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Summary : Let R be an associative ring, Z[t] is the totality of
polynomials in ¢ with coefficients in Z, the ring of integers, and let A4 be
any non-empty subset of R. In this paper, we consider the following ring

properties:
(F): For each x, y in R, there exits f(f)et* Z[¢] such that
[x—f(x)h ¥ =0

(C): For all x,y In R, there exist f(£), g (et Z[t] such that
x—Ff&h y—g] =0 ‘

- (I—A): For each x in R either x is central or there exists f(:)e
e f* Z[¢] such that x —f(x) e 4.

P(n # p,g): For each x, y in R, there exists f(¢) e¢* Z [{] such
that [x™ px"—xP f(y) x%, x]=0, where m, n, p, ¢ are fixed non-negative
integers.

P*(m, m p,q): For each x,y in R, there exist integers m=-0, #==0,
p=0, ¢=0 and f()e* Z [¢] such that [x™ yx" —xP F() x%, 2] = 0.

In fact, we prove “If R is a left (resp. right) s-unital ring satisfying
P(m,0,p q) (resp. P(0,n,p, ¢)), then R is commutative (and conversely)”,
and “If R is a left (resp. right) s-unital ring satisfying P* (m, 0, p, 4) (resp.
P¥(0, m p, q)) and (J—N (R)), then R is commutative (and conversely)”.

TEK YANLI “s-UNITAL” HALKALAR ICIN BAZI
EOMUTATIFLIK SONUCLARI

Ozet : R asosyatif bir halka, Z [¢] ¢nin katsayilart Z tamsayilar
halkasindan alinmty biitiin polinomlarindan olugan halka, 4 da R nin boy -
olmayan herhangi bir alt kiimesi olsun. Bu g¢ahkgmada ‘

() : Her x, ye R igin, [x—f(x), Y1=0 olacak sekilde f(t)e®* Z [¢]
vardir.

(C): Bittiin x, ye R fer igin, [x —f(x), y—g (] = 0 olacak ge-
kilde £(&), g@®)et* Z{t] vardm.
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(I-— A4) : Her xe R igin ya x merkeze aittir veya x — f(x) e 4 ola-
cak sekilde f(1) e Z 1] vardu,

P(n n p, g): Her x, ye R igin, [x™ yx"—x® f(3) x% x]=0 ola-
cak sekilde f(f) e ¢® Z[+] vardir (burada m. n. p, ¢ negatif olmayan sabit
tam saydardir).

P¥(m, n, p,q): Her x, ye R igin, [x™ yx"—x" f(3) x, x]=0 ola-
cak sekilde m==0, #=x0, p=0, g=0 tam saydari ve f({)e® Z[t] vardir.
gibi halka &zelikleri kullamilarak sunlar ispat edilmektedir:

1) “R, P(m, O, p, @) (P (0, #, p, q)) bzeligini gergekleyen bir sol (sag)
s-unital halka ise R komiitatiftir ve bunun karsiti da dogrudur”,

2) “R, P*(m, 0, p, q) &zeligini (P* (0, n, p, q) ve J—N (R)) Ozelik-
lerini) gergekleyen bir sol (sag) s-unital halka ise R komiitatiftir ve bunun
kargiti da dogrudur”,

Let R be an associative ring (not necessarily with unity 1). A ring R is called
left (resp. right) s-unital if x € Rx (resp. x e xR) for every xe R. Further, R is
called s-unital if xe Rx N xR for all xe R. If R is s-unital (resp. left or right
s-unital), then for any finite subset F of R, there exists an element e e R such
that ex = xe = x (resp. ex =x or xe = x) for all x¢ F, Such an element e
will be called a pseudo (resp. pseudo left or pseudo right) identity of F in R,
Throughout the paper Z(R) will denote the center of R, N(R) the set of
nilpotent elements of R, C(R) the commutator ideal of R, and 4 a non-
empty subset of R, As usual Z[¢] is the totality of polynomials in ¢ with coeffi-
cients in Z, the ring of integers, and for any x, ye R, [x; y] = xy — px.

By GF(g), we mean the Galois field (finite field) with ¢ elements, and (GF(g)),

the ring of all 2x2 matrices over GF(g). Set e, =(é g)’ 2 =((()) (1))’

090 00y, .
L =(i 0 ), and e22=(0 i )m GF{(p)), for a prime p.

Now, we consider the following types of rings :

) | ( GFO @) gj: g ) p a prime.
(i), ( GF(p) GF(p) ), pa pri:ﬁe.
0 0
(i)rll( g gg((*;; ),p a Prh?e. |
(i) M, (K) =>( a b ) a, beKE, where K is a. finite field with a
0 o) 3 _

non-trivial automorphism o.
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(iii) A non-commutative division ring.
(iv) S=< 1> 4 T, where T is a non-commutative radical subring of S.

(v) §S=<12> 4+ T, where T is a non-commutative subring of § such
that T[T, T] = [T, T] T = 0.

From the proof of [19, Korollar 1] it can be easily seen that if R is
a non-commutative ring with unity 1, then there exists a factorsubring of R,
which is of type (i), (), (1),, (iii), (iv) or (v). This gives the following Meta
Theorem, which plays the key role in our subsequent study :

Meta Theorem. Let P be a ring property which is inherited by factorsubrings.
If no rings of type (i), (i), (i), (ii), (iii), (iv) or (v) satisfy P, then every ring with
unity 1 satisfying P is commutative.

Next, we consider the following ring properties :
(H) : For each x, y in R, there exists f(¢) e 12 Z [¢] such that [x—f(x), ¥]=0.

(C) : For all x, y in R, there exist £{t), g (2) et Z[¢] such that [x — f(x),
y—gwl =0

(I — A) : For each x in R either x is central or there exists f(t) e * Z [¢]
such that x — f(x) e 4.

P(mn,p,q) : For each x, y in R, there exists f(t)e¢? Z[t] such that
[x™ yx" — x? f(3) x?, x] =0, where m, n, p, g are fixed non-negative integers.

P*(m, n, p, q) : For each x, y in R, there exist integers m =0, n > 0,
p=0,g=0and f(t)et® Z[t] such that [x" yx" — x* () x%, x] =0.

A well-known theorem of Herstein [10] (signified as Theorem H) asserts
that every ring satisfying (#) is commutative. Recently, various authors have
studied commutativity of rings satisfying conditions (C), but always under some
restrictions (cf. [9], [13]1&[15] ete)). More recently, Komatsu et al. [13] investi-
gaied the commutativity of rings satisfying the condition P* (m, 0, 0, g). Further,
in a paper [16] Nishinaka established the commutativity of ring R with the con-
ditions P(m, 0, 0, g) and P(n, 0, p, 0). In fact, he proved that a ring R with unity
1 satisfying any one of the conditions P(m, 0, 0, g) and P, 0, p, 0) must be com-
mutative. In the present paper, first we shall study the commutativity of rings sat-
isfying P (i, n, p, ) and establish the commutativity of one sided s-unital ring
with either of the conditions P(m, 0, p, g) and F(0, #, p, ). We then proceed to
investigate the commutativity of rings satisfying P*(m,0,p, q) or P*(0,n,p, q)
together with the condition (C). As corollaries to our theorems we shall give sev-
eral results concerning the commutativity of ring R. The results obtained in se-
quel generalize [, Theorem 1.1], [2, Theorems 2&3], [3, Theorems 1&2],
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[4, Theorem], [5, Theorem 2], [6, Theorems 1-4], [7, Theorems 4& 5], [15 Theo-
rems 2&3 (2)], [16, Theorem 1], [18, Theorem] and [20, Theorem 2 (5)], and
thus provide an effective measure to determine the commutativity of R.

We begin with the following lemmas, which are essentially proved in [13]
and [15] respectively.

Lemma 1 [13, Corollary 1]. Let R be a ring with unity 1 satisfying (C).
If R is non-commutative, then there exists a factorsubring of R, which is of type

(1) or (i).
Lemma 2 [15, Lemma 1]. If R is left s-unital and not right s-unital,
then R has a factorsubring of type (i),.

We pause to remark that the dual of Lemma 2 asserts that if R is right
s-unital and not left s-unital, then R has a factorsubring of type (i), .

The following proposition is an important one from the point of view that
it serves as the foundation for our entire discussion.

Propositior 1. Let R be a ring with unity 1. If R satisfies P(m, n, p, q),
then there exists no factorsubring of R which is of type (ii), (iii), (iv) or (v).

Proof. Consider the ring M, (K), a ring of type (ii). Let x=( g (0) ),
_ o (o

(c(a)séa),y=(g (1)) Then'
[x" yx" = x? f(3) %%, 2] =~ X" [x, ¥] 2" = — 0" (a — o (@) (G (@)" y # 0

for every f(¢) et* Z[t]. Thus no rings of type (i) satisfy P (m, n, p, q).
© Next, if R is a ring of type (iii), then choose f(#) e #? Z [¢] such that
[x—m yx— — x—2 () x4, x~1] = 0.
This yields that [x—™ yx—# — x—? f(y) x79, x] =0, that is
x7m [x, ] a7 =377 [x, [ v
It follows that ‘ :
XP [x, 3] xT = ™ [x, fO] X" (1

Now, choose g(f)ef? Z[t] such that [x" f(3) x" — %% g (f(») x%, x]=0. Hence
we get )

x" [x, O] %" = xP [x, g (FON] 5% : @

Comparing of (1) and (2) yields that x? [x, ¥] x? = xF [x, A(y)] %%, where
(=g (f(®))et? Z[t]. But, since x is unit, [y—A(y), x] =0 and by Theorem H,
R is commutative, a contradiction. Hence no rings of type (iii) satisfy P (m, n, p, ).
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Further, suppose that R has a factorsubring of type (iv). Let g, b e T. Since
1 — a is a unit, there exists f(#)et? Z[t] such that {g, b — f(5)] = — {1 — g,
b — f(b)] =0, by above paragraph. Hence, by Theorem H, T is commutative.
This is impossible. Hence no rings of type (iv) satisfy P (n, n, p, q).

Finally, suppose that R is of type (v) For each a, be T, there exists f(¢) e
et Z[f] such that

fa, 6] =(a+ 1)" {a, b] (@ + 1)’ = (a + 1)" [a, f(B)] (2 + 1)* = 0.
This is a contradiction. _
Hence, it proves that no rings of type (it), (iii), (iv) or (v) satisfy P (m, n, p, q).

Lemma 3. Let R be a ring with unity 1. If for each x, y in R there exists an
integer k=k (x, y) = 1 such that x* [x ¥] =0 or [x, y] x* =0, then necessarily
fx, 5] =0.

Preof. Choose an integer &, = & (x, }) = 1 such that (x -+ 1)k [x, y] =0.
Now, if N = max (%, k,), then it follows that xV [x, ¥]=0 and {x+1)" [x, y]=0.
We have [x, y]={(x+1)—x}?¥+1 [x, y]. On expanding the expression on right
hand side by binomial theorem and using the fact that x" [x, ]=0 and (x+1)¥
[x,y] =0, we get [x,y] =0. Similarly, if [x, ] x* = 0, then using the same
techniques, we get the required result. -

Lemma 4. Let R be a ring with 1 satisfving any one of the properties
P¥(m, 0, p, q) and P*(0, n, p, q). Then N(R) < Z(R).

Proef. Property P* (m, 0, p, ¢) may be written as x"[x, y] —x?[x, f(3)] x?=0.
Let ae N(R) and x be an arbitrary element of R. Then there exist integers
m,=m(x,a) =0, p, =p(x, a) =0, ¢, ==q (x, @)= 0 such that x™[x, g] =xP1t [x, f,(a)] xt
for some f, (1) e * Z[¢]. Similarly, for the pair of elements x, f, (q), there exist
integers m,=m(x, f (a)) =0, p,=p (x, f, (@) =0, ¢,=q (x, f,(a)) =0 such that

xm [x, £, (@)] = xP2{x, f,(f{ (@))] x7,
for some f,(f) e #* Z{t], which yields that '
xmitmg {x, a] = xP1tp: [x’fz(f: (g))] xd1+4z,

Thus, it is clear that for an arbitrary k, there exist integers my, mi,,..., 1, =0,
P Pasen P20, and ¢, q,,..., g, = 0 such that

x’"1+'ﬂ2'+---’"k [x, CI] = xprtpet..tp [xafk (fl (a) )] xa1taat.tap

But since g is nilpotent, xmi+met+me [ g] = 0 for sufficiently large k. Hence
in view of Lemma 3, we get [x,a] =0 for all x in R. This proves that
NR) < Z(R).

Using the similar arguments ‘one ¢an. establish ‘the result if R satisfies
P*(0, n, p, q)-
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Following [11], let P be a ring property. If P is inherited by every subring
and every homomorphic image, then P is called an h-property. More weakly,
if P is inherited by every finitely generated subring and every natural homomor-
phic image modulo the annihilator of a central element, then P is called an H-
property. '

A ring property P such that a ring R has the property P if and only if all its
finitely generated subrings have P, is called an F-property.

Proposition 2 [11, Proposition 1]. Let P be an H-property, and let P’ be an
F-property. I every ring R with unity 1 having the property I has the property
P’, then every s-unital ring having P has P’

We are now well-equipped to prove the following :

Theorem X. If R is a left s-unital ring satisfying P(m, 0, p, g), then R is
commutative (and conversely).

Proof. Consider the ring of type (i),;. Then
[y, + €)™ e — (e, + € )" fley) (e + €)% e el = —e, # 0,
for all integers m > 0, p = 0, ¢ = 0 and f(t) es* Z [t]. Accordingly, R has no

factorsubrings of type (i),. Hence by Lemma 2, R is s-unital and in view of
Proposition 2, we may assume that R has unity 1.

Combining the above fact with Proposition 1, we see that no rings of type
(i), (i), (iii), (iv) or (v) satisfy the ring property P (m, 0, p, g) and hence by Meta
Theorem, R is commutative.

Theorem 2. TIf R is right s-unital ring satisfying P (0, n, p, g), then R is
commutative (and conversely).

Proof. Consider the ring of type (i),. Then

lerz €22 — €3y f(erd) ez, ez2] = ez # 0,
for all integers 7 > 0, p >0, g = 0 and f(t)e? Z[f]. Thus, R has no factor-
subrings of type (i), and by the dual of Lemma 2, R is s-unital. Now, using the
same arguments as used in the proof of Theorem 1, we get the required result.

As corollaries to our theorems we have the following results improving
[1, Theorem 1.1], [4, Theorem], [5, Theorem 2 (iii)], [6, Theorems 1-4], [7, Theo-
rems 4& 5], [15, Corollary 2 (3)], [18, Theorem] and [20, Theorem 2 (5)]. Also,
note that Theorem 1 generalizes the results proved in [15, Theorem 2] and [16,
Theorem 1].

CoroHary 1. Let m, p and g be fixed non-negative integers, and let R be
4 left s-unital ring. If for each x, y in R, there exists an integer s=s(x, y)>1
such that [x™y — x* »* x%, x] = 0, then R is commutative (and conversely).
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Corollary 2. Let n, p, and g be fixed non-negative integers, and let R be a
right s-unital ring. If for each x, y in R, there exists an integer s=s (x, )>1 such
that [yx" — xP »* x%, x] =0, then R is commutative (and conversely).

Theorem 3. Let R be a left s-unital ring satisfying P* (m, 0, p, g) and
(I — N{R)). Then R is commutative {(and conversely).

Proof. It is easy to see that the arguments given in the first paragraph of
the proof of Theorem 1 are still valid in the present situation. So we assume
henceforth that R has unity 1 and no rings of type (i) satisfy the condition

P*(m, 0, p, q). Also, if R is a ring of type (ii), then choose x =( ¢ 0
0 ofw

@ ray=(0 ) 0w
X"y —xP X x) = —X"[x, ] =— " (@ —o(a) y#0,

for every f(t)e? Z[¢]. Thus no rings of type (ii) satisfy P*(m, 0, p, q). Since
N(RcZ(R) by Lemma 4, it is straightforward to see that R satisfies (C).
Hence, in view of Lemma 1, R is commutative.

The following theorem can also be proved on the same lines as above,
employing necessary variations.

Theorem 4. Let R be a right s-unital ring satisfying P*(0, », p, g) and
(I — N(R)). Then R is commutative {and conversely).

- As an immediate consequence of the above theorems, we obtain the follow-
ing results improving [2, Theorem 2], [5, Theorem 2 (iii)], [15, Corollary 2 (2)]
and [20, Theorem 2 (4)].

Corollary 3. Let R be a left s-unital ring. Suppose that for each x, y in R,
there exist integers m>0, p=0, g=0 and s>1 such that [x™ y—xf }* x7, x]=0
and for each x in R either x is central or there exists f(¢)et? Z[t] such that
x —f(x)e N(R). Then R is commutative (and conversely).

Corollary 4. Let R be a right s-unital ring. Suppose that for each x, y in
R, there exist integers >0, p>0 ,g>0 and s> 1 such that [yx"—x?* x%, x]=0
and for each x in R either x is central or there exists f{t)e+? Z[t] such that
x —f(x)e N(R). 'Then R is commutative (and conversely).
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