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Summary : Let R be an associative ring, Z [t] is the totality of 
polynomials in t with coefficients in Z, the ring of integers, and let A be 
any non-empty subset of R. In this paper, we consider the following ring 
properties: 

(ff): For each x, y in R, there exits /(f) e t* Z [t] such that 
[x—f(x),y] - 0 . 

(C) : For all x, y in R, there exist /(f), g (f) e fa Z [t] such that 
[*-/(*), y — g(y)]=0. 

(I—A) : For each x in R either x is central or there exists f(t)e 
e / ' Z [t] such that x — fix) e A. 

P (m, n, p, q) : For each x, y in R, there exists fit) et*Z [t] such 
that [xm yx"—^p fiy) xq, xj— 0, where m, n, p, q are fixed non-negative 
integers. 

P* (m, n, p, q) : For each x, y in R, there exist integers m^0, n^0, 
P^.0, q^0 and fit) e t2 Z [t] such that [xm yx" — xp f(y) xt, x] = 0. 

In fact, we prove "If R is a left (resp. right) j-unital ring satisfying 
P (m, 0, p, q) (resp. P (0, n, p, q)), then R is commutative (and conversely)", 
and "If J? is a left (resp. right) i-unital ring satisfying P* (m, 0, p, q) (resp. 
P*(0, n, p, q)) and (/—N(R)), then R is commutative (and conversely)". 

özet : R asosyatif bir halka, Z [t] t nin katsayıları Z tamsayılar 
halkasından alınmış bütün polinomlarından oluşan halka, A da R nin boş 
olmayan herhangi bir alt kümesi olsun. Bu çalışmada 

İH): Her x, y e ü için, [x—f(x),y]=0 olacak şekilde f(t)et*Z[t] 
vardır. 

( C ) : Bütün x,yeR 1er için, [x— f(x), y—giy)] = 0 olacak şe­
kilde fit), git) e t' Z[t] vardır. 
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(I—A) : Her xe R için ya x merkeze aittir veya x—f(x)eA ola­
cak şekilde / ( / ) e t3 Z [/] vardır. 

P(m, n, p, a) : Her x, yeR için, [xm yxn—xP f(y) x?, x]=0 ola­
cak şekilde /(t) e t* Z [/] vardır (burada m, n, p, q negatif olmayan sabit 
tam sayılardır). 

P* (m, il, p, q) : Her x, y e R için, [xm yx"—x'> f(y) x1, x]=0 ola­
cak şekilde m^O, n^O, .p^O, q^0 tam sayıları ve f[t)ef Z [t] vardır, 
gibi halka özelikleri kullanılarak şunlar ispat edilmektedir: 

1) "R, P(m, 0,p, q) (P(Q, n, p, q)) Özeliğini gerçekleyen bir sol (sağ) 
s-unital halka ise R komütatiftir ve bunun karşıtı da doğrudur", 

2) "R, P* (m, 0, p, q) Özeliğini (P* (0, n, p, q) ve (I—N(R)) özelik­
lerini) gerçekleyen bir sol (sağ) i-unital halka ise R komütatiftir ve bunun 
karşıtı da doğrudur". 

Let R be an associative ring (not necessarily with unity 1). A ring R is called 
left (resp. right) .y-unital i f xeRx (resp. xexR) for every xeR. Further, R is 
called .y-unital if xeRx n xR for all x e R. I f R is .y-unital (resp. left or right 
j-unital), then for any finite subset F of R, there exists an element e e R such 
that ex = xe = x (resp. ex — x or xe = x) for all xeF. Such an element e 
will be called a pseudo (resp. pseudo left or pseudo right) identity of F in R. 
Throughout the paper Z(R) will denote the center of R, N(R) the set of 
nilpotent elements of R, C(R) the commutator ideal of R, and A a non­
empty subset of R. As usual Z[t] is the totality of polynomials in t with coeffi­
cients in Z, the ring of integers, and for any x, yeR, [x, y] — xy — yx. 

By GF(q\ we mean the Galois field (finite field) with q elements, and (GF(q))z 

the ring of all 2 x 2 matrices over GF{q). Set en J jj j , e,2 = ^ jj * j , 

€ u = ( i o } a n d ^ 2 2 = ( o i ) i n f o r a p r i m e / 7 ' 

Now, we consider the following types of rings : 

(0 V i V , p a prime. 
{ 0 GF{p) j * 

(0, 0 Q p a pnme. 

7 0 GF(p) \ ' . 
(i) , p a prime. 

(ii) Af a (K) = < ( ) a, fteKL where K is a finite field with a 
( \ 0 o(a) j ) 

non-trivial automorphism cr. 
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(iii) A non-commutative division ring. 

(iv) S = < 1 > + T, where J1 is a non-commutative radical subring of S. 

(v) S — < 1 > + T, where T is a non-commutative subring of S such 
that T[T, T] = [T, T] 71 — 0. 

From the proof of [19, Korollar 1] it can be easily seen that if R is 
a non-commutative ring with unity 1, then there exists a factorsubring of R, 
which is of type (i), (i),-, (i) r, (iii), (iv) or (v). This gives the following Meta 
Theorem, which plays the key role in our subsequent study : 

Meta Theorem. Let P be a ring property which is inherited by factorsubrings. 
I f no rings of type (i), (i) ;, (i) r , (ii), (iii), (iv) or (v) satisfy P, then every ring with 
unity 1 satisfying P is commutative. 

Next, we consider the following ring properties : 

(H) : For each x, y in R, there exists f(t) et2 Z [t] such that [x—f(x), y] =0. 

(C) : For all x, y in R, there exist f{t), g (i) e t2 Z [t] such that [x —f(x), 
y~g(y)]=0-

(I — A) : For each x in R either x is central or there exists / (t) EtzZ [t] 
such that x —f(x)eA. 

P(m,n,p, q) : For each x, y in R, there exists f(t)et2 Z[t] such that 
[x™ yx" — xpf(y) x9, x] = 0, where m, n, p, q are fixed non-negative integers. 

P* (ms n, p, q) : For each x, y in R, there exist integers m > 0, n > 0, 
p > 0, q >: 0 and f(t) et2 Z [t] such that [xm yx" ~ xp f(y) xq, x] = 0. 

A well-known theorem of Herstein [10] (signified as Theorem H) asserts 
that every ring satisfying (H) is commutative. Recently, various authors have 
studied commutativity of rings satisfying conditions (C), but always under some 
restrictions (cf. [9], [13] «£[15] etc.). More recently, Komatsu et al. [13] investi­
gated the commutativity of rings satisfying the condition P* (m, 0, 0, q). Further, 
in a paper [16] Nishinaka established the commutativity of ring R with the con­
ditions P(m, 0, 0, q) and P(m, 0, p, 0). In fact, he proved that a ring R with unity 
1 satisfying any one of the conditions P(m, 0, 0, q) and P(m, 0,p, 0) must be com­
mutative. In the present paper, first we shall study the commutativity of rings sat­
isfying P (m,«, p, q) and establish the commutativity of one sided i-unital ring 
with either of the conditions P(m, Q,p, q) and i>(0, n,p, q). We then proceed to 
investigate the commutativity of rings satisfying P*(m, Q,p>q) or P*(0,n,p,q) 
together with the condition (C). As corollaries to our theorems we shall give sev­
eral results concerning the commutativity of ring R. The results obtained in se­
quel generalize [1, Theorem 1.1], [2, Theorems 2<£3], [3, Theorems 1&2], 
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[4, Theorem], [5, Theorem 2], [6, Theorems 1-4], [7, Theorems 4&5], [15 Theo­
rems 2&3 (2)], [16, Theorem 1], [18, Theorem] and [20, Theorem 2 (5)], and 
thus provide an effective measure to determine the commutativity of R. 

We begin with the following lemmas, which are essentially proved in [13] 
and [15] respectively. 

Lemma 1 [13, Corollary 1]. Let R be a ring with unity 1 satisfying (C). 
I f R is non-commutative, then there exists a factorsubring of R, which is of type 
(i) or (ii). 

Lemma 2 [15, Lemma 1]. I f R is left 5-unital and not right i-unital, 
then R has a factorsubring of type (i),. 

We pause to remark that the dual of Lemma 2 asserts that i f R is right 
.y-unital and not left ^-unital, then R has a factorsubring of type . 

The following proposition is an important one from the point of view that 
it serves as the foundation for our entire discussion. 

Proposition 1. Let be a ring with unity 1. I f R satisfies P(m, n, p, q), 
then there exists no factorsubring of R which is of type (ii), (iii), (iv) or (v). 

Proof. Consider the ring MC T(K), a ring of type (ii). Let x=( ° ], 

( c ( a ) * a ) , J = ( ° Then 

[x'" yx" - xp f(y) xq, x] = - xm [x, y) x" = - a'" (a - a (a)) (a (a))" y # 0 

for every f(t)et2 Z[t]. Thus no rings of type (ii) satisfy P(m, n,p, q). 

Next, i f R is a ring of type (iii), then choose f(t) et2 Z [t] such that 

[x~m yx-" — x~p f(y) x~Q, x-1] = 0. 

This yields that [x~m yx~n ~~ X~P f{y) x~<*, x] = 0, that is 

x-m [x, y] x~n = JC-P [x,f(y)] xn. 

I t follows that 

xp[x,y]xq = xm[x>f{y)]xn. (1) 

Now, choose g(t)etz Z[t] such that [xm f(y) x"~xp g(f(y)) xq, x]=0. Hence 
we get 

xm[x,f(y)} x" - g(f(y))] x«. (2) 

Comparing of (1) and (2) yields that xp [x, y] xq = xp [x, h (y)] x9, where 
h(t)=g(f(t))et2Z[t]. But, since x is unit, [y—h(y), x] =0 and by Theorem if , 
R is commutative, a contradiction. Hence no rings of type (iii) satisfy P (m, n, p, q). 
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Further, suppose that R has a factorsubring of type (iv). Let a, b eT. Since 
1 — a is a unit, there exists f(t)et2 Z[t] such that [a, b — fib)] = — [1 — a, 
b—f(b)] = 0 , by above paragraph. Hence, by Theorem H, T is commutative. 
This is impossible. Hence no rings of type (iv) satisfy P (m, n, p, q). 

Finally, suppose that R is of type (v). For each a, beT, there exists f(t)e 
etzZ [t] such that 

{a, b] = (a + l)m [a, b] (a + 1)" = (a + 1)" [a,f(b)] (a + 1)" = 0. 

This is a contradiction. 

Hence, it proves that no rings of type (ii), (iii), (iv) or (v) satisfy P (m, n,p, q). 

Lemma 3. Let R be a ring with unity 1. I f for each x, y in R there exists an 
integer k=k (x, y) > 1 such that xk [x, y] = 0 or [x, y] xk = 0, then necessarily 
[x, y] = o. 

Proof. Choose an integer k1 = k (x, y) > 1 such that (x -f l ) * 1 [x, y] = 0. 
Now, if A' = max(jfc, £,), then it follows that xN [x, y]=^0 and (x-\-\)N [x, y]=0. 
We have [x, y]={(xJrl)—x}2N+l [x, y]. On expanding the expression on right 
hand side by binomial theorem and using the fact that xN [x, y] =0 and ( x + l ) w 

[x, y] = 0, we get [x, y] = 0. Similarly, if [x, y] xk — 0, then using the same 
techniques, we get the required result. 

Lemma 4. Let R be a ring with 1 satisfying any one of the properties 
P*(m, 0,p, q) and P*(0, n, p, q). Then N(R) c Z(R). 

Proof. Property P* (m, Q,p, q) may be written as x'"[x, y]— xp[x,f(y)] x 4 =0. 
Let aeN(R) and x be an arbitrary element of R. Then there exist integers 
mx=m (x, a)>0, pl=p{x, a)>0, qx—q (x, a)>0 such that xm^[xt a] —XP*- [x,fs(a)] x1^ 
for some ^(t) e tz Z[t]. Similarly, for the pair of elements x, fx (d), there exist 
integers m2 =m (x, fx (a)) > 0, p 2 =p (x, fx (a)) > 0, q2—q(xt fj (a))^0 such that 

x»* [x,/, (a)] = x>* [xJM (a))] x**t 

for some f2 (t) etz Z [t], which yields that 
x'ni+m^ [ X ) a^ _ XPI+P* [x,f2(fl (a))] J C * i + « . 

Thus, it is clear that for an arbitrary k, there exist integers m,, m2,...,mk>0t 

xml+m, + ...mk flj = x P i + p t + ...+pk [x,fk (.../j (a) ...)] X<i+** + - + * k . 

But since a is nilpotent, x

mi+ntiJi'-+mk [x, a] = 0 for sufficiently large k. Hence 
in view of Lemma 3, we get [x, a] = 0 for all x in R. This proves that 
N(R)^Z(R). 

Using the similar arguments one can. establish the result if R satisfies 
i>*(0, n,p, q). 
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Following [11], let F be a ring property. I f P is inherited by every subring 
and every homomorphic image, then P is called an h-property. More weakly, 
if P is inherited by every finitely generated subring and every natural homomor­
phic image modulo the annihilator of a central element, then P is called an im­
properly. 

A ring property P such that a ring R has the property P if and only if all its 
finitely generated subrings have P, is called an F-property. 

Proposition 2 [11, Proposition 1]. Let P be an H-property, and let P'be an 
F-property. I f every ring R with unity 1 having the property P has the property 
P', then every s-unital ring having P has P'. 

We are now well-equipped to prove the following : 

Theorem 1. I f J? is a left 5-unitaI ring satisfying P (m, 0, p, q), then R is 
commutative (and conversely). 

Proof. Consider the ring of type (i),. Then 

[(eu + e ] 2 y eu - (en + e12)p f(e12) (eu + e12f, eu + eu] = - el2 # 0, 

for all integers m >. 0, p > 0, q >. 0 and /(?) et% Z [t]. Accordingly, R has no 
factorsu brings of type ( i ) ; . Hence by Lemma 2, R is i-unital and in view of 
Proposition 2, we may assume that R has unity 1. 

Combining the above fact with Proposition 1, we see that no rings of type 
(i), (ii), (iii), (iv) or (v) satisfy the ring property P(m, 0,p, q) and hence by Meta 
Theorem, R is commutative. 

Theorem 2. I f R is right j-unital ring satisfying P(0, n, p, q), then R is 
commutative (and conversely). 

Proof. Consider the ring of type (i)r. Then 

[e i 2 <?22 — ep

2f(el2) eW, e22] = el2 # 0, 

for all integers n^0, p >0, q > 0 and f(t)et2 Z[t]. Thus, R has no factor-
subrings of type (i) r and by the dual of Lemma 2, R is i-unital. Now, using the 
same arguments as used in the proof of Theorem 1, we get the required result. 

As corollaries to our theorems we have the following results improving 
[1, Theorem 1.1], [4, Theorem], [5, Theorem 2 (iii)], [6, Theorems 1-4], [7, Theo­
rems 4&5], [15, Corollary 2 (3)], [18, Theorem] and [20, Theorem 2 (5)]. Also, 
note that Theorem 1 generalizes the results proved in [15, Theorem 2] and [16, 
Theorem 1]. 

Corollary t. Let m, p and q be fixed non-negative integers, and let R be 
a left j-unital ring. I f for each x, y in R, there exists an integer s=s(x, y)>l 
such that [xmy — xp ys x9, x] = 0, then R is commutative (and conversely). 
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Corollary 2. Let n, p, and q be fixed non-negative integers, and let R be a 
right s-unital ring. I f for each x, y in R, there exists an integer s =s (x, y)> 1 such 
that [yx" — xp ys xq, x] = 0, then R is commutative (and conversely). 

Theorem 3. Let i i be a left j-unital ring satisfying P* (m, 0, p, q) and 
(I—N(R)). Then R is commutative (and conversely). 

Proof. It is easy to see that the arguments given in the first paragraph of 
the proof of Theorem 1 are still valid in the present situation. So we assume 
henceforth that R has unity 1 and no rings of type (i) satisfy the condition 

[x™ y - xp f(y) x*> x\ « - x'^x, y) = - a"' (a - rj (a)) y # 0, 

for every / ( / ) e t2 Z[t]. Thus no rings of type (ii) satisfy P*(m, 0, p, q). Since 
N(R)^Z(R) by Lemma 4, it is straightforward to see that R satisfies (C). 
Hence, in view of Lemma 1, J? is commutative. 

The following theorem can also be proved on the same lines as above, 
employing necessary variations. 

Theorem 4 . Let R be a right s-unital ring satisfying P* (0, /?, p, q) and 
(I—N(R)). Then R is commutative (and conversely). 

As an immediate consequence of the above theorems, we obtain the follow­
ing results improving [2, Theorem 2], [5, Theorem 2 (iii)], [15, Corollary 2 (2)] 
and [20, Theorem 2 (4)]. 

Corollary 3. Let be a left j-unital ring. Suppose that for each x, y in R, 
there exist integers m>;0, ¿)>0, q>0 and s>\ such that [xm y—xp y" xg, x]~0 
and for each x in R either x is central or there exists / ( t ) et2 Z [t] such that 
x —f(x)eN(R). Then i i is commutative (and conversely). 

Corollary 4. Let R be a right i-unital ring. Suppose that for each x, y in 
R, there exist integers «>0 , p>0 ,q>0 and s> 1 such that [yx"—xpysxq, x]=0 
and for each x in R either x is central or there exists f(t)et2 Z[t] such that 
x —f(x)eN(R). Then R is commutative (and conversely). 

R E F E R E N C E S 

[1J ABUJABAL, H.A.S. : A commutatMty theorem for left s-imital rings, Internal. J. Math. 
and Math. Sci., 13 (1990), 769-774. 

[2] ABUJABAL, H.A.S., : Some commutativity theorems for rings with constraints on a 
ASHRAP, M. and subset. Math. Japónica, 37 (5) (1992), 965-972. 
OBAID, M.A. 

P* (m, 0, ¿>, q). Also, i f R is a ring of type (ii), then choose x = 



68 H.A.S. ABUJABAL, M. ASHRAF and M.A. ALGHAMDI 

[3] ASHRAF, M. 

[4] ASHRAF, M. and 
QUADRT, M.A. 

[5] ASHRAF, M. and 
QUADRT, M.A. 

[6] ASHRAF, M., 
QUADRT, M.A. and 
ALI , A-

[7] B E L L , H.E., 
QUADRI, M.A. and 
ASHRAF, M. 

[8] B E L L , H.E. 

[9] CHACRON, M. 

[10] HERSTEIN, I.N. 

[11] HIRANO, Y. , 
KOBAYASHI, Y . and 
TOMINAGA, H. 

[12] KOMATSU, H. 

[13] KOMATSU, H. and 
TOMINAGA, H. 

[14] KOMATSU, H. and 
TOMINAGA, H. 

[15] KOMATSU, H., 
NISHINAKA, T. and 
TOMINAGA, H. 

[16] NISHINAKA, T. 

[17] NISHINAKA, T. 

[18] QUADRI, M.A. and 

K H A N , M.A. 
[19] STREB, W. 
[20] TOMINAGA, H. and 

YAQUB, A. 
[21] TOMINAGA, H. and 

YAQUB, A. 

Some commutativity theorems for associative rings with con­
straints involving a nil subset, Tamkang J. Math., 22 (1991), 
285-289. 

On commutativity of associative rings, Bull. Austral. Math. 
Soc, 38 (1988), 267-271. 

On commutativity of associative rings with constraints involving 
a subset, Radovi Mat., 5 (1989), 141-149. 

On commutativity of one sided s-unital rings, Radovi Mat., 
6 (1990), 111-117. 

Commutativity of rings with some commutator constraints, 
Radovi Mat, 5 (1989), 223-230. 

A criterion for commutativity of rings, Resultate Math., 18 
(1990), 197-201. 

A commutativity theorem for rings, Proc. Math. Soc, 59 (1976), 
211-216. 

Two remarks on commutativity of rings, Canad. J. Math., 75 
(1955), 411-412. 

Some polynomial identities and commutativity of s-unital rings, 
Math. J . Okayama Univ., 24 (1982), 7-13. 

A commutativity theorem for rings II, Osaka J. Math., 22 (1985), 
811-814. 

Chacron's condition and commutativity theorems, Math. J. 
Okayama Univ., 31 (1989), 101-120. 

Some commutativity theorems for left s-unital rings, Resultate 
Math., 15 (1989), 336-342. 

On commutativity of rings, Radovi Mat., 6 (1990), 303-311. 

A commutativity theorem for rings, Radovi Mat., 6 (1990), 
357-359. 
On commutativity of rings, Proceedings of 23 rd. Symposium 
on Rings Theory, Chiba University, Chiba (1990), 1-7. 
A commutativity theorem for associative rings, Math. Japonica, 
33 (1988), 275-279. 
Zur Struktur nichtkommutativer Ringe, Math. J. Okayama Univ., 
31 (1989), 135-140. 
Some commutativity properties for rings II, Math. 3. Okayama 
Univ., 25 (1983), 173-179. 
A commutativity theorem for one sided s-unital rings, Math. 
J. Okayama Univ., 26 (1984), 125-128. 


