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Abstract. In this paper, using by the concept of locally dual mapping, the
optimality conditions for solution of a convex optimization problem are deter-
mined. Specifically, the sets and the inclusions in the considered problem are
polyhedral. Furthermore, the problem is given by a discrete inclusions system
with discrete time. The polyhedral discrete inclusions in the problem are defined
by a set-valued map.
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1. Introduction

This paper is devoted to an investigation of convex optimization problem described

by discrete inclusions. As it is well known that most of optimization problems such as

differential games, models of economic dynamics, macroeconomic problems, etc. are now

described in terms of set-valued mappings [1] and form a component part of the control

theory and mathematical economics [6]. Among these problems, by virtue of their wide

applicability (especially in models of economic dynamics), an important role is played

by problems with polyhedral mappings [8]. We refer the reader to the monographs by

Pschenichny [8], Rockafellar [9], Aubin and Frankowska [1], Mordukhovich [7] and the

papers of Mahmudov [3, 4, 5].

2. Necessary Concepts

The required definitions and theorems are given in this section.

A set M ⊆ Rn is called a polyhedral set if it can be expressed the intersection of a

finite number of closed half-space, that is if M is the solution of the inequality system

〈x, bi〉 6 αi, i = 1, 2, .., m
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where bi ∈ Rn, αi ∈ R then M is polyhedral. So any polyhedral set can be expressed as

follows

{x ∈ Rn : Ax 6 b}
where A is an m× n matrices, b is an m-dimensional column vector. Any polyhedral set

is closed and convex. See [2] for further information.

Definition 2.1. If for every x ∈ K and λ > 0 we have λx ∈ K then K is called a cone.

If K is convex set then the cone K is called a convex cone.

Definition 2.2. Let K be a cone. Dual cone of K is defined as follows

K∗ = {x∗ ∈ X∗ : 〈x, x∗〉 > 0, ∀x ∈ K}

Theorem 2.1. Polyhedral cones can be given with the solution of a linear homogen in-

equality system as below

〈x, x∗k〉 > 0, k = 1, 2, .., l. (1)

Theorem 2.2. If a polyhedral cone K is given by the linear inequality system as in (1)

then its dual cone K∗ is also polyhedral cone and K∗ = {x∗ : x∗ =
∑l

k=1 γkx
∗
k, γk > 0}.

Theorem 2.3. For the polyhedral cones K1, K2, .., Km the following relation is valid:

(K1 ∩K2 ∩ .. ∩Km)∗ = K∗
1 + K∗

2 + .. + K∗
m .

Let X and Y be finite dimensional Euclidean spaces and Z = X × Y . A set-valued

mapping a : X → Y is a mapping that associates with any x ∈ X a set a(x) ∈ Y . For

any set M ⊆ Z the formula a(x) = {y : (x, y) ∈ M} defines a set-valued mapping. Notice

that M is the graph of the mapping a. A set-valued mapping a completely characterized

by its graph. The graph is denoted gph a and defined by gph a = {(x, y) : y ∈ a(x)}. The

set doma = {x : a(x) 6= ∅} is called the domain of a. The norm of the set a(x) is defined

by ‖a(x)‖ = supy{‖y‖ : y ∈ a(x)} and it is assume as specific that ‖∅‖ = 0. For more

information about the set-valued mapping see [1].

Definition 2.3. A set-valued mapping is called convex if the set gph a is convex.

In a clear statement, if for any x1, x2 ∈ X the relation

a(λx1 + (1− λ)x2) ⊇ λa(x1) + (1− λ)a(x2), 0 6 λ 6 1

is satisfied then the mapping a is called a convex set-valued map.



Definition 2.4. A set-valued mapping is called closed if the set gph a is closed.

Definition 2.5. A set-valued mapping is polyhedral if the set gph a is polyhedral.

Definition 2.6. The cone of tangent directions of the set gph a at a point z ∈ gph a is

denoted by Ka(z) and defined as below

Ka(z) = con(gph a− z) = {z̄ : z̄ = λ(z1 − z), z1 ∈ gph a, λ > 0} . (2)

Definition 2.7. The locally dual mapping of a convex set-valued mapping at a point

z ∈ gph a is denoted by a∗(y∗; z) and defined by a∗(y∗; z) = {x∗ : (−x∗, y∗) ∈ K∗
a(z)}.

The set ∂f(x) = {x∗ ∈ Rn : f(x) − f(x0) > 〈x∗, x − x0〉,∀x ∈ Rn} is called

the subdifferential of f at x. Obviously ∂f(x) is a closed convex set. In general, the

subdifferential may be empty. If ∂f(x) is not empty then f is said to be subdifferentiable

at x.

The cone of tangent directions KM(x0) of the set at a point x0 ∈ M is called a

local tent, if for each x0 ∈ ri(KM(x0)) (where riK is relative interior of K) there exists a

convex cone Q and a continuous mapping ψ defined in a neighborhood of the origin such

that:

a) x0 ∈ ri(Q), LinQ = Lin KM(x0) ve Q ⊆ KM(x0)

b) ψ(x) = x + r(x), x → 0 için ‖x‖−1r(x) → 0

c) x0 + ψ(x) ∈ M, x ∈ Q ∩ εB.

Notice that if M is a convex set then KM(x0) = con(M − x0) wherex0 ∈ M is a

local tent.

Let f : X → R∪{±∞} be an arbitrary function. Let us denote domf = {x : f(x) <

+∞}. Take a point x ∈ domf and consider the following function for x ∈ X, (x 6= 0)

F (x, x) = sup
r(.)

lim sup
λ↓0

f(x + λx + r(λ))− f(x)

λ

where r(λ) ∈ Rn, λ−1r(λ) → 0, λ ↓ 0.

The function h(·, x) is called a convex upper approximations (CUA) of a function

f at every fixed point x ∈ domf , if

1) h(x, x) > F (x, x) for all x 6= 0

2) h(·, x) is a closed (lower semi-continuous) positively homogeneous convex

function



If the function h(x, x) is a CUA for f at the point x then the set ∂h(0, x) = {x∗ ∈
Rn : h(x, x) > 〈x, x∗〉, x ∈ Rn} equals to ∂f(x).

Let us now consider the following problem in nonconvex case

f(x) → min
x ∈ M

(3)

where M ⊆ Rn is an any set and f is a function which has an UCA.

Theorem 2.4. [8] Suppose that in the problem (3), x0 ∈ M is a point that gives the

minimum value for f , h(x, x0) is an UCA for the function f and the cone KM(x0) is a

locally tent for M at x0. Then

intdomh(., x0) ∩KM(x0) 6= ∅

if ∂f(x0) ∩K∗
M(x0) 6= ∅ .

Theorem 2.5. [8] Let the point x0 be the minimum point for the function f on the set

M =
⋂m

i=1 Mi. Further suppose that h(x, x0) is an UCA for the function f at the point

x0, for all i = 1, 2...,m the cones KMi
(x0) are locally tents and the next condition is valid

intdomh(., x0) ∩ (
m⋂

i=1

KMi
(x0)) 6= ∅

Then there exist a number λ > 0 and vectors x∗i ∈ K∗
Mi

(x0) not equal simultaneously to

zero, such that

λx∗0 =
m∑

i=1

x∗i , x∗0 ∈ ∂f(x0) .

Let us now consider the following problem:

T∑
t=0

g(xt, t) → min (4)

xt+1 ∈ a(xt), t = 0, 1, ..., T − 1 (5)

x0 ∈ N, xT ∈ M (6)

Suppose that a trajectory {x̃t}T
t=0 is an optimal solution for the problem (4)-(6) and

(1) a is a set-valued mapping such that the tangent directional cones Ka(x̃t, x̃t+1), t =

0, 1, ..., T − 1 are locally tents,

(2) the tangent directional cones KN(x̃0) and KM(x̃T ) are locally tents,



(3) the functions g(x, t), t = 0, 1, ..., T have an UCA ht(0, x̃t) at the points x̃t such that

it is contious according to x in other words the subdifferential ∂g(x̃t, t) = ∂ht(0, x̃t)

is defined.

Let w be a vector in the space R(T+1)n consists of n-dimensional components xt, t =

0, 1, ..., T .

One can show that using the followings

f(w) =
T∑

t=0

g(xt, t)

Ñ = {w : x0 ∈ N} , M̃ = {w : xT ∈ M} (7)

M̃t = {w : (xt, xt+1) ∈ gph a}, t = 0, 1, ..., T − 1

the problem (4)-(6) is equivalent to the following problem:

f(w) → min

w ∈ Ñ ∩ (
⋂T−1

t=o M̃t) ∩ M̃ .
(8)

Using by Theorem 2.5 the necessary conditions for the problem (8) is given in the next

theorem.

Theorem 2.6. [8] Let us suppose that the conditions 1-3 above are satisfied. Then in order

to the trajectory {x̃t}T
t of the system (5) satisfying the conditions (6) minimizing the sum

(4) it is necessary that there exist a number λ ∈ {0, 1} and vectors x∗t , t = 0, 1, ..., T, x∗e

not equal simultaneously to zero, such that

x∗t ∈ a∗(x∗t+1; (x̃t, x̃t+1)) + λ∂g(x̃t, t), t = 0, 1, ..., T − 1 (9)

x∗T + x∗e ∈ λ∂g(x̃T , T ), (10)

x∗0 ∈ K∗
N(x̃0), (11)

x∗e ∈ K∗
M(x̃T ) . (12)

When λ = 1 then these conditions are also sufficient.

Remark 2.1. If a set-valued mapping is convex then Ka(z) is a locally tent and the below

condition (1) holds. In case the set N is convex then the tangent directional cone KN(x)

is a locally tent and the below condition (2) holds. If the function g is convex then the

below condition (3) is valid.

Corollary 2.7. If the mapping a, the sets N,M and the function g are convex then from

Remark 2.1 the Theorem 2.6 is valid.



Corollary 2.8. In case of polyhedral from Theorem 2.3, the number λ equals to 1 in the

conditions (9) and (10).

3. Necessary and Sufficient Conditions for Polyhedral Discrete

Inclusions

Let Rn be the n-dimensional Euclidean space, let z = (x, y) be the pair of elements

x, y ∈ Rn, and let 〈x, y〉 be their inner product. Let us now consider the problem for

polyhedral discrete inclusions with a convex function:

T∑
t=0

g(xt, t) −→ min (13)

xt+1 ∈ a(xt) , t = 0, 1, .., T − 1 (14)

x0 ∈ N0 , xT ∈ MT (15)

where T is a finite natural number and the functions g are convex. The mapping a, the

sets N0 and MT are defined as follows

a(x) = {y : Ax−By 6 d} (16)

N0 = {x0 : Nx0 6 p} (17)

MT = {xT : MxT 6 q} . (18)

where A and B are m× n matrices, d is m-dimensional column vector, N and M rectan-

gular matrices, while p, q are column vectors of appropriate dimensions.

Lemma 3.1. Let A and B be m×n matrices and d be an m-dimensional column vector.

Then, the set-valued mapping a(·) : Rn → Rn defined by a(x) = {y : Ax − By 6 d} is

polyhedral, convex and closed.

Proof. It is known that the graph of the set-valued mapping a(x) = {y : Ax− By 6 d}
is the set gph a = {(x, y) : Ax−By 6 d} ⊂ R2n. Because the set gph a is the solution set

of the linear inequality systems Ax− By 6 d, the set gph a is polyhedral. Consequently

gph a is convex. By the Definition 2.3 and Definition 2.5 the set-valued mapping a is a

convex and polyhedral. Lets show that the set gph a is closed. Lets consider a sequence

(xk, yk) such that (xk, yk) → (x, y) and (xk, yk) ∈ gph a for all k ∈ N. The inclusion

(xk, yk) ∈ gph a, k ∈ N implies that the inequality systems Axk − Byk 6 d for all

k ∈ N. By passing to limit for k → ∞ we have Ax − By 6 d. Hence we have the



inclusion (x, y) ∈ gph a. Consequently, the set gph a is closed in the space R2n and by the

Definition 2.4 the mapping a is closed.

In the following lemma it is calculated the locally dual mapping for a mapping

whose graph is polyhedral set.

Lemma 3.2. Assume that a polyhedral mapping a(x) = {y : Ax − By 6 d} is given,

where A and B are r × n matrices and d is an r-dimensional column vector. Then the

locally dual mapping for the mapping a at the point z0 = (x0, y0) is the following form:

a∗(y∗; z0) = {x∗ = A∗λ : y∗ = B∗λ, 〈Ax0 −By0 − d, λ〉 = 0, λ > 0}, (19)

where A∗, B∗ are the transposes of matrices A and B, respectively.

Proof. It is known that gph a = {(x, y) : Ax−By 6 d}. Now, for a point z0 = (x0, y0) ∈
gph a, let us now define the index set

I0 = {i : Aix0 −Biy0 = di, i = 1, .., r}

where Ai, Bi are the ith row of the matrices A and B, respectively, and di is ith entry of the

vector d. Let us now determine the cone Ka(z0) using by the Definition 2.6. To determine

it we should research that for which points z = (x, y) the inclusion z0 + λz ∈ gph a is

satisfied for sufficiently small λ > 0.

If i ∈ I0 then Aix0 −Biy0 = di. Hence the inequality

Ai(x0 + λx)−Bi(y0 + λy) = Aix0 −Biy0 + λ(Aix−Biy) = di + λ(Aix−Biy) 6 di

is satisfied, but this situation is possible only for the points z = (x, y) which satisfy

Aix−Biy 6 0, i ∈ I0 . (20)

If i /∈ I0 then the following inequality

Ai(x0 + λx)−Bi(y0 + λy) = (Aix0 −Biy0) + λ(Aix−Biy) < di

is satisfied independently from the point z for sufficiently small numbers λ > 0. Conse-

quently, the points z is satisfied the inequality (20) if and only if the inclusion z0 + λz ∈
gph a is satisfied for sufficiently small λ > 0, shortly the Definition 2.6 implies that

Ka(z0) = {(x, y) : Aix−Biy 6 0, i ∈ I0} .

Because of the inequality system in (20) equals to the following system

〈x,−Ai〉+ 〈y,Bi〉 > 0, i ∈ I0 (21)



from Theorem 2.1 it can be deduced that Ka(z0) is a polyhedral cone and if we apply the

Theorem 2.2 to the system (21) we have (x∗, y∗) ∈ K∗
a(z0) if and only if

x∗ = −
∑
i∈I0

A∗
i λi, y∗ =

∑
i∈I0

B∗
i λi, λi > 0 . (22)

If we take λi as λ and λi = 0 for i /∈ I0 then the dual cone K∗
a(z0) is obtained in the

following form

K∗
a(z0) = {(x∗, y∗) : x∗ = −A∗λ, y∗ = B∗λ, λ > 0, 〈Ax0 −By0 − d, λ〉 = 0} . (23)

Finaly using by (23) and Definition 2.7 we have the equality (19).

We will now find the dual cone for the tanget directions cone at a point on a

polyhedral set by the next lemma.

Lemma 3.3. Let N = {x : Ax 6 p} be a polyhedral set such that A is an r × n matrix

and p is an r-dimensional column vector. Then the dual cone to the tanget cone KN(x0)

at a point x0 ∈ N must be the following form:

K∗
N(x0) = {x∗0 = −A∗λ : 〈Ax0 − p, λ〉 = 0, λ > 0}. (24)

where A∗ is the tranpose of A.

Proof. Because it is the solution set of the inequality system Ax 6 p, the set {x : Ax 6 p}
is polyhedral and consequently convex. Lets define an index set I0 = {i : Aix0 = pi, i =

1, .., r} for x0 ∈ N similarly in Lemma 3.2. For i ∈ I0 and sufficiently small λ > 0 the

inequality Ai(x0 + λx) = pi + λAix 6 pi is valid only in case Aix 6 0, i ∈ I0 and so

〈x,−Ai〉 > 0, i ∈ I0. If i /∈ I0 then the inequality Ai(x0 + λx) = Aix0 + λAix <

pi is independently valid from the point x for sufficiently small λ > 0. Consequently

KN(x0) = {x : 〈x,−Ai〉 > 0, i ∈ I0}. From Theorem 2.1 that cone is polyhedral. Because

of Theorem 2.2 and the definition of dual cone one can has x∗ ∈ K∗
N(x0) if and only if

x∗ = −∑
i∈I0

A∗
i λi, λi > 0. If we take λ as the column vector that its components are

λi and λi = 0 for i /∈ I0 then the desired dual cone is obtained in format (24).

Theorem 3.4. In order that the trajectory {x̃t}T
t=0 of the discrete polyhedral inclusion

(14) be a solution of the polyhedral optimization problem with the boundary conditions

(13)-(15), it is necessary and sufficient that there exist vectors x∗t , t = 0, 1, .., T and x∗,

satisfying the relations

x∗t = A∗λt + u∗t , u∗t ∈ ∂xg(x̃t, t), x∗t+1 = B∗λt, λt > 0,

〈Ax̃t −Bx̃t+1 − d, λt〉 = 0, t = 0, 1, .., T − 1,
(25)



x∗T + x∗ ∈ ∂xg(x̃T , T ), (26)

x∗0 = −N∗γ0, 〈Nx̃0 − p, γ0〉 = 0, γ0 > 0, (27)

x∗ = −M∗γT , 〈Mx̃T − q, γT 〉 = 0, γT > 0 . (28)

Proof. From Lemma 3.2 we have

a∗(y∗; z) = {x∗ = A∗λ : y∗ = B∗λ, 〈Ax−By − d, λ〉 = 0, λ > 0} . (29)

On the other hand due to the Lemma 3.3 for x̃0 ∈ N0 and x̃T ∈ MT we have

K∗
N0

(x̃0) = {x∗0 = −N∗γ0 : 〈Nx̃0 − p, γ0〉 = 0, γ0 > 0},
K∗

MT
(x̃T ) = {x∗T = −M∗γT : 〈Mx̃T − q, γT 〉 = 0, γT > 0} .

(30)

Lets now use these results with Result 2.7 and Theorem 2.6. According to Result 2.8,

λ in (9) equals to 1. In (9) if we take x∗ = x∗t , y∗ = x∗t+1, x = x̃t, y = x̃t+1 and

consider (29) then we have the conditions x∗t = A∗λt + u∗t , u∗t ∈ ∂xg(x̃t, t), x∗t+1 = B∗λt,

〈Ax̃t−Bx̃t+1−d, λt〉 = 0, λ > 0 so the conditions (25). Again according to Result 2.8 λ in

(10) equals to 1. If we take x∗e = x∗ we have the condition (26). In (11) if we take N = N0

and consider (30) then we have the condition x∗0 = −N∗γ0, 〈Nx̃0−p, γ0〉 = 0, γ0 > 0 so

the condition (27). Similarly in (12) if we take M = MT and consider (30) then we have

the condition x∗ = −M∗γT , 〈Mx̃T − q, γT 〉 = 0, γT > 0 so the condition (28). So all

conditions are obtained and since λ = 1 > 0 according to Theorem 2.6 these conditions

are sufficient in the same time.
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