STRONG A_a-SUMMABILITY DEFINED BY A MODULUS

Tunay BilGiN

Department of Mathematics, Yüzüncü Yd Üniversity, Van-TURKEY

Abstract: In he present note we introduce some new sequence spaces by using a modulus function f and examine some properties of these sequence spaces.

BİR MODÜL YARDIMIYLA TANIMLANAN KUVVETLİ \mathbf{A}_{σ} -TOPLANABİLİRLİK

Özet: Bu çalışmada bir f modül fonksiyonu kullanılarak bazı yeni dizi uzayları tanımlanmakta ve bunların bazı özelikleri incelenmektedir.

INTRODUCTION

Let σ be a mapping of the set of positive integers into itself. A continuous linear functional ϕ on m, the space of real bounded sequences, is said to be an invariant mean or a σ -mean if and only if

- (1) $\phi(x) \ge 0$ when the sequence $x = (x_n)$ has $x_n \ge 0$ for all n,
- (2) $\phi(e) = 1$ where e = (1, 1, 1, ...), and
- (3) $\phi((x_{\sigma(n)})) = \phi(x)$ for all $x \in m$.

The mappings σ are assumed one-to-one and such that $\sigma^k(n) \neq n$ for all positive integers n and k, where $\sigma^k(n)$ denotes the k th iterate of the mapping σ at n.

For certain kinds of mappings σ , every invariant mean ϕ extends the limit functional on the space c of real convergent sequences, in the sense that $\phi(x) = \lim_{x \to \infty} x$ for all $x \in c$. Consequently, $c \subset V_{\sigma}$, where V_{σ} is the set of bounded sequences all of whose σ -means are equal [3].

When $\sigma(n) = n+1$, the σ -mean are the classical Banach limits on m and V_{σ} is the set of almost convergent sequences [1].

AMS Subject Classification (1980): 40A05, 40C05

Keywords and phrases: Invariant convergence, modulus function, paranormed space, sequence space.

If
$$x = (x_n)$$
, set $Tx = (Tx_n) = (x_{\sigma(n)})$. It can be shown [3] that $V_{\sigma} = \{ x = (x_n) : \lim_{n \to \infty} t_{mn}(x) = Le, \text{ uniformly in } n, L = \sigma \text{-lim } x \}$

where

$$t_{mn}(x) = (x_n + Tx_n + ... + T^mx_n) / (m+1).$$

Recently, Mursaleen [4] defined strongly σ-convergent sequences replacing the Banach limits by σ-means, in the following manner:

A bounded sequence $x = \{x_k\}$ is said to be strongly σ -convergent to a number L if and only if

$$\lim_{m} 1/m \sum_{k=1}^{m} |x_{\sigma k(n)} - L| \to 0, \text{ uniformly in } n.$$

The following inequality will be used frequently throughout the paper:

$$|a_K + b_K|^{p_K} \leqslant C(|a_K|^{p_K} + |b_K|^{p_K}) \tag{*}$$

where a_K , $b_K \in \mathbb{C}$, $0 < p_K \leqslant \sup p_K = H$, $C = \max (1, 2^{H-1})$ [2].

Definition 1 [7]. A function $f: [0, \infty] \rightarrow [0, \infty]$ is called a modulus if

- a) f(x) = 0 if and only if x = 0,
- b) $f(x + y) \le f(x) + f(y)$,
- c) f is increasing and
- d) f is continuous from the right at 0.

Several authers including Maddox [3], Öztürk and Bilgin [6] and some others have studied some new sequence spaces defined by a modulus function.

By using a modulus function f and a nonnegative regular matrix A, we defined the sequence space $w(A_{\sigma}f)$ as follows [5]:

$$w(A_{\sigma}f) = \left\{ x \in w: \lim_{m} \sum_{k} a_{mk} f(|x_{\sigma k(n)} - L|) = 0, \text{ for some } L \text{ uniformy in } n \right\}.$$

 Σ_k denotes the summation k = 1 to ∞ and w denotes all complex valued sequences.

Definition 2. Let $p = (p_K)$ be a sequence of strictly positive real numbers, f be a modulus, and A be an infinite matrix of nonnegative real numbers. We write

$$[A_{\sigma}f,p] = \left\{ x \in w : \lim_{m} \sum_{k} a_{mk} f(|x_{\sigma}k_{(n)} - L|)^{p_{k}} = 0, \text{ for some } L \text{ uniformly in } n \right\}$$

$$[A_{\sigma}f,p]_{0} = \left\{ x \in w : \lim_{m} \sum_{k} a_{mk} f(|x_{\sigma}k_{(n)}|)^{p_{k}} = 0, \text{ uniformly in } n \right\}$$

$$[A_{\sigma}f,p]_{\infty} = \left\{ x \in w : \sup_{m,n} \sum_{k} a_{mk} f(|x_{\sigma k(n)}|)^{p_{k}} < \infty \right\}.$$

If $x - Le = [A_{\sigma}f, p]_0$, we say that x is strongly A_{σ} -summable to L with respect to the modulus f, If x is strongly A_{σ} -summable to L with respect to the modulus we write $x_K \to L$ $[A_{\sigma}f, p]$.

Note that if $p_K=1$ for all K and A is a nonnegative regular matrix summability method, then

$$[A_{\sigma}f,p]=w(A_{\sigma}f)$$
 and $[A_{\sigma}f,p]_{0}=w(A_{\sigma}f)_{0}$.

The spaces $w(A_{\sigma}f)$ and $w(A_{\sigma}f)$ were introduced and discussed in [5].

If f(x) = x, the spaces $[A_{\sigma}f, p]$, $[A_{\sigma}f, p]_{0}$, and $[A_{\sigma}f, p]_{\infty}$ reduce to $[A_{\sigma}p]$, $[A_{\sigma}p]_{0}$, and $[A_{\sigma}p]_{\infty}$ respectively.

We first prove

Lemma 1. $[A_{\sigma}f, p]$, $[A_{\sigma}f, p]_0$ and $[A_{\sigma}f, p]_{\infty}$ are linear spaces over the complex field \mathbb{C} .

Proof. We consider only $[A_{\sigma}f,p]_0$. Others can be treated similarly. Let $x,y\in [A_{\sigma}f,p]_0$. For $\lambda,\mu\in\mathbb{C}$, there exist integers M_{λ} and N_{μ} such that $\{\lambda\} \leq M_{\lambda}$ and $\{\mu\} \leq N_{\mu}$. From Definition 1 (b) and (*) we have

$$\sum_{k} a_{mk} f(|x_{\sigma k(n)} + \mu y_{\sigma k(n)}|)^{p_{K}} \leq CM_{k}^{H} \sum_{k} a_{mk} f(|x_{\sigma k(n)}|)^{p_{K}} + CN_{\mu}^{H} \sum_{k} a_{mk} f(|y_{\sigma k(n)}|).$$

For $m \to \infty$, since $x, y \in [A_{\sigma}f, p]_0$, we have $\lambda x + \mu y \in [A_{\sigma}f, p]_0$. Thus $[A_{\sigma}f, p]_0$ is linear space over \mathbb{C} .

Theorem 1. $[A_{\sigma}f, p]_0$ and $[A_{\sigma}f, p]$ (inf $p_K > 0$) are complete linear topological spaces paranormed by h defined by

$$h(x) = \sup_{m,n} \left\{ \sum_{k} a_{mk} f(|x_{\sigma k(n)}|)^{p_K} \right\}^{1/M}, M = \max\{1, H\}.$$

Proof. Just consider $[A_{\sigma}f, p]_0$; the other is similarly.

Clearly $h(\theta) = 0$ and h(x) = h(-x). Take any $x, y = [A_{\sigma}f, p]_0$. Since $\frac{p_K}{M} \le 1$ and $M \ge 1$, using the Minkowski's inequality and the definition of f, for all m, n we have

$$\left\{ \sum_{k} a_{mk} f(|x_{\sigma k(n)} + y_{\sigma^k(n)}|)^{p_K} \right\}^{1/M} \leq \left\{ \sum_{k} a_{mk} f(|\lambda x_{\sigma^k(n)}|)^{p_K} \right\}^{1/M} + \left\{ \sum_{k} a_{mk} f(|y_{\sigma^k(n)}|)^{p_K} \right\}^{1/M}.$$

Now it follows that h is subadditive. Finally, to check the continuity of multiplication, let us take any complex λ . By definition of f we have

$$h(\lambda x) = \sup_{m,n} \left\{ \sum_{k} a_{mk} f(|x_{\sigma k(n)} \cdot \lambda|)^{p_{K}} \right\}^{1/M} \leq \{1 + [|\lambda|]\}^{H/M} h(x),$$

where [t] denotes the integer spart of t, whence $\lambda \to 0$, $x \to \theta$ imply $h(\lambda x) \to 0$ and also $x \to \theta$, λ fixed imply $h(\lambda x) \to 0$. We show that $\lambda \to 0$, x fixed imply $h(\lambda x) \to 0$.

Let $x \in [A_{\sigma} f, p]$ then as $m \to \infty$,

$$s_{nm} = \sum_{k} a_{mk} f(|x_{\sigma k(n)} - L|)^{p} \kappa \rightarrow 0 \text{ uniformly in } n.$$

For $|\lambda| < 1$, we have (by (*))

$$\sum_{k} a_{mk} f(|\lambda x_{\sigma k(n)}|)^{p_{K}} \leq C \sum_{k} a_{mk} f(|\lambda x_{\sigma k(n)} - \lambda L|)^{p_{K}} +$$

$$+ C \sum_{k} a_{mk} f(|\lambda L|)^{p_{K}} \leq C \sum_{k \leq M} a_{mk} f(|\lambda x_{\sigma k(n)} - \lambda L|)^{p_{K}} +$$

$$+ C \sum_{k \geq M} a_{mk} f(|x_{\sigma k(n)} - L|)^{p_{K}} + C \sum_{k \leq M} a_{mk} f(|\lambda L|)^{p_{K}}.$$

Let $\varepsilon > 0$ and choose M such that for each n, m and k > M implies $s_{nm} < \varepsilon/2C$. For each M, by continuity of f, as $\lambda \to 0$ (inf $p_K > 0$)

$$\sum_{k\leq M} a_{mk} f(|\lambda x_{\sigma k(n)} - \lambda L|)^{p_K} + \sum_{k} a_{mk} f(|\lambda L|)^{p_K} \to 0.$$

Then choose $\delta < 1$ such that $|\lambda| < \delta$ implies

$$\sum_{k\leq M} a_{mk} f(\lceil \lambda x_{\sigma k(n)} - \lambda L \rceil)^{p_{K}} + \sum_{k} a_{mk} f(\lceil \lambda L \rceil)^{p_{K}} < \varepsilon/2C.$$

Hence we have

$$\sum_{k} a_{mk} f(|\lambda x_{\sigma k(n)}|)^{p_{K}} < \varepsilon$$

and $h(\lambda x) \rightarrow 0$ ($\lambda \rightarrow 0$). Thus $[A_{\sigma}f, p]_0$ is paranormed linear topological space by h.

Now, we show that $[A_{\sigma}f, p]_0$ is complete with respect to its paranorm topologies. Let (x^s) be a Cauchy sequence in $[A_{\sigma}f, p]_0$. Then, we write $h(x^s - x^t) \to 0$, $s, t \to \infty$, i.e., as $s, t \to \infty$ for all n and m, we write

$$\sum_{k} a_{mk} f(|x_{\sigma k(n)}^{(s)} - x_{\sigma k(n)}^{(t)}|)^{p_{K}} \to 0.$$
 (1)

Hence, for each fixed n and k, as $s, t \to \infty$, we have $f(|x_{\sigma k(n)}^{(s)} - x_{\sigma k(n)}^{(t)}|)^p \kappa \to 0$ and for each fixed n and k, $(x_{\sigma k(n)}^{(s)})_s$ be a Cauchy sequence in C. Since C is complete, as $s \to \infty$, $(x_{\sigma k(n)}^{(s)})_s \to (x_{\sigma k(n)})$ say. Now from (1), we have for $\varepsilon > 0$, there exists a natural number N such that

$$\sum_{k} a_{nk} f(|x_{\sigma k(n)}^{(s)} - x_{\sigma k(n)}^{(t)}|)^{p_{K}} < \varepsilon$$
(2)

for all n, m and s, t > N. Hence for any fixed natural number M, we have from (2),

$$\sum_{k \le M} a_{mk} f(|x_{\sigma k(n)}^{(s)} - x_{\sigma k(n)}^{(t)}|)^{p_K} < \varepsilon$$
(3)

for all n, m and s, t > N. By taking $t \to \infty$ in the above expression we obtain

$$\sum_{k \in M} a_{mk} f(|x_{\sigma k(n)}^{(s)} - x_{\sigma k(n)}|)^{p_{K}} < \varepsilon$$

for all n, m and s < N. Since M is arbitrary, by taking $M \rightarrow \infty$ we obtain

$$\sum_{k} a_{mk} f(|x_{\sigma k(n)}^{(s)} - x_{\sigma k(n)}|)^{p_{K}} < \varepsilon$$

for all n, m and s > N, that is, $h(x^{(s)} - x) \to 0$ as $s \to \infty$ and thus $x^s \to x$ as $s \to \infty$.

Also, for each s, there exists $L^{(s)}$ with

$$\sum_{k} a_{mk} f(|x_{\sigma k(n)}^{(s)} - L^{(s)}|)^{p_{K}} \to 0 \ (m \to \infty)$$
 (4)

uniformly in n. From regularity of A, Definition 1(b) and (4), we have $f(|L^{(s)} - L^{(t)}|)^{p_{K}} \to 0$ (s, $t \to \infty$) and ($L^{(s)}$) is a Cauchy sequence in \mathbb{C} , so ($L^{(s)}$) converges to L, say. Consequently we get

$$\sum_{k} a_{mk} f(|x_{\sigma k(n)} - L|)^{p_K} \to 0 \ (m \to \infty)$$

uniformly in n. So that $x \in [A_{\sigma} f, p]$ and the space is complete.

Theorem 2. i) If f is a modulus f and x is strongly A_{σ} -summable to L, then x is strongly summable to L with respect to the modulus.

ii) If
$$\lim_{t\to\infty} \frac{f(t)}{t} = \beta > 0$$
 then $[A_{\sigma}f, p] = [A_{\sigma}p]$.

Proof. i) Let $x \in [A_{\sigma} p]$, so that

$$\lim_{m} \sum_{k} a_{mk} |x_{\sigma k(n)}|^{p} K = 0, \text{ uniformly in } n.$$

Let $1 > \varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(t) < \varepsilon$ for $0 \le t \le \delta$. We write $t_K = |x_{\sigma^k(n)} - L|^{p_K}$ and consider

$$\sum_{k} a_{mk} f(|x_{\sigma k(n)} - L|)^{p_{K}} = \Sigma_{1} + \Sigma_{2}.$$

The remainder of the claim can be proved by using the techniques similar to those used in Theorem 5 of Öztürk and Bilgin [6].

ii) In view of Theorem we need only show that $[A_{\sigma}f, p] \subseteq [A_{\sigma}p]$. For any modulus function, the existance of positive limit given with β was given in [5]. Now $\beta > 0$ and let $x \in [A_{\sigma}f, p]$. Since $\beta > 0$, for every t > 0, we write $f(t) \ge \beta t$. From this inequality, it is easy to see that $x \in [A_{\sigma}p]$. This completes the proof.

Theorem 3. Let A be a nonnegative regular matrix and f be a modulus, then $[A_{\sigma}f, p] \subseteq [A_{\sigma}f, p]_{\infty}$.

Proof. Let $x \in [A_{\sigma}f, p]$. From Definition 1(b) and (*) we have

$$\sum_{k} a_{mk} f(\mid x_{\sigma^{k}(n)} \mid)^{p_{K}} \leqslant C \sum_{k} a_{mk} f(\mid x_{\sigma^{k}(n)} - L \mid)^{p_{K}} + C \sum_{k} a_{mk} f(\mid L \mid)^{p_{K}}.$$

There exists an integer M_L such that $|L| \leqslant M_L$. Hence we have

$$\sum_{k} a_{mk} f(|x_{\sigma^{k}(n)}|)^{p_{K}} \leqslant C \sum_{k} a_{mk} f(|x_{\sigma^{k}(n)} - L|)^{p_{K}} + C \{M_{L} f(1)\}^{H} \sum_{k} a_{mk}.$$

Since A is regular and $x \in [A_{\sigma}f, p]$, we get $x \in [A_{\sigma}f, p]_{\infty}$ and this completes the proof.

STRONG A_G-SUMMABILITY DEFINED BY A MODULUS 95

REFERENCES

		,
[1] LORENTZ, G.G.	:	A contribution to the theory of divergent sequences, Acta Math 80 (1948), 167-190.
[2] MADDOX, I.J.	:	Elements of Functional Analysis, Cambridge University Press, 1970.
[3] MADDOX, I.J.	:	Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100 (1986), 161-166.
[4] MURSALEEN	:	Matrix transformations between some new sequence spaces, Houston J. Math., 9 (1983), 505-509.
[5] NURAY, P. and SAVAŞ, E.	:	Some new sequence spaces defined by a modulus function (Submitted for publication).
[6] ÖZTÜRK, E. and BİLGİN, T.	:	Strongly summable sequence spaces defined by a modulus, Indian J. Pure Appl. Math., 25 (6) (1994), 621-625.
[7] RUCKLE, W.H.	:	FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25 (1973), 973-978.
[8] SCHAFER, P.	:	Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1) (1972), 104-110.