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Summary : In this paper we study bipartite groups and bipartite
presentations. Further, we show that if & is bipartite group, then G is closed
under the subgroups of G. The result of this paper is usefu] to recognize
what each defining relator look like.

“BIPARTITE” GRUPLAR

Ozet ; Bu caligmada “bipartite” gruplar ve “bipartite” gosteriligler
incelenmekte ve G nin “bipartite” grup olmast durumunda G nin, alt grup-
lari altinda kapali oldugu gosterilmektedir.

1. Introductien, Given a group presentation (or more generally a 2-complex
") one can associate with it a 1—00mplex called the star complex. The star

complex ™ has been proved to be useful in several contexts (see [1], [3] and
[S]). A group G is called a bipartite group if & is a fundamental group of a
2-complex " with a bipartite complex ™. In this paper, we show that if G
1is bipartite group, then G is closed under the subgroups of . Further, we
consider a bipartite prescntation (a presentation is a 2-complex with a single
vertex). The result of this paper is useful to recognize what each defining relator
look like, Our methods involve a rather geometric version of combinatorial
group theory.

2. Preliminaries. A l-complex y consists of two disjoint sets V (vertices),
E (edges) together with three functions 1 : E= V¥, t: E=V, —1: E—E satisfying
tle=) =7(e), eV '=¢, e~ '#¢ for all ec E. A non-empty path o in yx is
a sequence e, €, ... e, (n=1) of edges with T (e;)=1(e;+1) (1 <i<n). The inverse
path o~! of @ is the path e ..e;'ey!. A path o is said to be closed if
i (u) = 7 (v). We say that a path o is reduced if e;# e} for all i=1,2,...,n—1.
Moreover if o is closed, then we say that o is cycllcally reduced if all its cyclic
permutations are reduced. With each vertex v in %, we associate the empty path 1, .

This path has no edges.
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A l-complex ¥ is said to be connected if given any two vertices #, v in ¥,
there is a path y such that 1(y) = u, and 7 (y) = v. We remark that 1-complexes
are called graphs by combinatorial group theorists (see [6]). In this paper a graph
is a pair consisting of a set ¥ of vertices and a subset E of VX V. An element of
E is called an edge. If e = (v, v,) € E, then e is the edge which joins the two
vertices v, and v,. For the general theory of graph theory, we refer the reader
to [2].

Now, given any 1-complex x with vertex set ¥, we associate with it a graph
T (y) in the following way: the vertex set of I'(¥) is ¥, and {u, v} is an edge of
T (y) if and only if there is an edge e of ¥ such that z(¢) =« and v (e) = v.

A 2-complex % is an object < ¥ ; py(heA) >, where y is a 1-complex
and each p, is a closed path in ¥, called the defining path. The elements of A
are called indices, If £ is a 2-complex, then we define & (24" as the set of
all ¢yclic permutations of a non-empty defining paths with the inverses. Let
A" be a 2-complex. Then an equivalence relation ~ .~ (or simply ~) on paths

in # as follows: An elementary reduction of a path o is a transformation of
o to o, o, if e has one of the forms «, yy~!u,, o, pu,, where vy is any path
and pe Z (#). If o and a’are two paths then we define a~ o o if and only
if there is a sequence of paths a=¢,, @, ,..., ¢,,=¢’, where for i=1,2,..., m—1
one of a;, ¢;1 is obtained from the other by an elementary reduction. The ~ -
equivalence class containing ¢ is denoted by [o] -~ (or simply [¢]). A path which
is ~-equivalent to an empty path is called contractible. If o and B are two
paths such that off is defined, then we define [a] [B] = [oB]. Let " be a 2-com-
plex and let v be a vertex of 2. Then the fundamental group =, (4, v) of £ al
v has the underlying set {[a]: & a closed path with i (a)=v}, where the binary
operation is the product defined above, and [0]~! = [a—1]. If £ is connected,
then the fundamental group =n, (£, v) is independent of the choice of the base
vertex v of 2. Therefore, we can refer to the fundamental group of 7,

Now, let & and % be 2-complexes. Then a mapping ¢ : # — % is a
function taking‘vertices to vertices, paths to paths satisfying ¢ (1,) = 14 ¢, for
a vertex v of ', ¢ (o, o) = ¢ (v,) ¢ (), o, o, are paths in X and o, a, is
defined, ¢ (a ")~ o ¢ (0)~"; ¢ (p) is contractible in Z for each defining path
p of A, We say that ¢ is rigid if it maps edges to edges, and satisfies
¢ (o—1) = ¢ (w)—! for all paths o in A", If ¢: A — &% is a mapping, then
there exists an induced homomorphism ¢, : n, (%, v) = 1, (&, ¢ (v)) defined
by ¢z (0] ) = [¢ (@)] oo, where [a]prem, (<, 7). A mapping ¢ : X - &
is said to be locally bijective if ¢ is rigid and maps Star(v) = {e: ec E(X),
t1(¢) = v} bijectively onto Star (¢ (v)), ¢ (Z (Z)) = 2 (). If, in addition,
A and # are connected, then ¢ is called covering (see [1], [5]). Let %" be a
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connected 2-complex, v a vertex of %", and let H be a subgroup of =, (F, v).
Then there is a covering ¢ ' — £ and a vertex vy of S,y such that ¢, maps
w, (A g, vy) isomorphically onto H, where ¢ is the covering corresponding
to H.

Let %" be a 2-complex. Then we can associate with " a l-complex %™
called the star complex of .~ by taking vertices E(#"), and edges Z (). If y

is an edge of X, then we can define the inverse edge to be the inverse path
vy=1, In order to define the initial and terminal points of ¥, we use the notation
F{y), (). We define #(y) to be the first edge of v and +*(y) to be the

inverse of the last edge of y. We note that ™ is a l-complex provided that
no element of & (") is equal to its inverse.

A 2-complex X satisfies T (4) — condition if and only if T (™) has no
triangles (see [3]).

3. Subgroups of bipartite groups. A l-complex y with a vertex set V is
called a bipartite complex if V. is disjoint union of two non-empty sets 1, V,
such that if e is an edge of ¥, then one of 7 (¢), T (¢) belongs to V, and the other
to V,, that is, ¥ is a bipartite complex if ['(x) is a bipartite graph. We point out
that a bipartite graph has no reduced closed path of odd length. In particular a
bipartite graph has no triangles. It follows that a bipartite- complex is a T (4)—
complex (see [3]).

Theorem 1. Every subgroup of a bipartite group is a bipartite group.

In order to prove Theorem 1, we prove the following lemma:

TLemma 1. Let ¢: % —% be a locally bijective mapping of 1-complexes
% and €. If € is a bipartite complex, then so %.

Proof. Define a vertex ve % to be an element in V,or V,if ¢ () =vis an
element in ¥, or V,. Then we have V= 1710 172. Now, let ¢ be an edge of €.

Then by the definition of ¢ (6) = e is an edge of ¥ has one of t{e), T(e)
belonging to V¥, and the other to ¥,. But ¢ is locally bijective. Then one of 1{e),

7 (¢) belongs to 171 and the other to Iﬂ/';. Therefore, % is a bipartite complex.

Proof of Theorem 1. Let 2 be a 2-complex with a bipartite complex #£™
Then G==mn, (X£") is a bipartite group. Let H=<x, (X"), and let % 5 be a covering
of 2, where =, (# g)=H. Then we want to prove that I' (#'y) as T (4™),
that is '} is a bipartite complex if #™ is a bipartite complex. Let 1y : o y— %

be locally bijective of 2-complexes. By the fact that n%: X'z — %™ is locally
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bijective mapping of l-complexes (see [5]), and by Lemma 1, we have I (X" )
as T (™).

4, Bipartite presentations. TIn order to state our result we recall the fol-
lowing definitior (see [5]). Let x be an alphabet. A word w on x is said to be
positive (resp. negative) if only positive (resp. negative) powers of elements
of x appear in the word. Let u and v be two disjoint sets of non-empty words on
x. A word ¢, t, ... t,(s=1, rreayy, for i=1,2,...5) is called an alternating
(u, v) - word if the following holds: for 1 < i<, if f;ew, then ,;ev. A word
is called a cyclically alternating (u, v) - word with the additional property that
t, and ¢, do not belong to the same set u or v.

Consider a bipartite presentation having n generators x. Let x=x, U X, u X3
where the numbers of generators x,, X,, X, are k, I, m respectively such that
E+I1+m=n

Theorem 2. Let & be a bipartite presentation as described above. Then each
defining relator is a positive word on x; (up to replacing each generator by its
inverse) or cyclically alternating (x}, x) - word or cyclically alternating (u, v) -
word, where u is a positive word on x; and v Is an alternating (x5, xJ") - word.

Proof. The vertex set of I (Z) looks like :

. R
[ *1 *
1
Xz e TRy
X, ]
. . p—t
X x;
X1 * * Xkl
-1, . 1
Xk X141
1] VLo ¢ X +1
X 1 —1 X3
l x;— . ¢ X
o+ k2t
b Xk Lk
. el
Frtlem
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Note that for a presentation & = << x;r > that {x%, »®} (x, yex,|e|=
={8| =1} is an edge if and only if y—5 x* is a subword of some elements of
r* where r* is the set of all cyclic permutations of elements of r and their inverses.

Case 1. If x, =X, == ¢, then each defining relator will be a positive word
on x, (up to replacing each generator by the inverse).

Case 2. If x, = ¢, then each defining relatoer is cyclically alternating (u, v} -
word where u is a positive word on x, and v is an alternating (x#, xi¥) - word.
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