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Abstract

In this paper the existence of unique positive solutions for system of (p, g, r)-Lapalacian Sturm-Liouville type
two-point fractional order boundary vaue problems,

€O (bp(u(®)) + £(t,ult),v(t),w(t)) =0, 0 <t <1,

D0, (bg(v(1) +g(t,v(t),w(t),u(t)) =0, 0 <t <1,

D0, (dr(w(t)) +h(t,w(t),ult),v(t) =0, 0<t <1,
a1($ppu)(0) — bi(bpu)’(0) =0, c1(dppu)(1) + di(dpu)’(1) =0,
az(Pgv)(0) — ba(gv)’(0) = 0, ca(dgv)(1) + da(dgv)'(1) =0,
az($,w)(0) — bs(prw)'(0) = 0, c3(d,w)(1) + ds(d,w)' (1) =0,

where 1 < a, 8,7 < 2, du(1) = |t/* 27, £ € (1,00), c©6+ is a Caputo fractional derivatives of order
* € {«, 8,7} and a;,b;, ¢i,d;,i = 1,2,3 are positive constants, is established by an application of n—fixed
point theorem of ternary operators on partially ordered metric spaces.
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1. Introduction

Fractional calculus is deeply related to the dynamics of complicated real-world problems. Fractional
operators are non-local and describe several natural phenomena in a better and systematic manner [22].
Many mathematical models are accurately governed by fractional order differential equations. Since the
classical mathematical models are special cases of the fractional order mathematical models, it implies that
the results for the fractional mathematical model are more general and more accurate [10]. In recent years,
there are certain papers and monographs dealing with the existence, uniqueness, multiple solutions and
positive solutions of fractional order nonlinear boundary value problems, see [3] 6] [8, [7, @, 13| [14] 15, 16, 17,
241, 25], 26] and references therein. The study of turbulent flow through porous media is important for a wide
range of scientific and engineering applications such as fluidized bed combustion, compact heat exchangers,
combustion in an inert porous matrix, high temperature gas-cooled reactors, chemical catalytic reactors
[5] and drying of different products such as iron ore [I2]. To study such type of problems, Leibenson [I1]
introduced the following p-Laplacian equation,

(dp@ (1)) = f(t,u(®), (1)),

where ¢,(t) = |T[P~21, p > 1, is the p-Laplacian operator its inverse function is denoted by ¢,(T) with
$y(T) = |7]9727, and p, ¢ satisfy %—l—% = 1. It is well known fact that the p-Laplacian operator and fractional
calculus arises from many applied fields such as turbulant filtration in porous media, blood flow problems,
rheology, modelling of viscoplasticity, material science, it is worth studying the fractional differential equa-
tions with p-Laplacian operator. In [2I] Tian et al., considered the p—Laplacian fractional order boundary
value problem,

D0 [bp(DFiult)] = f(t,u(t), 0 <t <1,
u(0) =9Dgu(0) =0 2‘30+u( ) = a@mu(ﬁ) Do u(l) = kDG u(n),

where Df, is a RiemannaASLiouville fractional derivative of order « € {a, 3,7} and established existence
of positive solutions by applying monotone iterative method and the fixed point index theory on cones.
Recently, Wang and Zhai [20] studied existence and uniqueness of solutions for a new form of fractional
differential equation containing p—Laplacian operator,

ol (‘bp(@au(t) - g(t))) + f(t,u(t) =0, 0<t <1,
satisfying oo—point boundary value conditions,

w(0) =u'(0)=--- = u<“*2>(0) =0,

D%, u(0) = 0, u Zaj u(§;),

based on a new fixed point theorem for ¢ — (h,e)-concave operatos. Motivated by the works mentioned
above, in this paper we consider the system of fractional order differential equation, for 0 < ¢ < 1,

@, (@p(ut))) + £ (£, (), v(t), w(t) = 0
D, (g (v(t))) + g(t, v(t), w(t), u(t) = 0 1)
D54 (@r(w(1)) +h(t,w(t), u(t), v(1) =
Satisfying the boundary conditins,
a1 () (0) — bi(dp) (0) = 0, e1(dppu)(1) + ()’ (1)

0
az(hqv)(0) — ba(bgv)'(0) =0, c2(Pgv)(1) + da(dgv)’(1)
as(brw)(0) — bs(drw)'(0) = 0, cs(brw)(1) + ds(dbrw)'(1)

)

~—~
DO
~—

0
0
0

i
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where 1 < a, 3,7 < 2, dy(1) = |7|* %1, £ € (1, 00), CD(*H is Caputo fractional derivative of order x € {«, 3,7}
and a;, b;, c;,d;, v = 1,2, 3 are positive constants. The rest of the paper is organized in the following fashion.
In Section 2, we provide some definitions and lemmas which will be useful in our main results. Later, we
construct kernel for the homogeneous boundary value problem corresponding to —. In Section 3, we
study existence and uniqueness of n-fixed point theorems for contractive type mappings in partially ordered
complete metric spaces. In Section 4, we study existence and uniqueness of solution of the boundary value
problem — as an application n-fixed point theorem. Finally, we provide an example to check the validity
of our obtained results.

2. Kernel and its bounds

In this section, we construct the kernel for the homogeneous problem corresponding to — and estimate
bounds for the kernel.

Definition 2.1 ([I4, 9]). Let o € (0,+00). The operator I, defined on Lya,b] by

1, f(t) = F(lw / (t— ) f(r)dr

for t € [a,b], is called the left sided Riemann-Liouville  fractional integral  of
order v. Under same hypotheses, the right-sided Riemann-Liouville fractional integral operator is given by

b
o T f(t) = F(lw / (r— ) f(r)dr

Definition 2.2 ([I4, 9]). Suppose v > 0 with n = [y] + 1. Then the left and right sided Caputo fractional
derivatives defined on absolutely continuous functions space AC"[a,b] are given by

(“DL ) () = (LD ) (1),
(D7) (1) = (~1)"(,- 1" 72" f) (1),
where D" := 4.
Lemma 2.3 ([14,9]). Let v > 0. Then
(i) for f(t) € Li(a,b), we have
CDLILF) M) = f(t), (-D7-17F)(t) = f(t).

(i1) for f(t) € AC"[a,b], we have

(k
(17 C@V Z f t _ a k?
¢ (%) "
(-I75-D7f)(¢ Z (b—t)".
k=0

Lemma 2.4. Let h € C(R) and 1 < § < 2. Then the boundary value problem

€D, (de(2(t))) +h(t) =0, 0< t <1, (3)
K1(Pez)(0) — r2(dez)’(0) =0, )
R3(ez)(1) + ra(dez) (1) =0,
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and % =+ 5 =1, where € is called inverse of €, has a unique solution
1
() = do( | Nt (i), (5)
where
Ni(t,7), 0<7T<t<l,
Nitr) = { 20T ©)
MNo(t,7), O0<t<Tt<l1,
B (t _ 7.)571
Nl(t77—)_N2(t77—) F((S) )
A 6—1 6—2
No(t,7) = W[Rg(l_ﬂ + ka(6 — 1)(1 = 7)°=](k1t + R2),
and A = (kgk3 + Kik3 + Kikg) L.
Proof. From Lemma the equation transforms to the fractional integral equation
t (t _ 7_)(5—1
(2)(t) = A+ Bt — ———~—h(r)d
be(:)(0) = A+ Bt~ [ Lme—n(ryar
By the boundary conditions , one can determine A and B as
Argy (! _ _
- F(JZ;/O ka(L— 7)1 4 ~a(8 — 1)(1 — 1) 2h(r)dr,
Aky (1
= /0 la(1 — 7)1 4 ka(6 — 1)(1 — 7)0=2h(r)dr.
Thus, we have
A ! 6—1 6—2
(Pez)(t) = m [k3(1—7)°7" 4+ ka(d — 1)(1 — 7)°"*](k1t + K2)h(T)dT
0
I 51
- F(5)/0 (t —7)° “h(r)dr
1
= / N (t, 7)h(7)dr.
0
Therefore,
1
u(t) = o ( / N (t,7)h(r)dr ).
0
O

This completes the proof.
Lemma 2.5. The kernel N'(t,7) has the following properties:
(i) N(t,7) is continuous on (0,1) x (0,1),

(i) for & > 251552 e haye N(t,7) > 0 for any t, 7 € (0,1),

K1+K2 ’

(ii) for § > 2152 e have N(t,7) < N(7,7) for t,7 € (0,1),

K1t+kK2
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Proof. One can easily establish the property (i). Now, we establish (ii).
For 0 < 7 <t <1, we have
ONi(t,7)  K1A 51 s_on  (6—=1)(t—T)"2
ot - 1—\(5) [H3(1 _T) +K'4(5_ 1)(1 _T) ] - F((;)
and
PNi(t,T)  (6—1)(6—2)(t— )03 >0
oz I'(6) -
This shows that 2N (t 7) g increasing on ¢ € [1,1). So by ¢ > 2:11:22 we have
aNl(t,T) < 8N1(1,T)
ot - ot
_mA -t vy ez (-1 1)
< K1k3A + (FJ1FL4A — 1)((5 — 1)(1 — 7)6_2 <0
< T(s) <
Then N (t,7) is decreasing with respect to ¢ on [s, 1), we get
M(1,7) < Ni(t,7) < Ni(T, 7).
Further,
A 51 5-2 (1—7)"
1L7) = —[r3(1 — — 11— S A
M(1,7) F((S)[/‘és( 7)°7 + k(0 = 1)(1 = 7)°77](k1 + K2) )
e a1 = )+ A+ 2) (5 )]
=T K1K4 T ka(k1 + K2
Al - 7)672 2K1 + K2
>20 "1 1— —1
Z = T0) [—r1k4(1 = 7) + Kalk1 + K2)( P )]
Al — 7)5_2
> — .
> () Kk1dT >0
When 0 <t <7 <1, we have
aNQ(t,T) HlA o—1 5—2
= 1-— —1)(1— >
S = B sl = (- (1= 20,
from this
0 < N2(0,7) < Na(t, ) < No(T, 7).
From the proof of (ii), we have N(t,7) < N (7, 7). O

Lemma 2.6. The the boundary value problem for 0 <t < 1,

& (bp(ult)) + £ (8, u(t), v(D), w(t)) =0,
C@é (dg(v(t))) + g(t, v(t), w(t), u(t)) =0,
DY, (r(w(£))) + (L, w(t), u(t), (1)) =0,

a1 ($pu)(0) = b1(Ppu)’(0) =0, c1(dpu)(1) + di(bpu)'(1) = 0,
az(Pqv)(0) = ba(Pqv)'(0) =0, c2(bgv)(1) + da(Pqv)'(1) =0,
as(byw)(0) — b3(Ppw)'(0) = 0, c3(Pprw)(1) + ds(brw)'(1) =0,
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where % + z% = 1,% +1 =1 and =+ % =1, where p',¢',r" are called inverses of p,q,r respectively, has a

u(t) = d)p/(/OlNa(t,T)f(T,u(T),V(T),W(T))dT),
v(t) = d)q/</01 Nﬁ(t,T)f(T,V(T),W(T),u(T))dT),
w(t) = C])T/(/OINy(t,T)f(T,W(T),u(T),V(T)dT),

where
Ne (t, 1), O0<7<t<l,
Na(t,7'> — Cl( 7—) T
Ne,(t, 1), 0<t<T<I1,
N, (t, 1), O0<7<t<l,
Nottr) = § 20T
N, (t,7), 0<t<7<I1,
N, (t,7), O0<71<t<l,
_/\/‘7(7; 7_) — ’Yl( T) T >
Ny, (t,7), 0<t<7T<1,
and ( ) .
t—71)"
NC1 (taT) - NCz(taT) - I‘(a) )

Noy(t,7) = Fﬁ;) (1= 1) dy (= 1)(1 = 1) (art + by),

Ay = (c1b1 + arc1 + ardy) 7L,

Nt = N ) - L2
Nonlt.7) = fleal =771 4 a(B = 1)(1 = 1) 2)(aat +ba)
Ao = (c2by + asca + asds) L, .
No(t7) = N (t7) = L5
Nog(t7) = 25 [eg(1 = 777+ dy(y — 1)(1 = 772 (at + ),

L'(v)
Asg = (03b3 + ascs + agdg)fl.

3. n—fixed point theorems

In this section, we study the concept of n—fixed point for nonlinear and monotone mappings in par-
tially ordered complete metric spaces and establish existence and uniqueness theorems for contractive type
mappings. Our results generalize and extend the tripled fixed point theorems established by Berinde and
Borcut [I}, 2]. We note that the concept of n—fixed point for monotone operators is essentially different of
the corresponding one for mixed monotone operators [23]. Let (B, <) be a partially ordered set and d be a
metric on B such that (B,d) is a complete metric space. Consider on the product space B™ the following

partial order, for (uy,ug,-- ,uy), (vi,v2, -+ ,v,) € B",
<u17u27"' 7un) < (Uhv%"' ,’Un) —
up > v, Uy < v, Uy < Uy, if nis even,

up > v, Uy < Vg, 00, Uy > Uy, if nis odd.
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Definition 3.1. Let (B, <) be a partially ordered set and A : B™ — B. We say that A has mized monotone

property if A(x1,x9,- - ,x,) is monotone nondec- reasing in xi, T, - , Ty, i.c., for any (r1,T2, -+ ,Tp) €
B

Ui, v1 687 ulgvl - A(uth"" ,.’En)SA(’Ul,IQ,"' 73377,)7

’LLQ,’UQEB, UQSUQ - A($17u27"' ,.’En) SA(ZEDUQW" 73377,)7

un,vnEB, ungvn - A(:U].)I?)"' ,Un) SA(Il,fL’Q,"' 77}71)'

Definition 3.2. An element (uy,ua,- - ,uyn) € B" is called an n fixed point of a mapping A : B" — B if

A(U&,UQ,"' 7un):u1,
A(u27u37”' ,Ul) = u2,
A(Up, gy Up—1) = Un.

Theorem 3.3. A : B" — B be continuous and mized monotone mapping and assume that there exist

n
constants ¢; € [0,1),i=1,2--- ,n with ZC, < 1 for which

i=1
n
d(('U,l,UQ, e 7un)7 (vlv 'U2, e )UTL)) S ZCZd(uth) (7)
i=1
for every
ulZUMUQSUZa'” ;unévna anZS even,
up > v, U2 < V2,00 Up > Up,  if 1ds odd.
Further, if there exist uig,u20, - ,uno € B such that
u10 S A(Uloa 20, " 7“%0)7
u20 < A(uz0,u30, ", U10),
Uuno < A(tno, u10," -+ , Tn-10),
then there exist ui,us, - ,u, € B such that
uy = A(Ul,’LLQ, T 7uTL)7
Uz = A(’UQ,U3, T ,U1),
Unp = A(una Up, -+ 7un—1)-

Proof. Without loss of generalityy, we may assume that mn is even and the same
argument work when n is odd. Since,

u1p < A(u1g, u20, -+ 5 Uno) = ur1(say),

ugo < A(ugo,ugo, -+ ,u10) = u21(say),

Uno < A(Uno, U10, -+, U10) = Un1(Say).
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For m > 1, denote

Ulm = A(ulm—l’ Uor—17" " 7unm—1)7
Ui = A(Ugm=1, Usf—15 "+ > Ui=1),
Upm = ‘A(unm—l’ Uim—1> """ 7un—1m—1)'

Since A has mixed monotone property, it follows that

uig = A(ur1,u1, -+, un1) > Aluio, ug0, - -+, Uno) = U11,
uge = A(u21,31, - ,u11) > Alugo, uso, -+ ,u10) = u2i,
Un2 :A(un17u117 e 7um1) 2 A(un07u107 e 7Um0) = Un1-

Thus, we obtain n sequences satisfying the following conditions

uo <up Cupe <7< U <

ug0 Sugp < ugp <7 Sugy <o

Upo SUpl S Up2 <7 S Upy < -0

For simplicity, we denote
Dyt = d(ug—,uin), 1 <i<n.

n

Then by , we have

Dyt = d(u1r, u12) = d(A(uro, ug0, - -+ uno), A(urr, u1, - -+, un1))
< Gd(uio, uin)
=1
<Y GDy
=1
and
Dy? = d(ug1,ug2) = d(A(ugo, uso, - -+ ,u10), A(uz1, us1, - -+, u11))

n—1
< GuD ) GDY

i=1
Similarly, we have
Dg" = d(unla unZ) = d(A(un07 u10, - - ,Umo), A(Unl, UpL, - 7um1))
n—1
< Gud(ung, 1) + Y Gipad(uio, win)
i=1
n—1

< D" + Z Gi+1 DY
i1
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and
n—2

X
DIt <

=0

+

n—1
Dy < [241% + Z Git1Cn—i

=1

+

Un
Dl <

1=3

+ |

G+ Z<i+2<n—i] D +

201G+ Y <i<n+3_i] Dy +

n

n—2
+> Ci-‘r?Cn—i] Di.
i=0

To simplify writing, we consider the matrix

[ G
Cn
Cn—l
M= :
Ca
€
L G
denoted by
[ ki ky
ky ok
ki ks
Zfll z;lZ
L "nl n2

Also denote M2 =

G+ 305 Girolni
261G + 0 GG

2C1¢ + >0 5 CiCnys—i

<2 <3 Cn—2
1 G Cn—3
Cn Cl Cn—4
G G - G
G G o G
C3 C4 Cn—l
k%g ... k%m
k33 ... kSH
711723 e 71L72 n—2
?3 o kn;ln—?
Ky o kL

2016 + D0 5 GiCnra—i
G+ 07 Gl

2G1G + G+ 0 Giralni

2016+ Y C¢Cn+3_i] DY 4 ...

1=3

n—1
2G16n+ Y cmcn_i] Dy
=1

n—2
D" + (¢ + ZQHGL@'] DY? +---
i=0
n—1
G+ gcn_i] Dy
i=1

n—4

201G+ G5+ Z Q+4(n_i] DY 4 ...

=0

Cn—l Cn
Cn—2 Cn—l
Cn—3 Cn—2
CHNE
G ¢
Cn G
1 1 A
TR
iy
k3ﬁ k3n
1 1
n—2n—1 kmn
1l
nfln—l nIIn
nn—1 Fnn |

2G1Gn + 0 GG
G+ 30 Gl

G+ 07 Givalai
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by
[ kf KRy ki
k3 kdy ki
B kh o k3
2521 Z§22 :2 23
ZEH 2512 7]{1}513
L "'nl n2 n3
where

Now we prove by induction on m that

r rm
11
m

k?l
m

k31

M™ =
m

kn 21
m

kn 11

m
L "nl

where

Suppose is true for m. Then

m
12
m

k;22
m

k32

MM =M™ M

ro.m
kll
m

k21

m

kSl

G
@
3

G
G
Ca

2 2 2 7
kér_ %71 kén
k%T— kgil kgn
kSnf k3 —1 k3n
2 2 2

k372n72 kg 2n—1 72L*2’n
kngln—2 ngl -1 kngln
k’rm—? —1 kn” -
n
_ 2
i=1
n
< Z CZ <1
i=1
Em m mo
1n—2 1n—1 in
m m m
an 2 on—1 ki
m m m
k3n k3n 1 ki
m m m
kn 2n—2 kn—Zn—l n—2n
e e m
n—In—2 n—1n—1 n—1In
m m m
nn—2 knn 1 knn -
n
_ m
i=1
n
Z(@ < ZC@ <1
=1
m m m
kln 2 1n—1 in
m m m
an—z on—1 ki
m m m
k3n—2 kSn 1 ki
m m m
kn—Zn—Z kn 2n—1 n—2n
emo m m
n—In—2 n—1n—1 n—1In
m m m
klnn72 knn 1 k”n
Cn—2 Cn—l Cn
gn—?) Cn—2 Cn—l
Cn—4 Cn—3 Cn—2
SN C TN €
G G G
-1 G G ]
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After multiplying above two matrices, we obtain

Mm+1 —

we have, from that

n

i=1

= ki1 [Z Gi
i=1

G

Li=1

Similarly, we can prove
k+1
kap
Therefore,

u1
Dm+1

m+1

Uu
D mn+1

> G
Li=1

kllCl + Zn ; km2+2 Cn—i

k21C1 + Zn ; ka_Q Cn 7

1(1 + Zn 2 kzl(l_;'_g <nfi

n—2

=0
n—1

2
=0

qn+l

k+1 + Zak-i-l

G
Cn
Cn—l

IN

G
G
&

k{?j.;.l)Cnfi

oG
=1

+ k15

2

=1

< ZQ < 1.
=1

k+1 + Zak-i-l + ak+1 [

G @
SENC
<n Cl
G Ce
G4 G5
Ce

kllC2 + k12C1 + Zn 3 kml+3)gn i

2

nlkm

=0 "1(i4+1)

Cn—i

k21C2 + k22€1 + Zn ; kmz_,_g)Cn i

S0 Koty Gni

kG + knsC +Zn

+ ki3

Cn—Q
CnfS
Cn—4

G
Cn
Cn— 1

2

n
=1

Cn—l
Can
Cn—3

&
G
Cn

n—1 m
=0 kn(z—‘rl

n—3

=0

Gi

Cn
Cnfl
Cn—2

G
&
G |

D

i=1

m

3 1.m
kn(z+

gn—i

uy
Dl

u2
Dl

Un
D].

3 <n7i

kNG + Z k?(bi+2)<n—i + k11C + K15C + Z k‘?EH?’)Cn_i +

n n+1
5@] < 1.
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That is
D%H<§:kD?,
D2y < E:kﬂlﬁi
; 9
D < zk Dy ®)
n
Dy < kDY
1=1 J
Next, we  show  that  the  sequences  {uim},{uam}, - ,{unm} are  Cauchy  sequ-

ences. For [ > m, we have from @ that

d(u1g, urm) < d(ui, ug=) + -+ + AUy, Yim)
=D" £ D™ 4.+ DY

m+1
n
<N KDY+ Z K2D% 44 Z K D
— —
< (BT ERT 4 k:l‘l)D“1 + (M 4+ KT kS DY
N ( + k,m—l—l S+ kl 1)Dun
<@ H 9™ 9D g (9 9 4 9 DY
+ (ﬂm + ﬂm—i—l 4t ﬁl—l)Dian
(ﬁm+q9m+1 ---—l—ﬁl_l)(DQfl +D71¢2+_._+D11Ln)
1—9F
19]6 (D‘fl +D{f2++Dfn)’

1-9

where ¥ = ZQ < 1. Which shows that {uy,,} is a Cauchy sequence. Similarly, we can show that

{uzm},{u;e,m}:~ ,{unm} are also Cauchy sequences. Since B is complete, there exist uj,ug, - ,u, € B
such that, for 1 <i < n,
lim wim = u;. (10)
m—00
Finally, we show that
up = *A(ubu?) T 7un)7 Uz = A(UQa us, - - ,Ul), U = A(unyula te >un71)'
Let £ > 0. Since A is continuous at (u1,ug,- - ,uy,), there exists a 6 > 0 such that

d(uy,vr) + d(ug,ve) + -+ - + d(up,vy) < 6 =
d(A(Ul,UQ,‘ T ,Un),A(’Ul,UQ,"‘ ,Un)) <

e
n.

Then by (L0)), it follows that, for §* = min{%, £}, there exists 71,12, - - - , 7, such that, for n > max{n1,m2,- - , 7},

we have d(uim,u;) < 6* for 1 <1i < n. Now, take mg = max{ni,n2, -+ ,m,}. Then, for any integer n > my,
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we have
d(A(Ul, U, - - aun)a ul) S d(A(Ul, U, - -+ aun)y ulm) + d(ulm, Ul)
= d(‘A(ulv U, - 7un)7 A(ulka U2k~~~ 7unk))
+ d(ulm,ul)
€ *
<—+40"<e.
n
Hence, u; = A(uq,ug,- -+ ,uy). In the same way we can show that
ug = A(ug, us, -+, u1), U = A(tn, ut, -+, Un—1).
O

In the next theorem, without taking A4 is continuous(Instead, we take additional property on B), we prove

above theorem.

Theorem 3.4. Let (B, <) be a partially ordered set and suppose that there exists a metric d in B such that
(B, d) is a complete metric space. Let A : B" — B be a mized monotone mapping and assume that there exist

n
the constants (; € [0,1) with ZC’ < 1 such that
i=1

d(('U,l,’U/Q, e 7u7’b)7 (Ulv V2, - 77)71)) S ZCZd(uHU’L)
i=1

for every

uyp > vi,ug <2, Up < Uy, if Mds even,
up > v, U2 SV, Up > Vp, if Mds odd.

Further, assume that B has the following properties:

(i) If a nondecreasing sequence {u,} — u, then u, < u for all n.

(i) If there exist uyg,ugo, - ,Uno € B such that

u1o < A(u1o, u20, -+ 5 Uno),
u20 < A(ugo,us0, -+ ,u10),
Uno < A(tUno, U105 5 Un—1)0)s

then there exist ui,us, - ,u, € B such that
uy = A('U/l,’U,Q, T 7un)7
Uz = A(UQ,U3, s 7“1)7
Unp = A(una Up, - 7’“%—1)-

Proof. Following the proof of Theorem we only have to show that

uy = A<u17u27' o 7un)7 Uz = A(UQ,U3," ' 7U1)," c,Un = A(”Tuula' te 7un—1)~
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Let € > 0. Then by , we have

lim A™(u10,u20," -, Uno) = u1,
m—o0

lim A™(ug0,u30,- - ,u10) = Uz,
m—00

. m
lim A™ (uno, 10, Un—1)0) = Un-
m—00

So, there exists my, ma,- -+ ,my € N such that for m > max{mq,ma,---,m,}, we have

15
n—+1
€

d(A™(u10,u20, "+, Uno), u1) <

d(A™ (u20,u30," -+ ;Uno), U2) <

n—+1

15
n—+1

d(Am(un0> u10, " "~ 7“(71—1)0)7 un) <

Using
A™(u10,u20, - - -, xun0) < uq,
A™(ug0,u30, -+ ,u10) < ug,

A" (U0, w10, 5 Un—1)0) < Un,

we have .
d(A('LLl,'LLQ, T 7un)7u1) S d(A('LLl,'LLQ, Tt 7un)7~’4m+ ('LLl(),UQ[), T 7un0))

+ d(A™ (w10, w20, + 5 Uno), 1)
< d(A(ug,ug, -+ yun), A(A™ (w10, ug0, -+ 5 Uno),
A™ (ug0,u30, -+ ,u10), -+ 5 A" (Uno, U0, - - - 7u(n—1)0)))
+ d(A™ (u10, u20, - - - 5 Uno), U1)
< Gd(u1, A" (u10,u20, "+, Uno))
+ God(ug, A" (u20,u30, -+ ,u10))

+ Cnd(un, A™ (Uuno, 10, + 5 Un—1)0))
+ d(A™ (w10, u20, -+ 5 Uno), u1)

19 13
< - — < e
(CL+ G+ +Cn)n+1+n+1 e

Which  implies  that  A(ug,ug, -, uy) = uy.  Similarly, we can show  that
Uz = A(u27 ug, - - 7u1)7 U = A(unyuly to 7un—1)~ O]

Indeed, the n fixed point in Theorems and is in fact unique, if the product space B" endowed with
the partial order mentioned earlier have the following property:

(B) For every (1'171}2,' o 73777»)7 (9173/2, o 7y’n) € Bnu there exits a
(uy,ug, - ,uy,) € B™ that is comparable to (z1,x2, - ,x,) and
(Y1, 92, Yn)-

Theorem 3.5. In addition to the hypothesis of Theorem[3.3 assume that (B) holds. Then A has a unique
n fized point.
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Proof. It (uj,ub,--- ,u’) € B is another n fixed point of A, then we show that
d((ula Uz, - -+ 7“71)7 (’U;{,U;, e 7u;k1)> = 07
where
lim A™(u10,u20," -, uno) = u1,
m—00
lim Ak(mo,u3o7 Se L u10) = Uz,
m—0o0
lim A" (uno, u10, - - - 7U(n71)0) = Un.
m—0o0
Now we consider two cases:
Case 1: If (ug,ug, -, up) is comparable to (uf,us, - ,uk) with  respect to
the ordering in B, then, for every n =0,1,2,--- ,
(Am(ula U,y - )un)aAm(UQa us, - )ul)u e )Am(un)uh et 7un—1))
- (’LLl,’LLQ, e ,Un)
is comparable to
(‘Am(u?u;a e vu;kz)"Am(u;a uga U ’u:)a e 7Am(u;kw u){a e 7“:1—1))
= (u,uz, - ,up)
and
d(('dl, U, - - 7“71)7 (’LLT,U;, o 7u;kz))
= d<u17u>{) + d(“’?v u;) +eee d(umu:J
- d<Am(u17 U, - - 7un)7“4m(u>{7u§7 e 7u;kl))
+ d('Am(u?vu?n T aul)aAm(ugv U;, to 7“?))
+ d<Am(uTL7u17 e 7un—1)7~’4m<u:wu>{7 e 7u:<1—1)>
< 9"[d(u1, ul) + d(ug, ul) + - - - + d(up, u),)]
= ﬂmd( UL, U2, - aun)a (uiau; to 7“2))7
where ¥ = """ ;| ¢; < 1. This shows that
d((ula Uz, - -+ 7un)v (uiu;? e 7u;)) =0.
Case 2: If  (wi,ug,---,un) is mnot comparable to  (uj,u3,---,u:) then  there
exists an upper or lower bound (vi,va,- - ,v,) € B™ of (u1,ug, - ,u,) and (uj,ud, - ,u’). Then, for
alm=0,1,---,
(Am(vlv V2, - ,Un),Am(’UQ,’Ug, to avl)v T aAm(Una G ,Unfl)
is comparable to
(Am(ulu U,y - 7un)7~’4m(u27 us, - )ul)u e )Am(un)u].) et ,Un_l))
- (’LLl,’LLQ, e 7un)
(Am(ulﬂ Ugy « -+ 7un>7"4m(u27 Uz, -~ 7“1)7 e 7~Am<un7ul7 e 7un—1)>

- (u?u;? 7U*)'
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We have,
d((ur,uz, -+ un), (ug, u, -+ uy))
= d(uy,u)) + d(ug,us) + - - + d(up, u,)
=d(A™ (ur,ug, -+ yup), A™(ul,us, - ,u))
+ d(A™ (ug, ug, -+ yup), A" (ug, us, - ul))
+ d(A™ (U, w1, 1), A" (U, ul, Uy )
< d(A™(u1,ug, -, up), A" (v, v, Up))
+ d(A™ (ug,ug, -+ yuy), A" (v, v3, -+, v1))
+ d(A™ (up,ur, - s up—1), A" (vp, 01, , V1))
+ d(A™(v1, 02, o), AR (Ul ub, o uk)
+ d(A™ (v, vz, -+, v1), A (uy, uz, -, ul))
+ d(A™ (vn, 01, o), A" (U uls - up )
< O¥[d(u, 1) + d(ug, v2) + -+ + d(un, vn)
+ d(vi,ul) + d(va, uz) + - - - + d(vp, uy)]
—0 as n—oo.
So that d((u1,ug,- - ,upn), (uj,us, -+ ,uy)) =0. O

Following theorems are easy to prove. So, we omit details here.

Theorem 3.6. In addition to the hypothesis of Theorem suppose  that every
group of elements which contains n elements of B has an upper bound or a lower
bound in B. Then the components of the n fived point are equal, i.e., x1 = x2 = -+ = xp.

Theorem 3.7. In addition to the hypothesis of Theorem (or) Theorem |3.4), suppose that x10 is compa-
rable with xog,- -+ ,Tno tn B. Then the components of the n fized point are equal, i.e., uy = ug = -+ + = Up.

4. Main results

In this section, we derive sufficient conditions for the existence of solution to the 3 dimensional (p, ¢, r)—Laplacian
fractional order boundary value problem — as an application of Theorem (3.3]). We note that (u,v,w) €
B3 is a solution of — if, and only if,

u(t) = d)p/</01 Na(t,T)f(T,u(T),V(T),W(T))dT),
v(t) = (I)q/(/01./\/:3(75,T)f(T,V(T),W(T),u(T))dT),
w(t) = by /O g )2 (r,5(7), u(r), w(r)dr ),

where 0 <t < 1.
Suppose the following holds:
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(A1) Denote [|G]| = max{[|G|lp, [Gll; |G}, where

1 9’
IGlo = [ | Wi riar]”
0
and % + ﬁ =1.

(Asg) There exist some positive constants I, la, 3, m1, ma, m3, n1, n2 and ng such that

1
Lh4+la+lz3+mi+ma+ms+ng+ne+ng < 4||GH

and for(u, v, w), (z,y,z) € X3 with u > z,v < y,w > z implies

1
*/

|f(7‘,u,v,w) - f(T,ZU,y,Z)| < [lld(u .ZU) +l2d(1} y +l3d w, z ]

»a\‘ -

lg(1,v,w,u) — g(1,y,2,2)| < [mld(v y) + mad(w, z) + mad(u, )]

\\H

|h(T,w,u,v) — h(T, z,2,y)| < [md(w, 2) + ned(u, z) + n3d(v,y)] ',
where
Ld(u, z) + lad(v,y) + l3d(w, z) < 1,
mid(v,y) + med(w, z) + mad(u,z) <1,
and

nid(w, z) + nad(u, x) + nyd(v,y) < 1.

(A3) There exist uo, vo,wo € C([0,1]) such that
uo(t) < dp ( /0 Nt e (r wo(r), vo(7), wo(r))dr),
vo(t) < &g /O Nt vo(r), wo(r), wo(r)) d )
wu(8) < e (| N (rovo( )., v ).

Theorem 4.1. Suppose (A1), (A2) and (As3) are hold. Then the boundary value problem (1)-(2) has a
solution.

Proof. Let B = C|0, 1] be a partially ordered set such that for u,v € B,
u<v <= u(t) <wov(t) forall tel0,1].
If B is endowed with the sup metric:

d(u,v) = sup |u(t) —v(t),
te[0,1]

for all u,v € B. Then (B,d) is a complete metric space. We also introduce a generalization of the Bielecki
metric [4] [19] by the relation

where o : [0,1] = (0, 00) is a nondecreasing continuous function. Define an operator T : B> — B by

Tu(t) = (Tou(t), Tav(t), Tyw(t))
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where

Tou(t) d)p/(/olf\/a(t, T)f(T,u(T),V(T),W(T))dT),
1
Tav(t) = d)q/</0 Ni(t, T)g(T,v(T),w(T),u(T))dT>,

1(6) = o ([ Vot (r (), i), v(r)ar).

For any u = (u,v,w),z = (x,y,2) € X3 withu>x,v<y,w>zandt € [0,1), we have

1
[ Tou(t) = Tax(t)] < |y ([ Nalt,7)E(7,u(r), v(7),w(7))dr
0

_ d)p,(/OlNa(t,T)f(T,x(T),y(T),z(r))dq-)

/

1 P
< [ | W nlsrate) i) —f(T,X(T),y(TLZ(T))\dT]

/

p

1 1
< [ | Nl + s, y) + td(e2)] p'df]
0
< Gl %) + Lad(v, y) + Isd(w,2)].
Similarly,
Tyv(t) = Tsy(t)] < Gl [mad(v, y) + mad(, z) + msd(a, %)),
Tyu(t) - Ty2(8)] < |Gl [nad(w,2) + nad(u, %) + nsd(v, ).

| [Tu(t) = Ta(t)] = [Tou(t) = Tox(t)| + [Tav(t) — Tay(t)| + [Tyw(t) — Toz(t)|

< |G| [(ll + m3 + ng)d(u,x) + (Ia + my + n3)d(v,y)
+ (I3 + mg + ny)d(w, z)]
< ||G|l[lh + 2 + I3 + m1 + ma + m3 + n1 + na + ng
X [d(u,x) + d(v,y) + d(w, z)]

o(t)[dp(u,x) + ds(v,y) + dp(w,z)]

Thus,
[Tu(t) — Tx(t)] _ 1 1 1
< - ~d :
e < 78 (wx) + 7du(v,y) + S dn (v, 2)

That is,
1 1 1
d%(uu J:) < Zd%(uax) + Zd%(vuy) + Zd%(wuz)‘

Hence, by Theorem , the boundary value problem has a solution

ut = (u*(t),v*(t), w*(t)) € (C0,1])3.

Example 4.1. Consider the following system of fractional order differential equation, for 0 <t < 1,

D5 (dp(ult)) +£(t,u(t), v(t), u(t)) =0
D5, (g(v(t)) + g(t, v(t),u(t), ut)) =0
D7, (br(w(t)) +h(t,w(t),u(t),v(t)) =0
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satisfying the boundary conditions,
a1(dpu)(0) — b1(dpu)’(0) =0, cr(bpu)(1) 0
az(Pgv)(0) = ba(dbgv)’(0) = 0, ca(dgv)(1) + da(dgv)'(1) =0, (12)
as(brw)(0) — by(drw)'(0) = 0, cs(dbrw)(1) 0
Wherea=2,6=2,v=2, a,=0,b;=¢;=d; =1 fori=1,2,3,

1 1
t —(1—-1¢t)3 | ——
f( ’u7V7W) 450( )3 |:1+ +V+W:|)
(tvw) = —(1— 1) |—— 4wt
v, W —(1— W
g b b 7u 25 1+V u’
and )
1
h(t,W,u,V):ﬁt(l—t):" |:1+W+u+v:|
Now, let (u,v,w), (x,y,2) € B3 withu > x,v <y, W>zimp1ies
1 1 1
¢ —ft < |(1- 1/3) ) (1= )3y —
‘f(,u,V,W) f(7X7Y7Z)‘—450|< ’1+u 1+X +450( ) HV y‘
- /3]y —
F oL 0 e - 2

< lid(u, %) + lad(v,y) + l3d(w, 2)

< [d(u,x) + lad(v,y) + lyd(w,2)]
Similarly,
lg(t, v, w,u) — g(t,y,2,%)| < [mid(v,y) + mad(w, z) + mad(u, x)]q
|h(t,w,u,v) — h( t,z,x,y) [ (w,z) + mad(u, x) + msd(v, y)} "

/

Let we set p=1r =4, ¢ =5. Then p' =1’ % g = %. After certain calculations, we get ||G|| = 1.7170 and

1
lh4+l+ls+mi+mo+mg—+n;+no+ng= 01333§m 0.4156.
L wo = 0 Then

0
w(t) = d)p/(/olj\fa(t, T)£(T, uo(T),vo(T),Wo(T))dT>

Set ug = 0,v9 =

1
< (bp/(/o N (T, T)f(T, uo(T),vo(T),Wo(T))dT)
< 0.00268.
Similarly,

vo(t) = d)q/</01 Na(t,7)g(T, VO(T),uo(T),wo(T))dT)

< b0 (|| ¥ 7)8(r.v0(7) 50(r),v0()ir)
< 0.0325.

wolt) = q;r/( /0 1/\/7(75,7)11(7, WO(T),VO(T),uO(r))dT)

< d)r/(/ol N (7, 7)h(r, WO(T),UO(T),VO(T))dT)

< 0.001023.
All the conditions of Theorem [.1] are satisfied. Hence, from Theorem [4.1] there exist a solution for (11])-(12).
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