İstanbul Üniv. Fen Fak. Mat. Dergisi 55 - 56 (1996 - 1997), 67-73

ON SOME AFFINE CONNECTIONS ON MANIFOLDS WITH ALMOST CONTACT 3-STRUCTURE

Nicolae SOARE

Abstract. In this paper, we shall study affine connections on manifolds with almost contact structure and with almost contact 3-structure. Using Obata's operators associated to an almost contact structure (φ, ξ, η) or a three almost contact structures (φ, ξ, η) or a three almost contact structures (φ, ξ, η) or a three almost contact structures of a system of tensorial equations are found all the (φ, ξ, η)-affine connections and ($\varphi_{ib} \xi_{ib} \eta^{i}$)-affine connections and their groups of transformations.

INTRODUCTION

Let *M* be a (2n+1)-dimensional C^{∞} manifold and let $\Im(M)$ be the algebra of all the differentiable functions on *M*. We denote by $T_s'(M)$ the $\Im(M)$ -module of the tensor fields of type (r,s). For $T_0^{-1}(M)$ is used the notation $\aleph(M)$. Let C(M) be the affine modul of affine connections on *M*.

• An almost affine contact structure on M is defined by a $C^{\infty}(I,I)$ -tensor field φ , a C^{∞} vector field ξ and a C^{∞} one-form η on M such that

(1)
$$\varphi^2 = -\mathbf{I} + \eta \otimes \xi, \quad \eta(\xi) = 1$$

where \otimes denotes the tensor product and *I* is the identity tensor. This implies $\varphi \xi = 0$ and $\eta \circ \varphi = 0$. Manifolds equipped with an almost contact structure are called almost contact manifolds.[1]

Let us suppose that a differentiable manifold admits three almost contact structures (φ_{i} , ξ_{i} , η^{i}) (i = 1, 2, 3) satisfying

(2)

$$\varphi_{i}\varphi_{j} - \eta^{j} \otimes \xi_{i} = -\varphi_{j}\varphi_{i} + \eta^{i} \otimes \xi_{j} = \varphi_{k} \cdot \eta^{i}(\xi_{j}) = \delta_{j}^{i},$$

$$\varphi_{i}(\xi_{j}) = -\varphi_{j}(\xi_{j}) = \xi_{k} \cdot \eta^{i} \circ \varphi_{j} = -\eta^{j} \circ \varphi_{i} = \eta^{k}$$

for any cyclic permutation (i,j,k) of (1,2,3). Then $(\varphi_i, \xi_i, \eta^i)$ (i = 1,2,3) is called an almost contact 3-structure.[3]

1. Affine connections on almost contact manifolds

Let \mathcal{M} be a differentiable manifold with an almost contact structure (φ, ξ, η) . We consider the distribution $H = Ker \eta$ and $V = Ker \varphi = \{\xi\}$ on \mathcal{M} and we denote

$$h = I - \xi \otimes \eta, v = \xi \otimes \eta$$

the projections on H and V respectively. We have [2],

(4) $h^{2} = h, v^{2} = v, hv = vh = 0$ $\varphi^{2} = -h, h\varphi = \varphi h = \varphi, v\varphi = \varphi v = 0$

Thus h and v are complementary projection operators on \mathcal{M} .

<u>Definition 1.1</u>. We call Obata operators associated to an almost contact structure (φ, ξ, η) , the applications $A, A^* : T_I^{-1}(M) \to T_I^{-1}(M)$ defined by

(5)
$$A(w) = v \circ w \circ v + h \circ w \circ h, A(w) = v \circ w \circ h + h \circ w \circ v$$

<u>**Proposition 1.1.**</u> A and A^* are complementary projection operators on $T_1^{-1}(M)$. <u>**Proposition 1.2.**</u> The tensorial equation (6)
$$A^{*}(u) \ a, \ a \in T_{I}^{-1}(M)$$

has a solution $u \in T_1^{(n)}(M)$ if and only if $a \in Ker A$. If $a \in Ker A$, then the general solution of the equation (6) is

(6')
$$u = a + A(w), \forall w \in T_1^{-1}(M).$$

A similar result holds for the equations of the form A(u) = a.

In the following, $\nabla \in C(M)$ will be an affine connection fixed on M such that, $\nabla \xi = 0$, $\nabla \eta = 0$. Every tensor field $u \in T_1^{-1}(M)$ may be considered as a field of $\aleph(M)$ -valued differential 1-forms. So, if ∇ is an affine connection on M, then we note with D and \widetilde{D} the associated connections acting on the $\aleph(M)$ -valued differential 1-forms and respectively on the differential 1- forms:

(7) $(D_X u)Y = \nabla_X (uY) - u(\nabla_X Y)$

(8) $(\widetilde{D}_X^{\eta})Y = X(\eta(Y)) - \eta(\nabla_X Y)$ $\forall u \in T_1^{-1}(M) \text{ and } X_iY \in \mathbb{N}(M).$

<u>Definition 1.2</u>. An affine connection ∇ on M is called an (φ, ξ, η) - affine connection if

(9) $D\varphi = 0, \widetilde{D}\eta = 0, \nabla \xi = 0.$

Of course, for every (φ, ξ, η) -affine connection ∇ , we have

(10)
$$\nabla_X v = v \nabla_X, \nabla_X h = h \nabla_X, \quad \forall X \in \aleph(M)$$

We see that D and \widetilde{D} commute with the operators A and A*.

We take $\nabla_X = \nabla_X + V_X$, where ∇ is an affine connection on M such that $\nabla \xi = 0$, $D \eta = 0$ and $V_X Y = V(X, Y)$, $V \in T_2^{-1}(M) \forall X, Y \in \mathbb{N}(M)$ and we find the tensor field V so that it satisfies the conditions (9).

 ∇ will be an (φ, ξ, η) -affine connection if and only if the field V satisfies the system of the tensorial equations:

- (11) $V_{X\circ}\varphi \cdot \varphi \circ V_X = -(D_X\varphi), \quad \forall X \in \aleph(M)$
- (12) $\eta \circ V_X = 0, \quad V_X \xi = 0, \quad \forall X \in \aleph(M)$

We have also

 $V_{Y\circ} v - v \circ V_Y = - D_Y v$

(13)

 $V_{X\circ}h - h\circ V_X = -D_Xh$

which implies that

$$h \circ V_X \circ v = -h \circ D_X v = (D_X h) \circ v$$

(14)

$$v \circ V_{X \circ} v = -v \circ D_X v = (D_X v) \circ h$$

 $\forall X \in \mathcal{N}(M)$. Putting

(15)
$$a(X) = (D_X h) \circ v + (D_X v) \circ h = -h \circ (D_X h) - v \circ (D_X h)$$

it follows that V_X must verify the system

(16)
$$A^*(V_X) = a(X), \quad \eta \circ V_X = 0, \quad V_X \xi = 0.$$

But

$$A(a(X)) = A((D_Xh) \circ v + (D_Xv) \circ h) = v \circ (h \circ D_Xv + v \circ D_Xh) \circ v + h \circ (h \circ D_Xv + v \circ D_Xh) \circ h = v \circ D_Xh \circ v + h \circ D_Xv \circ h = 0,$$

and by a straightforward computation, it is verified

 $\eta \circ a(X) = 0, \quad a(X) \xi = 0, \quad \forall X \in \mathbb{N}(M).$

Applying the Proposition 1.2, it becomes that the system (16) has a solution and the general solution is

(17)
$$V_X = a(X) + A(W_X),$$

where $W \in T_2^{-1}(M)$ must be verify the conditions

(18)
$$\eta \circ A(W_X) = 0, A(W_X)(\xi) = 0, \quad \forall X \in \aleph(M)$$

Then we obtain the following:

Theorem 1.1. There are (φ, ξ, η) -affine connections: one of them is

(19)
$$\nabla_X = \nabla_X + (D_X h) \circ v + (D_X v) \circ h$$

where ∇ is an affine connection on \mathcal{M} such that $\nabla \xi = 0$ and $D \eta = 0$, D and D being its associate connections.

<u>Theorem1.2.</u> The set of all (φ, ξ, η) – affine connections is given by

(20)
$$\overline{\nabla}_X = \nabla_X + A(W_X)$$

70

where ∇ is an (φ, ξ, η) -affine connection and $W \in T_2^{\prime}(M)$ satisfies the conditions (18).

Observing that (18) and (20) can be considered as a transformation of (φ, ξ, η) -affine connections, we have :

Theorem 1.3. The set of the transformations of (φ, ξ, η) – affine connections and the multiplication of the applications is an abelian group, noted with $G(\varphi, \xi, \eta)$, isomorph with the additive group of the tensor $W \in T_2^{l}(M)$ which satisfies the conditions (18) and (20).

2.Affine connections on manifolds with an almost contact 3-structure

Let *M* be a differentiable manifold with an almost contact 3- structure($\varphi, \xi i, \eta'$) (*i* = 1,2,3). Now we consider the distributions $H_i = Ker \eta^i$ and $V_i = Ker \varphi_i$ and we denote

(21)
$$h_i = I - \xi_i \otimes \eta', \quad v_i = \xi_i \otimes \eta', \quad i = 1, 2, 3$$

the projections on H_i and V_i respectively. We have

 $\begin{aligned} h_{i}^{2} &= h_{i} \ v_{i}^{2} = v_{i} \ h_{i} v_{i} = v_{i} h_{i} = 0, \\ \varphi_{i}^{2} &= -h_{i} \ h_{i} \ \varphi_{i} = \varphi_{i} h_{i} = \varphi_{i}, \ v_{i} \ \varphi_{i} = \varphi_{i} v_{i} = 0 \\ v_{i} \ v_{j} &= v_{j} \ v_{i} = 0, \ h_{i} \ v_{j} = v_{j} h_{i} = v_{j} \\ h_{i} \ h_{j} &= h_{j} \ h_{i} = I - v_{i} - v_{j}, \ \text{for } i \neq j. \end{aligned}$

Definition 2.1. We call Obata operators associated to an almost contact 3structure, $(\varphi_i, \xi_i, \eta^i)$ (i = 1, 2, 3) the applications $A_i, A^*_i : T_I^{-1}(M) \to T_I^{-1}(M)$ defined by

(23)
$$A_i(w) = v_i \circ w \circ v_i + h_i \circ w \circ h_i, A_i(w) = v_i \circ w \circ h_i + h_i \circ w \circ v_i.$$

<u>**Proposition 2.1.**</u> For an $(\varphi_i, \xi_i, \eta^i)$ -structure on M and A_i, A^*_i defined by (23) we have

1) A_i and A^*_i are complementary projection operators on $T_i^{-1}(M)$ 2) A_i and A^*_i commute pairwise with A_j and $A^*_{j,i} \neq j$ 3) $A_i \circ A_j$ and $A_i^* \circ A^*_j$ are projections on $T_i^{-1}(M)$ 4) Ker A_i (1Ker $A_{ij} = Im (A_i \cap A_j), i \neq j$.

Proof. 2) In fact, by simple calculation we have

 $A_{i} \circ A_{j}(w) = v_{i} \circ A_{j}(w) \circ v_{i} + h_{i} \circ A_{j}(w) \circ h_{i} = v_{i} \circ v_{j} \circ w \circ v_{j} \circ v_{i} + v_{i} \circ h_{j}$ $\circ_{W} \circ h_{j} \circ v_{i} + h_{i} \circ v_{j} \circ w \circ v_{j} \circ h_{i} + h_{i} \circ h_{j} \circ w \circ h_{j} \circ h_{i} = v_{i} \circ w \circ v_{i} + v_{j} \circ w \circ v_{i} + v_{j} \circ w \circ v_{i} + h_{i} \circ h_{j} \circ w \circ h_{i} \circ h_{i}$

Proposition 2.2. The system of tensorial equations

(24) $A *_i(u) = a_i, i = 1, 2, 3$

has a solution $u \in T_1^{(M)}$, if and only if

(25) $A_i(a_i) = 0$ and $A_i(a_i) = Aj(a_i), i \neq j$

If the conditions (25) are fulfilled, then the general solution of the system (24) is

71

d - A. Brazz Steller, and a statistic and an and statistic and the

$$(26) \quad u = a_1 + A_1(a_2) + A_1A_2(a_3) + A_1A_2A_3(w)$$

 $\forall w \in \mathfrak{I}_{I}^{\prime}(M).$

A similar result holds for the system of the form $A_i(u) = a_i$.

Definition 2.2. An affine connection ∇ on M is called an $(\varphi_i, \xi_i, \eta')$ -affine connection if

(27)
$$D\varphi_i = 0, \ \widetilde{D} \ \eta^i = 0, \ \nabla \ \xi_i = 0, \ i = 1, 2, 3.$$

For every $(\varphi_i, \xi_i, \eta')$ -affine connection ∇ we have

(28)
$$\nabla_X v_i = v_i \nabla_X, \quad \nabla_X h_i = h_i \nabla_X \quad \forall X \in \aleph(M)$$

and D and \widetilde{D} commute with the operators A_i and A_i^* .

We take $\nabla_X = \nabla_X + V_X$ where ∇ will be an affine connection fixed on M such that $\nabla \xi i = 0$, $D \eta^i = 0$ (i = 1, 2, 3) and $V_x Y = V(X, Y)$, $\forall X, Y \in \aleph(M)$. ∇ will be an $(\varphi_i, \xi_i, \eta^i)$ -affine connection if and only if the field V satisfies the system of the tensorial equations

$$Ai^*(V_X) = a_i(X), \quad \eta^i \circ V_X = 0,$$

(29)

$$V_X \xi_i = 0, i = 1, 2, 3, \forall X \in \aleph(M).$$

where

(30)
$$a_i(X) = (D_X h_i) \circ v_i + (D_X v_i) \circ h_i = -h_i \circ D_X v_i - v_i \circ D_X h_i.$$

By a straightforward computation, it is proved that

(31)
$$A^*_i(a_i(X)) = A^*_i(a_i(X))$$

is equivalent to

(32)
$$h_i \circ \nabla_X h_j = h_j \circ \nabla_X h_i, \ \forall \ i \neq j.$$

Also, it is proved that

(33)
$$\eta^{i} \circ a_{i}(X) = 0, \ a_{i}(X)(\xi_{i}) = 0, \ \forall i, j, \ \forall X \in \mathbb{N}(M)$$

If the conditions (32) and (33) are fulfilled, then the system (29) has nontrivial solutions and its general solution is given by

(34)
$$V_X = a_1(X) + A_1a_2(X) + A_1A_2a_3(X) + A_1A_2A_3W_X$$

where $W \in T_2^{l}(M)$ must verify the conditions

(35)
$$\eta^{i} \circ A_{1}A_{2}A_{3}W_{X} = 0, \ A_{1}A_{2}A_{3}W_{X}\xi i = 0, \ i = 1, 2, 3, \ X \in \mathbb{N}(M).$$

We have:

<u>Theorem 2.1.</u> There are $(\varphi_i, \xi_i, \eta')$ -affine connections: one of them is

(35)
$$\nabla_{X} = \nabla_{X} + a_{1}(X) + A_{1}a_{2}(X) + A_{1}A_{2}a_{3}(X)$$

and the set of all $(\varphi_i, \xi_i, \eta')$ affine connections is given by

(36) $\overline{\nabla}_{\chi} = \nabla_{\chi} + A_1 A_2 A_3(W_{\chi})$

where ∇ is an $(\varphi_i \xi i, \eta^i)$ affine connection and $W \in T_2^{-1}(M)$ satisfies the conditions (35).

Observing that (35) and (37) can be considered as a transformation of $(\varphi_i, \xi_i, \eta^i)$ —affine connections, we have:

<u>Theorem2.2.</u> The set of all the transformations of $(\varphi_i, \xi_i, \eta')$ -affine connections and the multiplication of the applications is an abelian group, noted with $G(\varphi_i, \xi_i, \eta')$ -isomorph with the additive group of the tensors $W \in T_2^{l}(M)$ which satisfies the conditions (35) and (37).

REFERENCES

1. D.E.Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics 509, Springer-Verlag, Berlin, 1976

2 P.Matzeu, Su una caratterizzazione delle varieta normali, Bolletino U.M.I., Algebra e Geometria, Serie VI, Vol IV-D,N.1-1985, pp.153-160

3. D.Monar, Affine connections on manifolds with almost contact 3-structure, Riv.Mat.Univ.Parma(4) 14(1988),237-248

4 R.Miron et Gh. Atanasiu, Sur les (f,g)-connexions lineaires et l'integrabilite des (f,g)-structures, Bull .Math. de la Soc. Sei. Math. de la R.S. de Roumanie, Tome 30(78), nr.3, 1986, pp.245-256

5 N.Soare, On the existence of the linear connections compatible with some (f,g)structures, Demonstratio Math., Vol. XXIX, No1.1996, pp.149-154

6A.C.Wilde, Commutative Projection Operators, Atti Sem.Math.Fis.Univ. Modena, XXXV,167-172(1987), pp.167-172

> Facultatea de Matematica Str. Academiei 14 70109 Bucuresti Romania e-mail:nsoare@geo.math.unibuc.ro

> > 73