k} - t_{l}}{2} + \frac{\lambda}{2N} \sum_{k=0}^{2N-1} Q[t_{l}, t_{k}, z_{k}], (2.3)$$

where $z_l = u(t_l)$.

Take
$$E^{(N)} z = (E_0^{(N)} z, ..., E_{2N-1}^{(N)} z),$$

where

$$E_{l}^{(N)}z = \frac{\lambda}{2N} \sum_{\substack{k=0\\k+l}}^{2N-1} F[\tau_{l}, z_{k}] \left[1 - (-1)^{k-l}\right] \cot \frac{\tau_{k} - \tau_{l}}{2} + \frac{\lambda}{2N} \sum_{k=0}^{2N-1} Q[t_{l}, t_{k}, z_{k}].$$

. •

S.M. AMER

In other words, $F^{(N)} z = \lambda A^{(N)} G z$ where

$$A^{(N)} z = (A_0^{(N)} z, ..., A_{2N-1}^{(N)} z),$$

$$G z = (G z_0, ..., G z_{2N-1}) \in H_{q_0, n}^{(N)}(R)$$

and $A^{(N)}$ is bounded [3, 7], that is $\|A^{(N)}\|_{H^{(N)}_{\varphi, \eta}} \leq c, c > 0$. Thus we have

$$\left|\left| E^{(N)} z \right|\right|_{H^{(N)}_{\varphi,n}} \leq |\lambda| R c.$$

and a second second second second second second second second second second second second second second second

Now, let

$$z^{(1)}, z^{(2)} \in H^{(N)}_{0,n}(M)$$
, then

$$\begin{split} &\| E^{(N)} z^{(1)} - E^{(N)} z^{(2)} \|_{L_{2}^{(N)}} = \\ &= \left\{ \frac{\pi}{N} \sum_{l=0}^{2N-1} \left| \frac{\lambda}{2N} \sum_{k=0}^{2N-1} \left[F[\tau_{l}, z_{k}^{(1)}] - F[\tau_{l}, z_{k}^{(2)}] \left[1 - (-1)^{k-l} \right] \cot \frac{\tau_{k} - \tau_{l}}{2} \right]^{2} \right\}^{1/2} + \right. \\ &+ \left\{ \frac{\pi}{N} \sum_{l=0}^{2N-1} \left| \frac{\lambda}{2N} \sum_{k=0}^{2N-1} \left[Q[t_{l}, t_{k}, z_{k}^{(1)}] - Q[t_{l}, t_{k}, z_{k}^{(2)}] \right] \right|^{2} \right\}^{1/2}, \end{split}$$

since

$$\| E^{(N)} \|_{L_2^{(N)}} \leq c(2), [1],$$

and by using the conditions (2) and (3) and from [4] we have

$$\| E^{(N)} z^{(1)} - E^{(N)} z^{(2)} \|_{L_{2}^{(N)}} \leq |\lambda| \{ c(2) \mu(0) + \mu'(1) \psi(N) \} \| z^{(1)} - z^{(2)} \|_{L_{2}^{(N)}},$$
(2.4)

where

$$\psi^{2}(N) = \frac{\pi}{N} \sum_{l=0}^{2N-1} \left[\frac{1}{N} \sum_{k=0}^{2N-1} |t_{l} - t_{k}| \right]^{2}.$$

By means of contraction mapping principle at

$$\lambda < \min\left\{\frac{M}{Rc}, \frac{1}{c(2)\mu(0) + \mu'(1)\psi(N)}\right\}$$

the system (2.3) for arbitrary $N \ge 2$ has a unique solution in $H_{\varphi,n}^{(N)}(M)$ and the following theorem will be valid:

INVESTIGATION OF NONLINEAR SINGULAR INTEGRAL EQUATIONS... 87

Theorem 2.1. Let the function $F[\tau, u]$ and $Q[\delta, \tau, u]$ satisfy the conditions (2) and (3) respectively, then the system of nonlinear algebraic equations (2.3), for arbitrary $N \ge 2$, has a unique solution in $H_{\varphi,n}^{(N)}$ and this solution can be found by the method of successive approximations.

3. The rate of convergence of the approximate solution

On using the solution $z^* \in H_{\varphi,n}^{(N)}(M)$ of system (2.3), for arbitrary $N \ge 2$, the approximate solution $u^{(N)}(\sigma)$ of integral equation (1) is given by the following formula:

$$u^{(N)}(\sigma) = f(\sigma) + \frac{\lambda}{N} \sum_{k=0}^{2N-1} F[t_k, z_k^*] \sin^2 \frac{\sigma - t_k}{2} \cot \frac{t_k - \sigma}{2} + \frac{\lambda}{2N} \sum_{k=0}^{2N-1} Q[\sigma, t_k, z_k^*]$$
(3.1)

where, at $\sigma = t_l$ the summation taking by all k different from l. Also, if

$$|\lambda| < \min\left\{\frac{M}{Rc}, \frac{1}{c(2)\mu(0) + \mu'(1)\psi(N)}\right\}$$
(3.2)

then the equation (1) has a unique solution $u^*(\sigma) \in H_{\varphi, n}(M)$. Applying the quadratic formula (2.2) to equation (1) at node points σ_l , we obtain

$$u^{*}(\sigma_{l}) = f(\sigma_{l}) + \frac{\lambda}{2\pi} \sum_{\substack{k=0\\k+l}}^{2N-1} F[\sigma_{k}, u^{*}(\sigma_{k})] [1 - (-1)^{k-l}] + \cot \frac{\sigma_{k} - \sigma_{l}}{2} + \lambda R_{N}[R] + \lambda R_{N}[Q], \ l = \overline{0, 2N - 1}.$$

Put $z^{(1)} = u^*$ and $z^{(2)} = z^*$ in (2.4) and from (3.2) we obtain

$$|| u^{*} - z^{*} ||_{L_{2}^{(n)}} \leq |\lambda| (|| R_{N}[F] ||_{C} + || R_{N}[Q] ||_{C}) \times \times \{1 - |\lambda| [c(2) \mu(0) + \mu'(1) \psi(N)]\}^{-1}.$$
(3.3)

From [1, 4] we have

$$|| u^{*}(\sigma) - u^{(N)}(\sigma) ||_{C} = \max_{i} \{ || u_{i}(\sigma) - u^{(N)}(\sigma) ||_{C} \} \leq \leq 2 |\lambda| \mu(0) (1 + \pi) (1 + \ln 2N) \max_{l} || u^{*}(\sigma_{l}) - z_{l}^{*} ||_{C} + ||\lambda| (|| R_{N}[F] ||_{C} + || R_{N}[Q] ||_{C}),$$

since

S.M. AMER

$$|| R_N[F] ||_C + || R_N[Q] ||_C \le \text{const.} \left[\varphi\left(\frac{\pi}{N^{2\beta}}\right) \ln N \right], [3],$$
 (3.4)

then from (3.3) and (3.4), finally the following inequality will be valid:

$$|| u^*(\sigma) - u^{(N)}(\sigma) ||_{\mathcal{C}} \leq \text{const.} \left[\varphi\left(\frac{\pi}{N^{2\beta}}\right) \ln N + \varphi\left(\frac{1}{N}\right) \frac{\ln^3 N}{N^{-\beta}} \right], \quad \beta \in \nu(\phi).$$

REFERENCES

- [1] BABAEV, A.A., MALSAGOV, S.M. and SALAEV, V.V.
- [2] GUSEINOV, A.I. and MUKHTAROV, Kh. Sh.
- [3] MOSAEV, B.I. and SALAEV, V.V.
- [4] MOSAEV, B.I. and SEIRANOVA, M.I.
- [5] ZYGMUND, A.
- [6] SALH, M.H. and AMER, S.M.
- [7] SALH, M.H. and AMER, S.M.

- : Basis of quadratic method for nonlinear singular integral equation with Hilbert kernel (in Russian), Ych. Zap. AGU. Bra. phy.-math. Nauk, 1 (1971), 13-33.
- : Introduction to the theory of nonlinear singular integral equations (in Russian), Nauk, Moscow, 1980.
- : On the convergence of quadratic process for singular integrals with Hilbert kernel (in Russian), in timely problems in theory of functions, p. 16-194, AGU, 1980.
- : Approximate solution of nonlinear singular integral equation by the method of mechanical quadrature (in Russian), Ych. Zap. AGU. Bra. phy.-math. Nauk, No. 3 (1974), 31-41.
- : Trigonometric series, Cambridge University Press, Cambridge, 1959.
- : Approximate solution of a certain class of nonlinear singular integral equations, Collect. Math., 38 (1987), 161-175.
- : Singular operator in generalized Holder space, Proc. Math. Phys. Soc. Egypt, No. 64 (1987), 91-112.