İsla/ıhtı! Üaiv. Fun Fak. Mai. Dergisi 55 - 56 (19 % - 1997), 67-73

ON SOME AFFINE CONNECTIONS ON MANIFOLDS WITH **ALMOS T CONTACT 3**-STRUCTURE

Nicolae SOARE

Abstract. In this paper, we shall study affine connections on manifolds with almost contact structure and with almost contact 3-structure. Using Obata's operators associated to an almost contact structure (φ, ξ, η) or a three almost contact structures (φ , ξ , η') (i = 1,2,3) and Wilde's method of characterizing the set of solutions of a system of tensorial equations are found all the (φ, ξ, η) -affme connections and $(\varphi_i \xi_i \eta')$ -affine connections and their groups of transformations.

INTRODUCTION

Let M be a $(2n+1)$ -dimensional C^{∞} manifold and let $\Im(M)$ be the algebra of all the differentiable functions on M. We denote by $T_s^r(M)$ the $\Im(M)$ -module of the tensor fields of type (r, s) . For $T_0^1(M)$ is used the notation $\aleph(M)$. Let $C(M)$ be the affine modul of affine connections on *M.*

An almost affine contact structure on M is defined by a C^{∞} (*1,1*)-tensor field φ , a C^{∞} vector field ξ and a C^{∞} one-form η on M such that

(1)
$$
\qquad \varphi^2 = -1 + \eta \otimes \xi, \quad \eta(\xi) = 1
$$

where \otimes denotes the tensor product and *I* is the identity tensor. This implies $\varphi_5^{\mu} = 0$ and $\eta \circ \varphi = 0$. Manifolds equipped with an almost contact structure are called almost contact manifolds.[1]

Let us suppose that a differentiable manifold admits three almost contact structures $(\varphi_i, \xi_i, \eta')$ $(i = 1,2,3)$ satisfying

(2)
\n
$$
\varphi_i \varphi_j - \eta^j \otimes \xi_i = \varphi_j \varphi_i + \eta^i \otimes \xi_j = \varphi_k, \ \eta^i(\xi_j) = \delta_j^i,
$$
\n
$$
\varphi_i(\xi_j) = -\varphi_j(\xi_j) = \xi_k, \ \eta^i \circ \varphi_j = -\eta^j \circ \varphi_i = \eta^k
$$

for any cyclic permutation (i.j.k) of (1,2,3). Then $(\varphi_i, \xi_i, \eta^i)$ ($i = 1,2,3$) is called an almost contact 3-structure.[3]

1 .Affine connections on almost contact manifolds

Let M be a differentiable manifold with an almost contact structure (φ, ξ, η) . We consider the distribution $H = Ker \eta$ and $V = Ker \varphi = {\xi \xi}$ on M and we denote

(3)
$$
h = I - \xi \otimes \eta, \ v = \xi \otimes \eta
$$

the projections on H and V respectively. We have [2],

 $n = n, v = v, nv = vn = 0$ (4) $\varphi^2 = -h$, $h\varphi = \varphi h = \varphi$, $v\varphi = \varphi v = 0$

Thus *h* and v are complementary projection operators on *M.*

Definition 1.1. We call Obata operators associated to an almost contact structure (φ, ξ, η) , the applications *A*, A^* : $T_I^I(M) \to T_I^I(M)$ defined by

(5)
$$
A(w) = v \circ w \circ v + h \circ w \circ h, A(w) = v \circ w \circ h + h \circ w \circ v
$$

Proposition **1.1.** ^ and *A** are complementary projection operators on *T} '(M).* Proposition 1.2. The tensorial equation

$$
(6) \tA*(u) a, a \in T_I^1(M)
$$

has a solution $u \in T_I' (M)$ if and only if $a \in Ker A$. If $a \in Ker A$, then the general solution of the equation (6) is

(6')
$$
u = a + A(w), \forall w \in T_1^1(M)
$$
.

A similar result holds for the equations of the form $A(u) = a$.

In the following, $\overrightarrow{V} \in C(M)$ will be an affine connection fixed on M such that, $\nabla \xi = 0$, $\nabla \eta = 0$. Every tensor field $u \in T_l^l(M)$ may be considered as a field of N/M -valued differential *I*-forms. So, if ∇ is an affine connection on M, then we note with *D* and \widetilde{D} the associated connections acting on the N/*M*)-valued differential /-forms and respectively on the differential /- forms:

(7) $(D_Xu)Y = \nabla_X(uY) - u(\nabla_XY)$

(8) $(\widetilde{D}_X \eta)Y = X(\eta(Y)) - \eta(\nabla_X Y)$ $\forall u \in T_I^1(M)$ and $X_iY \in \mathbb{N}(M)$.

Definition1.2. An affine connection ∇ on *M* is called an (φ, ξ, η) - affine connection if

(9) $D\varphi = 0$, $\widetilde{D} n = 0$, $\nabla \xi = 0$.

Of course, for every (φ,ξ,η) -affine connection ∇ , we have

$$
(10) \qquad \nabla_X \mathbf{v} = \mathbf{v} \nabla_X \nabla_X h = h \nabla_X \quad \forall X \in \aleph(M)
$$

We see that *D* and \widetilde{D} commute with the operators *A* and A^* .

We take $\nabla_X = \nabla_X + V_X$, where ∇ is an affine connection on M such that $\nabla^5 = 0$, $D \eta = 0$ and $V_X Y = V(X, Y)$, $V \in T_2^1(M) \ \forall \ X, Y \in \mathbb{N}(M)$ and we find the tensor field V so that it satisfies the conditions (9) .

 ∇ will be an (φ, ξ, η) -affine connection if and only if the field *V* satisfies the system of the tensorial equations:

- (11) $V_{X \circ \varphi \circ \varphi \circ V_X} = -(D_{X \varphi})$, $\forall X \in \aleph(M)$
- (12) $\eta \circ V_X = 0, \quad V_X \xi = 0, \quad \forall X \in \mathbb{N}(\mathcal{M})$

We have also

 $V_{\text{Yo}}v - v \circ V_{\text{Y}} = -\frac{1}{D}v v$

(13)

$$
\frac{1}{2}
$$

Vxoh-h°V^x = - Dxh

which implies that

$$
h\circ V_{X}\!\circ\!\nu=-h\!\circ\!D_{X}\!v=(D_{X}\!h)\!\circ\!\nu
$$

(14)

$$
v \circ V_{X \circ} v = - v \circ D_{X} v = (D_{X} v) \circ h
$$

 $\forall X \in \mathcal{X}(M)$. Putting

(15)
$$
a(X) = (D_x h) \circ v + (D_x v) \circ h = -h \circ (D_x h) - v \circ (D_x h)
$$

it follows that V_X must verify the system

(16)
$$
A^*(V_X) = a(X), \quad \eta \circ V_X = 0, \quad V_X \xi = 0.
$$

But

$$
A(a(X)) = A((D_{X}h) \circ \nu + (D_{X}v) \circ h) = \nu \circ (h \circ D_{X}v + \nu \circ D_{X}h) \circ \nu +
$$

$$
h \circ (h \circ D_{X}v + \nu \circ D_{X}h) \circ h = \nu \circ D_{X}h \circ \nu + h \circ D_{X}v \circ h = 0,
$$

and by a straightforward computation, it is verified

 $r \circ a(X) = 0$, $a(X) \xi = 0$, $\forall X \in \mathbb{N}(M)$.

Applying the Proposition 1.2, it becomes that the system (16) has a solution and the general solution is

$$
(17) \t\t YX = a(X) + A(WX),
$$

where $W \in T_2^1(M)$ must be verify the conditions

$$
(18) \qquad \qquad \eta \circ A(W_X) = 0, \ A(W_X)(\xi) = 0, \quad \forall X \in \aleph(M)
$$

Then we obtain the following:

Theorem1.1. There are (φ, ξ, η) -affme connections: one of them is

(19)
$$
\nabla_X = \nabla_X + (D_X h) \circ \nu + (D_X \nu) \circ h
$$

where ∇ is an affine connection on *M* such that $\nabla \xi = 0$ and $\vec{D} \eta = 0$, \vec{D} and \vec{D} being its associate connections.

Theorem1.2. The set of all (φ,ξ,η) - affine connections is given by

$$
(20) \qquad \qquad \overline{\nabla}_X = \nabla_X + A(W_X)
$$

70

where ∇ is an (φ,ξ,η) -affine connection and $W \in T_2(M)$ satisfies the conditions (18).

Observing that (18) and (20) can be considered as a transformation of (φ, ξ, η) affme connections, we have :

Theorem 1.3. The set of the tmsformations of (φ , ξ , η) - affme connections and the multiplication of the applications is an abelian group, noted with $G(\varphi,\xi,\eta)$, isomorph with the additive group of the tensor $W \in T_2^1(M)$ which satisfies the conditions (18) and (20).

2.Affine connections on manifolds with an almost contact 3-structure

Let M be a differentiable manifold with an almost contact 3- structure(φ , ξ i, η') $(i = 1, 2, 3)$. Now we consider the distributions $H_i = Ker \eta^i$ and $V_i = Ker \varphi_i$ and we denote

(21)
$$
h_i = I - \xi_i \otimes \eta^i, \quad v_i = \xi_i \otimes \eta^i, \quad i = I, 2, 3
$$

the projections on H_i and V_i respectively. We have

 $h^2_i = h_i, v^2_i = v_i, h_i v_i = v_i h_i = 0,$ $\varphi_i^2 = -h_i$, $h_i \varphi_j = \varphi_i h_i = \varphi_i$, $v_i \varphi_j = \varphi_i v_i = 0$ $v_i v_j = v_j v_j = 0, h_i v_j = v_j h_i = v_j$ $h_i h_j = h_j h_i = I - v_j - v_j$, for $i \neq j$.

Definition **2.1.** We call Obata operators associated to an almost contact 3 structure, $(\varphi_i, \xi_i, \eta')$ ($i = 1,2,3$) the applications A_i, A^* ; T_i' (M) $\to T_i'$ (M) defined by

(23)
$$
A_i(w) = v_i \circ w \circ v_i + h_i \circ w \circ h_i, A_i(w) = v_i \circ w \circ h_i + h_i \circ w \circ v_i.
$$

Proposition 2.1. For an $(\varphi_i, \xi_i, \eta^i)$ -structure on *M* and *A* $_A A^*$ defined by (23) we have

1) *A -,* and *A*i* are complementary projection operators on *Tj¹ (A4)* 2) *A i* and A^* commute pairwise with A_i and A^* , $i \neq j$ 3) $A_i \circ A_j$ and $A_i^* \circ A_j^*$ are projections on $T_i^A(M)$ 4) Ker A_i (*lKer* $A_j = Im (A_i \bigcap A_j)$, $i \neq j$.

Proof. 2) In fact, by simple calculation we have

 $A_i \circ A_j \; (\omega) = \nu_i \circ A_j \; (\omega) \circ \nu_i + h_i \circ A_j(\omega) \circ h_i = \nu_i \circ \nu_j \circ \omega \circ \nu_j \circ \nu_i + \nu_i \circ h$ $\mathbf{v}_i \cdot \mathbf{v}_j = h_i \cdot \mathbf{v}_j + h_j \cdot \mathbf{v}_j$ (*v* $\mathbf{v}_i \cdot \mathbf{v}_j = h_j \cdot \mathbf{v}_j + h_j \cdot \mathbf{v}_j$) $\mathbf{v}_i \cdot \mathbf{v}_j = \mathbf{v}_i \cdot \mathbf{v}_j + \mathbf{v}_j \cdot \mathbf{v}_j$ $v_i + h_i \circ h_j \circ w \circ h_i \circ h_k$

Proposition 2.2. The system of tensorial equations

(24) $A^*_{i}(u) = a_i$, $i = 1, 2, 3$

has a solution $u \in T_l^1(M)$, if and only if

(25) $A_i(a_i) = 0$ and $A_i(a_i) = A_i(a_i)$, $i \neq j$

If the conditions (25) are fulfilled , then the general solution of the system (24) is

71

.
1940: Anim William, ann anns an coileach ann anns an

$$
(26) \quad u = a_1 + A_1(a_2) + A_1A_2(a_3) + A_1A_2A_3(w)
$$

 $\forall w \in \mathfrak{I}_I^{\mathcal{I}}(M).$

A similar result holds for the system of the form $A_i(u) = a_i$.

Definition 2.2. An affine connection V on *M* is called an $(\varphi_i, \zeta_i, \eta_j)$ -affine connection if

(27)
$$
D\varphi_i = 0
$$
, $\widetilde{D} \eta^i = 0$, $\nabla \xi_i = 0$, $i = 1, 2, 3$.

For every $(\varphi_i, \xi_i, \eta')$ -affine connection ∇ we have

(28)
$$
\nabla_{X} \nu_{i} = \nu_{i} \nabla_{X} \nabla_{X} h_{i} = h_{i} \nabla_{X} \nabla_{X} \in \mathcal{R}(M)
$$

and *D* and \widetilde{D} commute with the operators A_i and A_i^* .

We take $\nabla_X = \nabla_X + V_X$ where ∇ will be an affine connection fixed on M such that $\nabla \xi$ *i* = 0, *D* $\eta' = 0$ (*i* = 1,2,3) and $V_xY = V(X, Y)$, $\forall X, Y \in \mathcal{R}(M)$. ∇ will be an $(\varphi_i, \xi_i, \eta')$ -affine coimection if and only if the field *V* satisfies the system of the tensorial equations

$$
Ai^*(V_X) = a_i(X), \quad \eta^{\dagger} \circ V_X = 0,
$$

 (29)

$$
V_X\xi_i = 0, i = 1, 2, 3, \forall X \in \aleph(M).
$$

where

$$
(30) \t a_i(X) = (D_x h_i) \circ v_i + (D_x v_i) \circ h_i = -h_i \circ D_x v_i - v_i \circ D_x h_i.
$$

By a straightforward computation, it is proved that

(31)
$$
A^*_{i}(a_j(X)) = A^*_{j}(a_i(X))
$$

is equivalent to

(32)
$$
h_i \circ \nabla_x h_j = h_j \circ \nabla_x h_i \ \forall \ i \neq j.
$$

Also, it is proved that

$$
(33) \qquad \eta' \circ a_j(X) = 0, \ a_i(X)(\xi_j) = 0, \ \forall \ i, j, \ \forall \ X \in \aleph(M)
$$

If the conditions (32) and (33) are fulfilled , then the system (29) has nontrivial solutions and its general solution is given by

$$
(34) \tV_X = a_1(X) + A_1a_2(X) + A_1A_2a_3(X) + A_1A_2A_3W_X
$$

where $W \in T_2(M)$ must verify the conditions

(35)
$$
\eta^{i} \circ A_{i} A_{2} A_{3} W_{X} = 0, A_{i} A_{2} A_{3} W_{X} \xi i = 0, i = 1, 2, 3, X \in \mathbb{N}(M).
$$

We have:

Theorem 2.1. There are (φ, ξ, η') -affme connections: one of them is

(35)
$$
\nabla_X = \nabla_X + a_1(X) + A_1 a_2(X) + A_1 A_2 a_3(X)
$$

and the set of all (φ, ξ, η') - affine connections is given by

(36) $\qquad \nabla_x = \nabla_x + A_1 A_2 A_3(W_x)$

where ∇ is an $(\varphi_i, \xi_i, \eta_j)$ - affine connection and $W \in T_2^1(M)$ satisfies the conditions(35).

Observing that (35) and (37) can be considered as a transformation of (φ, ξ, η') —affine connections, we have:

Theorem 2.2. The set of all the transformations of $(\varphi_i \xi_i, \eta')$ -affine connections and the multiplication of the applications is an abelian group, noted with *G* (φ _{*i*}, ξ *i*, η ^{*'*})-isomorph with the additive group of the tensors $W \in T_2^1(M)$ which satisfies the conditions (35) and (37).

REFERENCES

1. D.E.Blair. Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics 509, Springer-Verlag, Berlin,1976

2 P.Matzeu, Su una caratterizzazione deiie varieta normali, Bolletino U.M.I., Algebra e Geometria, Serie VI , Vol IV_D,N.1-1985, pp.153-160

3. D.Monar, Affine connections on manifolds with almost contact 3-structure, Riv.Mat.Univ.Parma(4) 14(1988) ,237-248

4 R.Miron et Gh. Atanasiu, Sur les (f,g)-connexions lineaires et I'integrabilite des (f,g)-structures, Bull .Math, de la Soc. Sei. Math, de la R.S. de Roumanie , Tome 30(78), nr.3, 1986,pp.245-256

5N.Soare, On the existence of the linear connections compatible with some (f,g) structures, Demonstratio Math., Vol. XXIX, No1.1996, pp.149-154

6 A.C.Wilde, Commutative Projection Operators, Atti [Sem.Math.Fis.Univ.](http://Sem.Math.Fis.Univ) Modena, XXXV, 167-172(1987), pp. 167-172

> Facultatea de Matematica Str. Academiei 14 70109 Bucuresti Romania e-mail[:nsoare@geo.math.unibuc.ro](mailto:nsoare@geo.math.unibuc.ro)