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In this article, we define the concept of af natural density which is a generalization of the natural
density concept given for pairs of integer. The concept of af3-statistical e-convergence is introduced
with the help of this density. After that some elementary properties of this type of convergence are
examined. Also, we define the notions of af3-statistical limit inferior and superior in e-sense. Finally we
give some theorems related to them.

Gift Diziler icin aB-istatistiksel e-Yakinsaklik

Anahtar kelimeler 0z

Cift dizi; e-yakinsaklik;
af-istatistiksel
e-yakinsaklk;
af-istatistiksel e-alt

limit ve st limit, ~ teoremler verdik.

Bu makalede, tam sayi ikilileri igin verilen yogunluk kavraminin bir genellestiriimesi olan af8 dogal
yogunluk kavramini tanimladik. Bu yogunluk kavrami yardimiyla cift diziler icin af-istatistiksel
e-yakinsaklik kavrami tanitildi. Daha sonra bu tip yakinsakhgin temel o6zellikleri incelendi. Ayrica,
e-anlaminda af-istatistiksel alt limit ve st limit kavramlarini tanimladik. Son olarak bu kavramlarlailgili

1. Introduction

Throughout the paper the symbols N, R and N? are
used for the positive integers, the real numbers, and
the pairs of positive integers respectively. We will
use the symbol () for the vector space, coordinate-
wise addition and scalar multiplication, of all real or
complex double sequences. In double sequences,
there exist more than one types of convergence due
to order of elements of N2, One of them is
Pringsheim (1898) convergence which is the best
In this

sequence

known and well-studied.
double
¥y = (¥ij) converges to the number p, written P —

type  convergence, a

lim;;y;; = p, if for each € > 0, there exists ny € N
such that |y;; — p| <& forall i,j > n,. In
Pringsheim convergence the row-index i and the
column-index j tend to infinity independently from
each other.

The essential deficiency of this type of convergence
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is that a convergent sequence does not require to
be bounded. Hardy (1917) defined the concept of
regular sense, does not have this shortcoming, for
double sequence. In regular convergence, both the
row-index and the column-index of the double
sequence need to be convergent besides the
convergent in Pringsheim’s sense.

The notion of e-convergence of double sequences,
which is substantially weaker than the Pringsheim
convergence, was defined by Boos et al. in (1997).

A double y= (i) is called

e-convergent to p, written e — lim;;y;; = p, if

sequence

In contrast to Pringsheim convergence, e-
convergence declares that the row-index i linked to
the column-index j whenever it goes to infinity. A
real double sequence y = (y;;) is called e-
bounded if there exists positive real number M such
that (Zeltser 2001)
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3jo € NVj > j, 3i; ENVi > iz |y;;| < M.

Moreover e-convergence of double sequences has
been studied by Zeltser (2001, 2002) and Sever and
Talo (2014, 2018).

Fast (1951) presented the concept of statistical
convergence. Let H be a subset of natural numbers.
The natural density of the set H is defined by

1
§(H) = lim ~|{k < n:k € H}|

when the limit exists, where the symbol |S]| is used
for the number of elements in S. if we consider the
definition of natural density, §(H) # 0 means that
either §(H) is greater than 0 or the set H does not
have natural density.

A sequence (y,) of numbers is called statistically
convergent to s, written st —lim,,_,,y, = s, if for
every € > 0 we have

1
i —_ < J- — > =
Jim o l{n < k:|yn — s 2 e}l = 0.

The concepts of statistical limit inferior and superior
were introduced by Fridy and Orhan (1997). Many
researchers contribute the statistical analogues of
different double
sequences (see; Mursaleen and Edely 2003, Méricz
2003, Cakan and Altay 2006, Edely and
Mursaleen 2006). Recently statistical e-

types of convergence for

convergence for double sequence was introduced
by Sever and Talo (2017). A double sequence y =
(ij) is called statistically e-convergent
to the number p, written Ste — limy;y;; =
p, if for all positive number ¢ the natural density of
the set

U:6({izlyij — pl 2 €}) = 0}
is equal to 1. In other words
8(U:6({i: lyyy — pl 2 €)= 03) = 1.

Aktuglu (2014)
convergence of ordinary sequences as follows:

introduced af3-statistical

Let us take a(k) and (k) which are non-decreasing
sequences of natural numbers such that a(k) <
B(k) and B(k) — a(k) = oo when k — co. The set
of pairs (8, @) are symbolized by I'. For each pair
(B,a) €T, 0<n <1andH < N. Define

ap
§%B (H,p) = lim ——tk |

k—oo (B(K)—a(k)+1)7 (1.2)

where I,fﬁ is used for the closed interval
[a(k), B(k)]. Itis called af natural density order 7.

A sequence y is said to be af-statistically
convergent of order 7 to s, written st*B-n —

limy = s, if forevery € > 0,
k—oo

8% ({n: |yn — s| = &},m)

N A e ]
T koo (B —a(k) +1)7
=0.

For n =1, we get that y is af-statistically
convergent to s, and written st — limy = s.

k—oo
Also, Karaisa (2016)  studied  statistical

af-summability.

We can easily derive the following lemma from
(1.1), similarly to Lemma 1 given by Aktuglu (2014).

Lemma 1.1 Let H; and H, be two subsets of N and
0 <7 < 1; then for each pair (8,a) €T,

a) if %F (Hy,n) = 1and §*F (H,, 1) = 1 then
6‘15(1-11 n Hz,n) = 1,

b) §%# (H, U Hy,,m) < 8%F (Hy,m) + 8%F (H,, 7).

We only interested in real double sequences in the
present study.

2. Main Result

In this section we extend the notion of statistical
e-convergence of double sequences to the notion of
af3-statistical e-convergence of order 1 of double
sequences as follow:

In contrast to ordinary sequence, double sequence
has two indices. So, we need four non-decreasing
sequences of positive integer. For this reason we
take a;(k) and S:(k) for t =1,2. By choosing
a;:(k) and B;(k), we get new kind of convergence
of double sequence, defined before or not,on  e-
sense.
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Definition 2.1 Let (f;,a;) €I, 0<n, <landH C
N. Fort =1,2;

sae(t,n,) = lim |H n [P
M) = % (Betk) — e (k) + 1)

[ac (), Be(K)] is

represented by I,‘:tﬁt. Itis called a; B; natural density

where the closed interval

order ;.

A double sequence x = (x;;) is called af-
statistically e-convergent of order n to & if for all
positive number ¢ the set

{j: 8%2P2 ({i: |xi; — §| = €},m) = 0}
has a4 81 natural density 1 order 1. In this case, we
denote this as st® 7" — lim;jx;; = €. If we take

112 = 1, then we have afi-statistical e-
convergence of the double sequence x to & and it is

abbreviated as Stgﬁ — lim;;x = ¢.

We will see at the Example 2.4 that this definition is
significant generalization of both e-convergence
and statistical e-convergence of double sequences.

Remark 2.2 Itis obvious thatif 0 <n, <y; <1,
fort =1,2and Stgﬁ_” —lim;;x;; = § then
st _limx;; = £
e i

Lemma 2.3 Let (f8;,a;) € 'fort = 1,2 andlet x
be a double sequence. If e — lim;;x;; = ¢ then

stgﬁ — liirjn xij = ¢.

Proof: The proof of the lemma is easily obtained
from the fact that af3-natural density order n of
finite set is zero.

Example 2.4 Let x = (x;;) be defined as

i+j, j=i
x;j:=14i"j , j<iand j or i aresquare,
0 , j<iandj and i are notsquare.

(2.2)
Then, it is easy to see that st, — lim;;x;; = 0. But,

1
take a,(k) =1, (k) = k", and 7, =% for t =
1
1,2 then st:ﬁ ? — lim;;x;; = 0 does not hold.

The rest of the paper (f;,a;) El'and 0 <7, <1
fort=1,2.

Theorem 2.5 Let A € Rand let (x;;) and (y;;) be

two double sequences. If st*# ™7 — lim;jx;; = &

and stgﬁ_n — lim;;y;; = &,. Then, the followings
hold
a) steP 7 —limg A x; = 2+ &,

b) Stgﬁ_77 —limy; (x5 + yi) = §1 + &2

Proof:
a) The equality is trivially true if A = 0. Let A # 0.

Then we have
£

M'xij_l'fllZg‘z)lxij_fllzm'

andfor (B,,a,) €T, 0<n, <1,
. €
§e2P2({i: |xy; — & | 2 m}.nz) =0,
and for (B, 1) ET,0<n; <1,foreverye >0
a B i Saf P €
SUP({j: 2P ({i: |xij —&l= m}»’lz) =0}n) =1

This implies stgﬁ_" —lim;A - x;; = 1+ &;.

b) Take positive number ¢. Since (x;;) and (y;;) are
af-statistically e-convergent of order n to the
numbers & and &,, respectively, then for given
positive number &

£
Hy = {j: 8%2P2 ((i: |x;; — & | = E}'Wz) = 0}
and

Hy = 56982 ({is lyy = §21 = 5)1m2) = 0}

with §%1A1(H;,n;) =1 and §%PF1(Hy ) = 1. If
we take H=H;NnH, then we
85%P1(H,n;) = 1. Since

|xij + yij — G+ 8] < |xj — &l + |yij — &2l
For each j € H we have
{iz]xij + yij — & + &)| = ¢}
C i xy = 11 = 5} U i vy — 2] = 3)

have

and

892 ({i: |x;; + yij — (&1 + &)| = €}my)
< §%b ({i: |xij — & 2 ;}le)

, €
+68%2Pz2 ({i: lyij — &2l = 5}’ 1n2)-
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Therefore

8P ({ir|x;; +yij — (G + &) = ehmz) =0

holds and we have

H < {j: (i |xij +yij — (&1 + &) = €}) = 0},
Hence, we get

§@B({j: 5%P2 ({ir|x;; + yij — (& + &)

>ehn,) =0}hm) = 1.
In the sequel we can give the definition of af-
statistical e-bounded for double sequences order 7.
After that we introduce the notions of af-
statistical e-limit superior and inferior order n for
double ones and show some theorems which
characterize new concepts.

Definition 2.6 A double sequences x = (x;;) is

called Stgﬁ_”-bounded below if there exists a real
number M; such that

§@P({j: §%P2 ({i:x;; < My}, mp) = 0},my) = 1.

Also, x = (x;;) is called stgﬁ_”-bounded above if
there exists a real number M, such that

5(1131({]: 5a232({i:xij > M,},n,) = 0}:771) =1L

If the sequence x = (x;;) is both stgﬁ_n—bounded

below and stgﬁ_n-bounded above then it is called

st;xﬁ_n-bounded.

Definition 2.7 Let x = (x;;) be a double sequences.
Let us define

Ke={ke R:5a1ﬁ1({j; 5“252({i:x” > k},13)
=1},n) =1},
and
Ly:={l € R: §4PL({j:6%2P2 ({ix;5 < 1,},m2)
Then

infL, L,#0,

Staﬁ -n
€ 00, otherwise

—limsupx:={

is called stgﬁ_" limit superior of x and

supK,, K, #0,

Staﬁ -n
€ —00, otherwise

— liminf x: = {

is called stgﬁ_" limit inferior of x.

Obviously, if x = (x;;) is st _pounded, then the
sets K, and L, are not empty set. Hence, both of
stgﬁ_" limit inferior and stgﬁ_" limit superior of x
are finite numbers.

Theorem 2.8 If stgﬁ_n limit superior of x is finite
number 1, then for all positive number ¢

541 ({j:6%P2({i:x; <y + e}my) = 1m) = 1,
541 ({j: 6%P2({i: x5 > 9 — £},m,) # 0},77,) # 0.

(2.1)
On the contrary, if for all positive number ¢ the
condition (2.1) holds then 1 = st%* ™ — limsup x.

Proof:

aB-n

Assume that st,

— limsup x = 9. In this case
Y = inf L,. According to the definition of infimum
of a set, for € > 0, there exists ¥, € L, such that
Y, <Y+ e Since Y. € L, and considering the
definition of the set L,, we have

Sl ({j: 8%2P2({i:xij < Pe}mz) = 1}my) = 1.
Since
{] 5“25‘2 ({lxu < l/)g}, 7’]2) = 1}
c{: 6“252({i:xl-j <y +ehny) =1}

we get that

§Uub({j: 8%F2 ({irx;; <y +e}my) =1}m) = 1.
We now illustrate the second formula of (2.1).
Hy = {l: 6%P2 ({i: x;; > 1 — €},m,) # 0}
and assume that §%11(H;,n;) = 0. In this case for
each | € Hf, we get 6Pz ({i:x;; > — €},n,) = 0.1n
other words, § %P2 ({i: Xij <Y —e},ny) = 1. Thus,

HE € (j: 6% ({1 < — £}7) = 1.

So that Y —e¢ € L,. Hence, Yy —e=infL, =y
which is a contradiction. Then, §%“f1(H;,n,) # 0.

Define

On the contrary, assume that the condition (2.1)
holds for a real number . This implies that for given
positive number e we get i + £ € L,.

stgﬁ_n —limsup x =infB, <Y +e. (2.2)

On the other hand for each [ € L, we have H, =
{j: 8%P2 ({izx;; < 1},m,) = 1} with
§%Pi(Hym) =1. So 8%Pi(Hy,n,) #0, there
exists j; € H; N H, such that
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6“232({1':)61-]-1 < l},nz) =1
and

§%2P2({izx;j, > ¢ —e},my) # 0.

Thus there exists i; such that Y —e <ux; ; <L
Since this holds for each [ € L, we get

Y—e<infL, = st —limsup x. (2.3)

Considering the conditions (2.2) and (2.3), since € is

arbitrary we obtain ¥ = st~ — limsup x which

is desired.
By duality we easily obtain the following theorem

for st# ™ limit infimum of x without proof.

Theorem 2.9 |If 51:;7‘3_77 limit inferior of x is finite
real number ¢, then for all positive number ¢

SUPL({j:8%F2 ({i:x;; < @ + €}, mz) # 0}, m1) # 0,
SUPL((j: 8% ({i:x;; > @ — e}, mp) = 1},m,) = 1.
(2.4)

On the contrary, if for all positive number ¢ the
condition (2.4) is satisfied then

ap-n

@ = st, — liminf x.

Theorem 2.10 Let ¢ be a finite real number.

ap-n

o — limsupx = ¢

st;"B‘” — liminf x = st

@stgﬁ_” —lim x = ¢.

Proof:

Let us assume that stgﬁ_" —lim x = &. Thenforall
positive number ¢, the set

H = {j: 6%F2({i: |x;; — | = €},n,) = 0}
with §%1A1(H,n,) = 1. So, we have for j € H,
6azﬁ2({ilxij = f + 8},7]2) =0

and

§%P2({iix;; <&E—e}my) =0
i.e.,

6“232({i:xi1 <&+ 8}.772) =1
and

6“232({i:xij >E&—¢}n,) = 1.

This implies that & + ¢ belongs to L, and & —¢
belongs to K,.. Consequently, the inequality

E—e< stgﬁ_" — liminf x = sup K,

< stgﬁ_n —limsup x =infL, <& +¢
holds. Since ¢ is arbitrary,

stgﬁ_n — liminfx = stgﬁ_" — limsup x = ¢

is obtained.
On the contrary, let us take

ap-n

st~ _liminf x = st2* " — limsup x = ¢.

Therefore, for all € > 0 there exist the sets H; and
H,,

Hy = {j: 8%F({iix;; < &+ €}my) =1},
Hy:= {j: §%P2({itx;; > & —e},m,) = 1}

with 6%P1(H;,n) =1 and §%PA1(H,,n) = 1. If
we take H=H;NH, then we
8%P1(H,n,) = 1. Forj € H we have

§eba({i: |y — §| < elmy) =1

have

or

§%2P2 ({iz |x;j — €| = €},m;) = 0.
Since

H € {j: 6%2P2({i: |x;; — €] = e},m,) = 0},
we get

P (g: 5%2P2 (i |x;; — €| = €}, mp) = 0}, 1my) = 1.

As aresult, stgﬁ_" —lim x = ¢.

Finally, we state the following theorem that can be
easily showed similar to the argument used by Sever
and Talo (2014).

Theorem 2.11 We have the following statements
for double sequences y = (y;;) and z = (z;;).

af-n

a) st, — liminfy < stfﬁ_" — limsup v,

b) stgﬁ_" — limsup (—y) = —(st:fﬁ_'7 — liminf y),

c) stgﬁ_" — limsup (y + z) < stfﬁ_" — limsup y

+stfﬁ_" — limsup z,

d) stfﬁ_" — liminf (y + z) > stfﬁ_" — liminf y

+stgﬁ_n — liminf z.
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