ON THE STABILITY AND THE BOUNDEDNESS PROPERTIES OF SOLUTIONS OF CERTAIN FOURTH ORDER DIFFERENTIAL EQUATIONS

Cemil TUNÇ
University of Yüzüncü Yıl, Faculty of Education, 65080, Van-TURKEY

Summary: The main purpose of this paper is to study the asymptotic stability in the large of the zero solution for Eq. (1.1) with \(p \equiv 0 \) and the boundedness of solutions for Eq. (1.1) with \(p \neq 0 \).

4. MERTEBEDEN BELIRLI DİFERANSİYEL DENKLEMLERİN STABİLİTE VE SINIRLILIK ÖZELLİKLERİ HAKKINDA

Özet: Bu çalışmanın ana amacı, \(p \equiv 0 \) halinde (1.1) denklemünün sıfır çözümünün asimtotik stabilitesini ve \(p \neq 0 \) halinde (1.1) çözüm lerinin sınırlılığını incelemektir.

1. Introduction and statement of the results

We consider the equation

\[
x^{(4)} + \phi (x, \ddot{x}, \dot{x}, x) \ddot{x} + f(x, \ddot{x}) + g(x, \dot{x}) + h(x) = p(t, x, \ddot{x}, \dot{x}, x) \quad (1.1)
\]

in which the functions \(\phi, f, g, h \) and \(p \) depend at most on the arguments shown explicitly and the dots denote differentiation with respect to \(t \). Further, it will be assumed that the functions \(\phi, f, g, h \) and \(p \) are continuous for all values of their respective arguments and that the derivatives

\[
\frac{\partial}{\partial x} \phi (x, y, z, u), \frac{\partial}{\partial y} \phi (x, y, z, u), \frac{\partial}{\partial u} \phi (x, y, z, u), \frac{\partial}{\partial y} f(y, z), \frac{\partial}{\partial x} g(x, y),
\]

\[
\frac{\partial}{\partial y} g(x, y) \text{ and } h'(x) \text{ exist and are continuous for all } x, y, z \text{ and } u.
\]

All functions and solutions are supposed to be real. Moreover, the existence and the uniqueness of the solutions of (1.1) will be assumed.

Key words: Nonlinear differential equations of the fourth order, \(V \)-function, Stability, Boundedness.

AMS Classification numbers: 34C11, 34D05.
It will be convenient in what follows to use the equivalent system:

\[\begin{align*}
 \dot{x} &= y, \quad \dot{y} = z, \quad \dot{z} = u, \\
 \dot{u} &= -\phi(x, y, z, u) - f(y, z) - g(x, y) - h(x) + p(t, x, y, z, u),
\end{align*} \]

which is obtained from (1.1) by setting \(y = \dot{x}, \quad z = \ddot{x} \) and \(u = \dddot{x} \).

The boundedness and stability properties of solutions for various equations of the fourth order differential equations have been considered by many authors. Many of these results are summarized in [12].

Ezeilo [4] investigated the stability and boundedness of the solutions of the equation

\[x^{(4)} + f(\dddot{x}) \dddot{x} + \alpha_2 \dddot{x} + g(\dot{x}) + \alpha_4 x = p(t). \]

Harrow ([6], [7], [8]) studied the problem for the simple variant of (1.1) given by

\[x^{(4)} + ax + f(\dot{x}) + g(\dot{x}) + h(x) = p(t). \]

In [9], Lalli and Skrapek obtained a similar result for the equation

\[x^{(4)} + f(\dot{x}) \dddot{x} + f_1(\dot{x}, \ddot{x}) + g(\dot{x}) + h(x) = p(t). \]

Abou-El-Ela [1] investigated the boundedness of the solutions of the equation

\[x^{(4)} + f(\dot{x}, x) \dddot{x} + \alpha_2 \dddot{x} + g(\dot{x}) + \alpha_4 x = p(t). \]

Also recently, in [3], Bereketoglu dealt with the equation of the form

\[x^{(4)} + f_1(\dot{x}, \dddot{x}, x) + f_2(\dot{x}, \dddot{x}) + g(\dot{x}) + h(x) = p(t). \] \hspace{1cm} (1.3)

He presented sufficient conditions for the asymptotic stability in the large of the trivial solution of (1.3) with \(p(t) = 0 \) and the boundedness of solutions of (1.3) with \(p(t) \neq 0 \).

In the case \(p(t, x, y, z, u) = 0 \) we have

Theorem 1. Suppose the following conditions are satisfied:

(i) \(f(y, 0) = g(x, 0) = h(0) = 0. \)

(ii) There are positive constants \(\alpha_1, \alpha_2, \alpha_3, \alpha_4 \) and \(\Delta_0 \) such that

\[\alpha_1 \alpha_2 \alpha_3 - \alpha_3 \frac{g(x, y)}{y} - \alpha_1 \alpha_4 \varphi(x, y, z, 0) \geq \Delta_0 \text{ for all } x, z \text{ and } y \neq 0. \]

(iii) \(\varphi(x, y, z, u) \geq \alpha_1 > 0 \text{ for all } x, y, z \text{ and } u, \)

\[\frac{f(y, z)}{z} \geq \alpha_2 \text{ for all } y, z \neq 0, \]
ON THE STABILITY AND THE BOUNDEDNESS ... 163

\[\frac{g(x, y)}{y} \geq a_1 \text{ for all } x, y \neq 0, \]
\[\frac{h(x)}{x} \geq \beta \text{ for all } x \neq 0, \text{ where } \beta \text{ is a positive constant.} \]

(iv) \(\left(a_4 - \frac{a_1 \Delta_0}{4a_3} \right) < h'(x) \leq a_4 \text{ for all } x. \)

(v) \(\left(\frac{\partial}{\partial y} g(x, y) - \frac{g(x, y)}{y} \right) \leq \delta_1 \text{ for all } x, y \neq 0, \text{ where } \delta_1 \text{ is a positive constant satisfying } \delta_1 < \frac{2a_4 \Delta_0}{a_1 a_3^2}. \)

(vi) \(\left(\frac{1}{z} \right) \int_0^z \varphi(x, y, s, 0) \, ds - \varphi(x, y, z, 0) \leq \delta_2 \text{ for all } x, y \text{ and } z \neq 0, \text{ where } \delta_2 \text{ is a positive constant such that } \delta_2 < \frac{2\Delta_0}{a_1 a_3}. \)

(vii) \(\frac{\partial}{\partial y} f(y, z) \leq 0, y \frac{\partial}{\partial x} \varphi(x, y, z, 0) \leq 0, z \frac{\partial}{\partial x} \varphi(x, y, z, 0) \leq 0, \)
\[y \frac{\partial}{\partial y} \varphi(x, y, z, 0) \leq 0 \text{ and } z \frac{\partial}{\partial y} \varphi(x, y, z, 0) \leq 0 \text{ for all } x, y \text{ and } z. \)

(viii) \(\frac{f(y, z)}{z} - \alpha_2 \leq \frac{\epsilon_0 a_3^3}{a_4^2} \text{ for all } y, z \neq 0, \text{ where } \epsilon_0 \text{ is a positive constant such that } \)
\[\epsilon_0 < \epsilon \leq \min \left[\frac{1}{a_1}, \frac{a_4}{a_3}, \frac{\Delta_0}{4a_1 a_3 D_0}, \frac{a_1}{4a_4 D_0} \left(\frac{2a_4 \Delta_0}{a_1 a_3^2} - \delta_1 \right), \right. \]
\[\frac{a_1}{4D_0} \left(\frac{2\Delta_0}{a_1^2 a_3} - \delta_2 \right) \]
(1.4)
\[\text{with } D_0 = a_1 a_2 + \frac{a_2 a_3}{a_4}. \]

(ix) \(\left(\frac{\partial}{\partial x} g(x, y) \right)^2 \leq \frac{a_1 \Delta_0 (\epsilon - \epsilon_0)}{16} \text{ for all } x \text{ and } y, \)
\[\text{and } \frac{1}{y} \int_0^y \frac{\partial}{\partial x} g(x, s) \, ds \leq \frac{\sigma_3 (\epsilon - \epsilon_0)}{4} \text{ for all } x, y \neq 0. \]
Then every solution of (1.1) satisfies
\[x(t) \to 0, \dot{x}(t) \to 0, \ddot{x}(t) \to 0, \dot{\ddot{x}}(t) \to 0 \text{ as } t \to \infty. \] (1.6)

Remark 1. When \(\varphi(x, x, x, x) = a_3 x \), \(g(x, x) = a_2 x \) and finally \(p(t, x, x, x, x) = p(t) \), then conditions of Theorem 1 and Theorem 2 are reduced to those of Bereketoglu [3]. When \(\varphi(x, x, x, x) \) and \(g(x, x) \) depend only on \(x \), \(\dot{x} \), respectively, and \(f(x, \dot{x}) = a_2 x, \dot{\dot{x}}(x) = a_4 x \) and
\[p(t, x, x, x, x) = p(t), \]
then conditions of Theorem 1 and Theorem 2 are reduced completely to those of Ezeilo [4]. Moreover, conditions of Theorem 1 and Theorem 2 reduce to the conditions of the relevant theorems by Lalli and Skrakep [9] and Harrow [6],
up to very small differences. These differences are due to the fact that the
Lyapunov function is not identical.

2. The Function $V(x, y, z, u)$

The main tool, in the proof of the theorems, is the function $V = V(x, y, z, u)$
defined by:

$$
2V = 2d_2 \int_0^x h(s) \, ds + [d_z \alpha_z - d_l \alpha_l] \phi^2 + 2 \int_0^x g(x, s) \, ds + 2 \int_0^x [d_1 f(y, s) - d_2 s] \, ds + \\
+ 2 \int_0^x \varphi(x, y, s, 0) \, ds + 2 d_2 z \int_0^x \varphi(x, y, s, 0) \, ds + d_1 u^2 + 2y h(x) + \\
+ 2d_4 z h(x) + 2d_4 z g(x, y) + 2d_2 y u + 2zu,
$$

where

$$
d_1 = \frac{1}{\alpha_1} + \varepsilon,
$$

d_2 being the constant defined by (1.5).

First discuss some important inequalities.

Let Φ_1 be the function defined by

$$
\Phi_1(x, y, z, 0) = \begin{cases}
\left(\frac{1}{z}\right) \int_0^x \phi(x, y, s, 0) \, ds, z \neq 0 \\
\phi(x, y, 0, 0), z = 0.
\end{cases}
$$

Using (iii) and (vi) we obtain

$$
\Phi_1(x, y, z, 0) \geq \alpha_1 > 0 \text{ for all } x, y \text{ and } z, \quad (2.4)
$$

Further we define

$$
\Phi_3(x, y) = \begin{cases}
g(x, y), y \neq 0 \\
\frac{\partial}{\partial y} g(x, 0), y = 0.
\end{cases}
$$

We have from (iii) and (v)

$$
\Phi_3(x, y) \geq \alpha_3 \text{ for all } x \text{ and } y, \quad (2.7)
$$

$$
\frac{\partial}{\partial y} g(x, y) - \Phi_3(x, y) \leq \delta_1 \text{ for all } x \text{ and } y. \quad (2.8)
$$
From (2.2) and (1.5) we have
\[
\alpha_2 - d_1 \frac{g(x, y)}{y} - d_2 \varphi(x, y, z, 0) = \]
\[
= \left(\frac{1}{\alpha_1 \alpha_3} \right) \left[a_1 a_2 a_3 - \alpha_3 \frac{g(x, y)}{y} - a_4 \varphi(x, y, z, 0) \right] - \varepsilon \left[\frac{g(x, y)}{y} + \varphi(x, y, z, 0) \right].
\]
But also (ii) and (iii) imply that
\[
\frac{g(x, y)}{y} < a_1 a_2 \varphi(x, y, z, 0) < \frac{\alpha_2 \alpha_3}{\alpha_4}.
\]
Thus it follows that
\[
\alpha_2 - d_1 \frac{g(x, y)}{y} - d_2 \varphi(x, y, z, 0) > \left(\frac{\alpha_0}{\alpha_1 \alpha_3} - \varepsilon D_0 \right) \quad \text{for all } x, z \text{ and } y \neq 0, \quad (2.9)
\]
by using (ii) and (viii).

Since \(\Phi_1(x, y, z, 0) = \varphi(x, y, \bar{z}, 0), \bar{z} = \theta z, 0 \leq \theta \leq 1, \) then
\[
\alpha_3 - d_1 \frac{g(x, y)}{y} - d_2 \Phi_1(x, y, z, 0) \geq \frac{\alpha_0}{\alpha_1 \alpha_3} - \varepsilon D_0. \quad (2.10)
\]

The following two lemmas are to prove that the function \(V(x, y, z, u) \) is a Lyapunov function of the system (1.2).

Lemma 1. Suppose that the conditions of Theorem 1 hold. Then there is a positive constant \(D_1 \) such that
\[
V \geq D_1 [x^2 + y^2 + z^2 + u^2] \quad (2.11)
\]
for all \(x, y, z \) and \(u \).

Proof. \(V(0, 0, 0, 0) = 0, \) since \(f(0, 0) = g(0, 0) = h(0) = 0. \) Rewrite the function \(2V(x, y, z, u) \) as follows:
\[
2V(x, y, z, u) = \frac{1}{\Phi_1(x, y, z, 0)} [u + z \Phi_1(x, y, z, 0) + d_2 y \Phi_1(x, y, z, 0)]^2 + \\
+ \frac{1}{\Phi_3(x, y)} [h(x) + y \Phi_3(x, y) + d_1 z \Phi_3(x, y)]^2 + V_1 + V_2 + V_3 + V_4, \quad (2.12)
\]
where
\[
V_1 = [d_2 \alpha_2 - d_1 \alpha_4 - d_2^2 \Phi_1(x, y, z, 0)] y^2 + 2 \int_0^y g(x, s) ds - y^2 \Phi_3(x, y),
\]
ON THE STABILITY AND THE BOUNDEDNESS ...

\[V_2 = 2 d_1 \int_0^z \left[f(y, s) - a_2 s \right] ds + [d_1 a_2 - d_2 - d_2^2 \Phi_3(x, y)] z^2 + \\
+ 2 \int_0^z s \phi(x, y, s, 0) ds - z^2 \Phi_1(x, y, z, 0), \]

\[V_3 = 2d_2 \int_0^x h(s) ds - \frac{1}{\Phi_4(x, y)} \left[\frac{h(x)}{x} \right]^2 x^2, \]

\[V_4 = \left[d_1 - \frac{1}{\Phi_4(x, y, z, 0)} \right] u^2. \]

From (1.5), (2.2), (iii) and (2.10) we obtain

\[d_2 a_2 - d_1 a_4 - d_2^2 \Phi_1(x, y, z, 0) > \frac{a_4}{a_3} \left(\frac{\Delta_0}{a_1 a_3} - \varepsilon D_0 \right). \]

Since \(yg(x, y) = \int_0^y g(x, \eta) d\eta + \int_0^y \eta g(x, \eta) d\eta, \) then

\[2 \int_0^y g(x, \eta) d\eta - y^2 \Phi_3(x, y) \geq \left(- \frac{\delta_1}{2} \right) y^2, \text{ by (2.8)}. \]

Therefore we get

\[V_1 \geq \frac{1}{2} \left[\frac{2a_4 \Delta_0}{a_1 a_3^2} - \frac{2a_4 \Delta_0}{a_3} \varepsilon - \delta_1 \right] y^2 > \frac{1}{4} \left[\frac{2a_4 \Delta_0}{a_1 a_3^2} - \delta_1 \right] y^2, \text{ by (1.4)}. \]

By similar estimation, using condition (iii), (1.5), (2.2) and (2.9) we get

\[d_1 a_2 - d_2 - d_2^2 \Phi_1(x, y) = \\
d_1 [a_2 - d_1 \Phi_1(x, y) - d_2 \phi(x, y, z, 0)] + d_2 [d_4 \phi(x, y, z, 0) - 1] > \\
d_1 [a_2 - d_1 \Phi_3(x, y) - d_2 \phi(x, y, z, 0)] \left(\frac{1}{a_1} \right) \left[\frac{\Delta_0}{a_1 a_3} - \varepsilon D_0 \right]. \] (2.13)

From the identity

\[\int_0^z s \phi(x, y, s, 0) ds = z \int_0^z \phi(x, y, s, 0) ds - \int_0^z s \Phi_1(x, y, s, 0) ds \]

we get
\[
2 \int_0^z \varphi(x, y, s, 0) \, ds - z^3 \Phi_1(x, y, z, 0) = \left[\int_0^z \left(\varphi(x, y, s, 0) - \Phi_1(x, y, s, 0) \right) \right] s \, ds \geq - \left(\frac{\delta_2}{2} \right) z^3, \text{ by (2.5).}
\]

Also from (iii) we obtain
\[
\int_0^z \left[\frac{f(y, s)}{s} - a_2 \right] s \, ds \geq 0.
\]

Therefore
\[
V_2 \geq \left\{ \frac{1}{a_1} \left(\frac{\Delta_0}{a_1 a_3} - \epsilon D_0 \right) - \frac{\delta_2}{2} \right\} z^3 \geq \frac{1}{4} \left(\frac{2\Lambda_0}{a_1^2 a_3} - \delta_2 \right) z^3, \text{ by (1.4).}
\]

For the component \(V_3 \), from (i), (iii), (iv) and (1.5) it follows that
\[
V_3 \geq 2 \left(\epsilon + a_4 a_3^{-2} \right) \int_0^x h(s) \, ds - \frac{1}{a_3} \left[\frac{h(x)}{x} \right]^2 x^2 \geq (\epsilon \beta) x^2 +
\]
\[
+ 2 \int_0^x \frac{h(s)}{s} \left[\frac{a_4}{a_3} - \frac{1}{a_3} H'(s) \right] s \, ds \geq (\epsilon \beta) x^2.
\]

By using (2.2) and (2.4) we obtain \(V_4 \geq \epsilon u^2 \).

Combining the estimates for \(V_1, V_2, V_3 \) and \(V_4 \) with (2.12) we have
\[
2V \geq (\epsilon \beta) x^2 + \frac{1}{4} \left[\frac{2a_4 \Delta_0}{a_1 a_2} - \delta_1 \right] y^2 + \frac{1}{4} \left(\frac{2\Lambda_0}{a_1^2 a_3} - \delta_2 \right) z^2 + \epsilon u^2,
\]
noting that all the four coefficients of the above expression are nonnegative. Then there exists a positive constant \(D_1 \) such that
\[
V \geq D_1 [x^2 + y^2 + z^2 + u^2].
\]

Thus the proof is now complete.

Lemma 2. Suppose that the conditions of Theorem 1 hold. Then there is a positive constant \(D_2 \) such that whenever \((x, y, z, u) \) is any solution of (1.2) with \(p(t, x, y, z, u) \equiv 0 \), then
\[
\dot{V} = \frac{d}{dt} V(x, y, z, u) \leq - D_2 (y^2 + z^2 + u^2). \tag{2.14}
\]
Proof. A straightforward calculation using the identity
\[
\frac{d}{dt} V = \frac{\partial V}{\partial u} \dot{u} + \frac{\partial V}{\partial z} \dot{u} + \frac{\partial V}{\partial y} \dot{z} + \frac{\partial V}{\partial x} \dot{y}
\]
yields
\[
\dot{V} = -d_1 u^2 \varphi (x, y, z, u) - d_2 y f(y, z) - d_2 y g(x, y) - z f(y, z) + u^2 +
\]
\[+ d_1 z \int_0^z \frac{\partial}{\partial y} f(y, s) ds + d_2 y^2 \int_0^z \frac{\partial}{\partial x} \varphi(x, y, s, 0) ds + z \int_0^z \frac{\partial}{\partial y} \varphi(x, y, s, 0) ds +
\]
\[+ d_2 yz \int_0^z \frac{\partial}{\partial y} \varphi(x, y, s, 0) ds + d_2 z \int_0^z \varphi(x, y, s, 0) ds [d_2 \alpha_2 - d_1 \alpha_4] yz +
\]
\[+ d_1 yz \frac{\partial}{\partial x} g(x, y) + d_1 z^2 \frac{\partial}{\partial y} g(x, y) + y \int_0^z \frac{\partial}{\partial x} g(x, s) ds + y^2 h'(x) +
\]
\[+ d_1 yzh'(x) - [\varphi(x, y, z, u) - \varphi(x, y, z, 0)] z u - d_2 [\varphi(x, y, z, u) - \varphi(x, y, z, 0)] yu +
\]
\[+ y \int_0^z \frac{\partial}{\partial x} \varphi(x, y, s, 0) ds.
\]
Since
\[
z \int_0^z \frac{\partial}{\partial y} f(y, s) ds \leq 0, y \int_0^z \frac{\partial}{\partial x} \varphi(x, y, s, 0) ds \leq 0, z \int_0^z \frac{\partial}{\partial y} \varphi(x, y, s, 0) ds \leq 0,
\]
\[
z \int_0^z y \frac{\partial}{\partial y} \varphi(x, y, s, 0) ds \leq 0 \text{ and } \int_0^z \frac{\partial}{\partial x} \varphi(x, y, s, 0) ds \leq 0, \text{ by (vii),}
\]
then we obtain
\[
\dot{V} \leq - \left[\alpha_2 - d_1 \frac{\partial}{\partial y} g(x, y) - d_2 \Phi_1 (x, y, z, 0) \right] z^2 -
\]
\[+ \left[d_1 \varphi(x, y, z, u) - 1 \right] u^2 - V_5 - V_6 - V_7 - V_8,
\]
where

\[
(2.15)
\]
\[V_5 = f(y, z) z + d_2 f(y, z) y - \alpha_2 x^2 - \alpha_2 d_2 y z , \]
\[V_6 = [\varphi(x, y, z, u) - \varphi(x, y, z, 0)] z u + d_2 [\varphi(x, y, z, u) - \varphi(x, y, z, 0)] y u , \]
\[V_7 = \left[d_2 \frac{g(x, y)}{y} - \alpha_4 \right] y^2 - d_1 y z \frac{\partial}{\partial x} g(x, y) - y \int_0^y \frac{\partial}{\partial x} g(x, s) ds , \quad (2.16) \]
\[V_8 = (\alpha_4 - h'(x)) y^2 + d_4 [\alpha_4 - h'(x)] y z . \]

By the same way as in (2.13), it follows that
\[\alpha_4 - d_1 \frac{\partial}{\partial y} g(x, y) - d_2 \Phi_1(x, y, z, 0) \geq \left(\frac{\Delta_0}{\alpha_1 \alpha_3} - \varepsilon D_0 \right) \geq \frac{3\Delta_0}{4\alpha_1 \alpha_3} , \quad \text{by (1.4).} \quad (2.17) \]

By using (iii) and (2.2) we find
\[[d_1 \varphi(x, y, z, u) - 1] \geq \varepsilon \alpha_1 . \quad (2.18) \]

The function \(V_3 \) is the same as in [3]. The estimates for \(V_3 \) as in [3] give that
\[V_5 \geq - (\varepsilon \alpha_3) y^2 . \quad (2.19) \]

Also, from (x) we obtain for \(u \neq 0 \)
\[V_6 = [\varepsilon \varphi_u(x, y, z, \theta u) + d_2 \varphi_u(x, y, z, \theta u)] u^2 \geq 0, \quad 0 \leq \theta \leq 1 \]
but \(V_6 = 0 \) when \(u = 0 \). Hence
\[V_6 \geq 0 \quad \text{for all } x, y, z \text{ and } u. \quad (2.20) \]

Combining (2.16) and (2.19) we obtain
\[
V_5 + V_7 \geq - (\varepsilon \alpha_3) y^2 + \left[d_2 \frac{g(x, y)}{y} - \alpha_4 \right] y^2 - d_1 y z \frac{\partial}{\partial x} g(x, y) - y \int_0^y \frac{\partial}{\partial x} g(x, s) ds
\]
\[
\geq (\varepsilon - \varepsilon_0) \alpha_3 y^2 - d_1 y z \frac{\partial}{\partial x} g(x, y) - y \int_0^y \frac{\partial}{\partial x} g(x, s) ds
\]
\[
\geq (\varepsilon - \varepsilon_0) \alpha_3 y^2 - d_1 y z \frac{\partial}{\partial x} g(x, y) - \left[\frac{1}{y} \int_0^y \frac{\partial}{\partial x} g(x, s) ds \right] y^2
\]
\[
\geq \frac{3}{4} (\varepsilon - \varepsilon_0) \alpha_3 y^2 - d_1 y z \frac{\partial}{\partial x} g(x, y)
\]
\[
= \frac{1}{2} (\varepsilon - \varepsilon_0) \alpha_3 y^2 + \frac{1}{4} (\varepsilon - \varepsilon_0) \alpha_3 \left[y^2 - \frac{4d_1}{(\varepsilon - \varepsilon_0) \alpha_3} y z \frac{\partial}{\partial x} g(x, y) \right]
\]
ON THE STABILITY AND THE BOUNDEDNESS ...

\[\frac{1}{2} (\varepsilon - \varepsilon_0) a_3 y^2 - \frac{d_j^2}{(\varepsilon - \varepsilon_0) a_3} \left[\frac{\partial}{\partial x} g(x, y) \right]^2 z^2 \]

\[\geq \frac{1}{2} (\varepsilon - \varepsilon_0) a_3 y^2 - \frac{\Lambda_0}{4a_1 a_3} z^2, \]

(2.21)

by using (ii), (1.5), (ix), (2.2) and (1.4).

Now

\[V_s = (a_4 - h'(x)) (y^2 + d_i yz) \geq - (a_4 - h'(x)) \frac{d_j^2}{4} z^2 \]

\[> - \frac{\alpha_1 \Lambda_0}{16 a_3} \left(\frac{1}{\alpha_1} + \varepsilon \right)^2 z^2 > - \frac{\Lambda_0}{4a_1 a_3} z^2, \]

(2.22)

by using (iv), (2.2) and (1.4).

On gathering the estimates (2.17)-(2.22) into (2.15) we deduce that

\[\dot{V} \leq - \left(\frac{\Lambda_0}{4a_1 a_3} \right) z^2 - \frac{1}{2} (\varepsilon - \varepsilon_0) a_3 y^2 - (\varepsilon a_1) u^2 \leq - D_2 (y^2 + z^2 + u^2), \]

where \(D_2 = \min \left\{ \frac{\alpha_1 \Lambda_0}{4a_1 a_3}, \frac{1}{2} (\varepsilon - \varepsilon_0) a_3, \varepsilon a_1 \right\} \).

3. Proof of Theorem 1

By Lemma 1

\[V(x, y, z, u) = 0, \text{ at } x^2 + y^2 + z^2 + u^2 = 0, \]

\[V(x, y, z, u) > 0, \text{ if } x^2 + y^2 + z^2 + u^2 \neq 0 \]

\[V(x, y, z, u) \to 0, \text{ as } x^2 + y^2 + z^2 + u^2 \to 0. \]

Also, let \((x(t), y(t), z(t), u(t)) \) be any solution of (1.2) with \(p(t, x, y, z, u) = 0 \), such that \(x(0) = x_0, y(0) = y_0, z(0) = z_0, u(0) = u_0 \). Consider the function \(V(t) = V(x(t), y(t), z(t), u(t)) \) corresponding to this solution. By Lemma 2, we have

\[V(t) \leq V(0) \text{ for } t \geq 0. \]

Thus, the remainder of the proof of Theorem 1 is the same as the one given by Ezeilo [4] and hence is omitted.

4. Proof of Theorem 2

The proof here is based essentially on the method devised by Antosiewicz [2]. Let \((x(t), y(t), z(t), u(t)) \) be the solution of (1.2) satisfying the initial
conditions (1.8) and consider the function $V(t) = V(x(t), y(t), z(t), u(t))$, where $V(x, y, z, u)$ is the function V used in the proof of Theorem 1. Using this function, we have that, for the system (1.2),

$$
\dot{V} \leq - D_2 (x^2 + z^2 + u^2) + (d_2 y + z + d_1 u) p(t, x, y, z, u),
$$

so that

$$
\dot{V} \leq D_3 \left(|y| + |z| + |u| \right) p(t, x, y, z, u),
$$

where $D_3 = \max \{d_2, 1, d_1\}$.

It follows from (1.7) and the obvious inequalities

$$
|y| \leq 1 + y^2, \quad |z| \leq 1 + z^2, \quad |u| \leq 1 + u^2, \quad 2 |yz| \leq y^2 + z^2, \quad 2 |yu| \leq y^2 + u^2, \quad 2 |zu| \leq z^2 + u^2,
$$

that

$$
\dot{V} \leq D_3 [3 + 4 (y^2 + z^2 + u^2)] q(t).
$$

By (2.11) we have

$$
V \geq D_4 [y^2 + z^2 + u^2].
$$

Putting $D_4 = 3D_3, D_5 = \frac{4D_3}{D_1}$ we obtain

$$
\dot{V} - D_5 q(t) V \leq D_4 q(t).
$$

Therefore we obtain the result

$$
V(t) \leq \frac{1}{x(t)} \left(V(0) + D_4 \int_0^t q(s) x(s) \, ds \right),
$$

where $x(t) = \exp \left(- D_5 \int_0^t q(s) \, ds \right)$. Since $x(t) \leq 1$ for $t \geq 0$,

$$
V(t) \leq (V(0) + D_4 A) e^{D_5 A},
$$

where $V(0) = V(x(0), y(0), z(0), u(0))$. The proof of Theorem 2 is complete.
ON THE STABILITY AND THE BOUNDEDNESS ...

REFERENCES

