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1. INTRODUCTION 
 
Since Chang [2] introduced fuzzy theory into topology, many authors investigated 
various aspects of fuzzy topology. Höhle [8] was one of the first authors who had 
created the notion of a topology being viewed as an L − subset of a powerset (in his 
case, 2X ). Later Kubiak [9] and Šostak [15] independently extended Höhle’s notion to 
L − subsets of XL . 
In [8] , it is shown that L FTOP−  is a topological category over SET  for each L . In 
[3], Chattopadhyay et al gave a definition of fuzzy topology by introducing a concept of 
gradation of openness of fuzzy subsets. They constructed connections between r − level 
Chang fuzzy topology and the new fuzzy topological space. In [12], Mondal et al 
defined the category of intuitionistic fuzzy topological spaces (briefly IFTS ) and also 
established connections between a descending family of inclusive bitopologies of fuzzy 
subsets on X  and intuitionistic fuzzy topological spaces. By using the connection, they 
defined product operation in the category of intuitionistic fuzzy topological spaces. 
Since firstly this definition was given as independently by Kubiak [8] and Šostak [15], 
these spaces are called as Šostak fuzzy topological spaces. 
In [6], Fang gave internal characterizations of L -fuzzy topological sum spaces and 
examined some additional properties of L -fuzzy topological spaces. Yue [21] 
introduced base (subbase) of gradation of openness and by using these definitions, he 
presented product and quotient spaces. In [14], Shi introduced a new definition of fuzzy 
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compactness in L - topological spaces when L  is a complete De Morgan algebra (in 
case of Chang). He proved that the intersection of a fuzzy compact L -set with a closed 
L -set is fuzzy compact and the continuous image of a fuzzy compact L -set is fuzzy 
compact. In [10,11], Inverse (direct) limits are described as inverse (direct) systems in 
the category of fuzzy topological spaces and series of their properties are investigated. 
Furthermore, the mappings between two arbitrary inverse systems are defined and some 
of their properties are discussed for the case of category of fuzzy topological spaces. 
The purpose of this paper is to construct inverse system in Šostak fuzzy topological 
spaces. Firstly, we prove that the inverse limit is compact under some conditions. Some 
definitions of compactness are given in [1,12,13]. In this study, we give a new 
definition of compactness by using the idea in Shi [14].  
 
2. PRELIMINARIES 
 
Let X  be a non-empty set and I  be the closed unit interval [ ]0,1 , ( ]0 0,1I =  and 

[ )1 0,1I =  . Let XI  denote a collection of all fuzzy sets in X . By 0  and 1 we denote 

characteristic functions χ∅  and Xχ , respectively. All other notations are standart 
notations of fuzzy set theory. We use all notations from [12]. 
 
Definition 2.1. ( Mondal, Samanta [12]) Let X  be a non-empty set. An IGO  of fuzzy 
subsets of X  is an ordered pair ( )*,τ τ  of functions from XI  to I  such that 

( ) ( ) ( )*1 1, XIGO Iτ λ τ λ λ+ ≤ ∀ ∈ , 

( ) ( ) ( ) ( ) ( )* *2 0 1 1, 0 1 0,IGO τ τ τ τ= = = =  

( ) ( ) ( ) ( )1 2 1 23IGO τ λ λ τ λ τ λ∩ ≥ ∧  and ( ) ( ) ( )* * *
1 2 1 2 , , 1, 2,X

i I iτ λ λ τ λ τ λ λ∩ ≤ ∨ ∈ =  

( ) ( )4 i ii
i

IGO τ λ τ λ
∈Δ

∈Δ

⎛ ⎞
≥ ∧⎜ ⎟

⎝ ⎠
∪  and ( )* * , , .X

i i ii
i

I iτ λ τ λ λ
∈Δ

∈Δ

⎛ ⎞
≤ ∨ ∈ ∈Δ⎜ ⎟

⎝ ⎠
∪  

The triplet ( )*, ,X τ τ  is called an IFTS . τ  and *τ  may be interpreted as gradation of 

openness and gradation of nonopenness, respectively. 
 
Definition 2.2. ( Mondal, Samanta [12])  Let ( )*, ,X τ τ  and ( )*, ,Y σ σ  be two IFTSs  

and :f X Y→  be a mapping. Then f  is called a gp-map if for each YIμ∈ , 

( ) ( )( )1fσ μ τ μ−≤  and ( ) ( )( )* * 1fσ μ τ μ−≥ . 

 



Theorem 2.3. ( Mondal, Samanta [12])  Let ( ){ }*
0, ;r rT T r I∈  be a descending family of 

inclusive bitopologies of fuzzy subsets on X . Define *, : XI Iτ τ →  by 

( ) { }: rr Tτ λ λ= ∨ ∈  

and 
( ) { }* *1 : rr Tτ λ λ= ∧ − ∈ . 

Then, 
a) ( )*,τ τ  is an IGO  on X , 

b) r rTτ =  iff 0,s r
s r

T T r I
<

= ∀ ∈∩ , 

c) * *
r rTτ =  iff * *

0,s r
s r

T T r I
<

= ∀ ∈∩ . 

Definition 2.4. (Shi [16]) Let ( ),X Τ  be an L − space. XG L∈  is called fuzzy compact 

if for every family U ⊆ Τ , it follows that  

( ) ( )( ) ( )
( ) ( )( )

2 Ux X A U x X A VV
G x A x G x A x

∈ ∈ ∈ ∈∈
′ ′∧ ∨ ∨ ≤ ∨ ∧ ∨ ∨ . 

 
Let ( ),X Τ  be an L − space (in case of Chang).  

 
Definition 2.5. (Shi [14]) Let ( ),X Τ  be an L − space, { }\ 1a L∈  and XG L∈ . A 

subfamily U  in XL  is said to be 
(1) an a - shading of G  if for any x X∈ , it follows ( ) ( )

A U
G x A x a

∈
′ ∨ ∨ ≤ . 

(2) a strong a - shading of G  if ( ) ( )( )x X A U
G x A x a

∈ ∈
′∧ ∨ ∨ ≤ . 

It is obvious that a strong a - shading of G  is an a - shading of G .  
 
Theorem 2.6. (Shi [14]) Let ( ),X Τ  be an L − space and XG L∈ . Then the following 

conditions are equivalent to each other: 
(1) G  is fuzzy compact. 
(2) For any { }\ 1a L∈ , each open strong a - shading U  of G  has a finite subfamily V  

which is a strong a - shading of G . 
(3) For any { }\ 0a L∈ , each closed strong a - remote family of G  has a finite subfamily 

F  which is a strong a - remote family of G . 
 



Theorem 2.7. (Shi [14]) If G  is fuzzy compact and H  is closed, then G H∧  is fuzzy 
compact.  
 

3. INVERSE LIMITS IN FTSS
∨

 
           
We called the triplet ( )*,, ττX  , where τ  and *τ  are grad functions on XI , as Šostak 
fuzzy topological space. Šostak fuzzy topological spaces and gp-maps are consisted of a 

category. We denote this category as FTSS
∨

. In this section we give some of the 

necessary definitions and operations in  FTSsS
∨

 that we will be using in the sequel. 
Later we investigate series of their properties.  
 

Definition 3.1. Let ( )*, ,X τ τ  be FTSS
∨

. 

(1) *, : X IΒ Β →  are called a base of τ  and *τ  if Β  and *Β  satisfy the following 
conditions: 

( ) ( ) ( ) ( )* *, ,
B A B A

A X A B A B
λ λλ λ

λ λλ λ
τ τ

∈∧ ∈∧
∨ = ∈∧ ∨ = ∈∧

∀ ∈ = ∨ ∧ Β = ∧ ∨ Β ,  

where the expression ( )
B A

B
λλ

λλ
∈∧
∨ = ∈∧
∨ ∧ Β  and ( )*

B A
B

λλ

λλ
∈∧
∨ = ∈∧
∧ ∨ Β  will be denoted by 

( ) ( )AΒ �  and ( ) ( )* AΒ � , respectively. 

(2) *, : X Iφ φ →  are called a subbase of τ  and *τ  if ( ) ( )*, : X Iφ φ∏ ∏ →  are a base for 

τ  and *τ , where 
( ) ( )

( )
( ) ( ) ( )

( )
( )* *,

J JB A J B A J
A B A B

λ λλ λ
λ λλ λ

φ φ φ φ
∈ ∈

∏ ∏

∏ = ∈ ∏ = ∈
= ∨ ∧ = ∧ ∨  

for all A X∈  with ( )∏  standing for “finite intersection”. 

 

Definition 3.2. Let ( ){ }*, ,t t t t T
X τ τ

∈
 be a family of FTSsS

∨

 and :t t t
t T

P X X
∈

→∏  be the  

projection map for each t T∈ . Then the grad functions on t
t T

X
∈
∏  whose subbases are 

defined by  

t
t T

A X
∈

∀ ∈∏ , ( )
( )

( ) ( )
( )

( )
1 1

* *,
t t

t tt T t TP B A P B A
A B A Bφ τ φ τ

− −∈ ∈= =
= ∨ ∨ = ∧ ∧  



are called the product of { }*,t t t T
τ τ

∈
, denoted by ( )*,t t

t T

τ τ
∈
∏ . ( )*, ,t t t

t T t T

X τ τ
∈ ∈

⎛ ⎞
⎜ ⎟
⎝ ⎠
∏ ∏  is 

called the product space of ( ){ }*, ,t t t t T
X τ τ

∈
 (briefly ( )*, ,t t t

t T

X τ τ
∈
∏ ). 

 
Let * *,t t

t T t T

τ τ τ τ
∈ ∈

= =∏ ∏  . Now we show that :t t t
t T

P X X
∈

→∏  is a gp-map for all t T∈ . 

Since 
( )( )

( ) ( )
( ) ( )

1 1

1

t t
t t tt T P B P B

P B B Bτ τ τ
− −

−

∈ =
= ∨ ∨ ≥  

and 
( )( )

( ) ( )
( ) ( )

1 1

* 1 * *

t t
t t tt T P B P B

P B B Bτ τ τ
− −

−

∈ =
= ∧ ∧ ≤ , 

( ) ( )* *: , , , ,t t t t t t t
t T

P X Xτ τ τ τ
∈

→∏  is a gp-map, for all t T∈ . 

 
Lemma 3.3. If ( ) ( ){ }* *: , , , ,t t t t t t t t T

f X Yτ τ σ σ
∈

→  is a family of gp-maps, then  

( ) ( )* *: , , , , ,t t t t t t t
t T t T

f f X Y t Tτ τ σ σ
∈ ∈

= → ∈∏ ∏ ∏  

is also gp-map. 
 
Proof. We prove lemma for subbase. For t

t T

A Y
∈

∀ ∈∏ , 

( )( )
( ) ( )

( )
( ) ( )

( )

( )
( )

( )
( )( )

( )
( )

( )
( ) ( )

1 1 1 1

1 1

1

1

1

1

t t t t

t t t t

t t

t t

t tt T t TP B f A P B f AY

t t t tt T t TB f AY f AY

t tt T f AY

t tt T P AY A

f A B B

B f A Y

A Y

A Y A

φ τ τ

τ τ

σ

σ φ

− − − −

− −

−

−

−

∈ ∈= =

−

∈ ∈=

∈

∈ =

= ∨ ∨ = ∨ ∨
∏

= ∨ ∨ = ∨ ∨

≥ ∨ ∨

′= ∨ ∨ =

 

Similarly, ( )( ) ( )* 1 *f A Aφ φ ′− ≤  is obtained. 

 

Let FTSS
∨

 be the category of Šostak fuzzy topological spaces and J  be direct poset 
(consider as a category). 
 



Definition 3.4. Any functor FTSSJD op
∨

→:  is called an inverse system in FTSS
∨

, the 
limit of D  is called an inverse limit of D . 
 

Theorem 3.5. Every inverse system in the category of  FTSS
∨

 has a unique limit.  
Proof. Let  

( ){ } ( ) ( ){ }( )* * *, , , : , , , , (1)i
i i i i i i i i i ii J i i

X X p X Xτ τ τ τ τ τ′
′ ′ ′ ′∈

= →
≺

 

be arbitrary inverse system in Šostak fuzzy topological spaces. For each 0r I∈ , 
( ) ( ){ } ( ) ( ){ }( )* * *, , , : , , , , (2)r r r i r r r r

i i i i i i i i i ii J i i
X X p X Xτ τ τ τ τ τ′

′ ′ ′ ′∈
= →

≺
 

is inverse system of fuzzy bitopological spaces [10, Definition 1.6, Theorem 2.3], [12, 
Theorem 2.13, Remark 2.14]. Thus we obtain two inverse systems of fuzzy topological 
spaces as follows: 

( ){ } ( ) ( ){ }( ), , : , , (3)r i r r
i i i i i i ii J i i

X p X Xτ τ τ′
′ ′ ′∈

→
≺

 

( ){ } ( ) ( ){ }( )* * *, , : , , (4)r i r r
i i i i i i ii J i i

X p X Xτ τ τ′
′ ′ ′∈

→
≺

 

 
There exist limits of inverse system (3) and (4) in the category of fuzzy topological 
spaces [10, Theorem 2.3]. These limits are denoted by ( ) ( )*lim , , lim ,r r

i iX Xτ τHJJJ HJJJ , 

respectively. Here the fuzzy topology rτ  ( )*rτ   is a restriction to a subspace 

lim i i
i J

Y X X
∈

= ⊂∏HJJJ  of product topology r
i

i J

τ
∈
∏  *r

i
i J

τ
∈

⎛ ⎞
⎜ ⎟
⎝ ⎠
∏ . Since *r r

i iτ τ⊂ , 

*r r
i i

i J i J

τ τ
∈ ∈

⊂∏ ∏  is obtained. It follows that *r rτ τ⊂ . Hence fuzzy bitopological space 

( )*lim , ,r r
iX τ τHJJJ is inverse limit of inverse system (2). If 0r r I′∈; , then for each i J∈ , 

r r
i iτ τ ′⊂  and * *r r

i iτ τ ′⊂ . Then r r
i i

i J i J

τ τ ′

∈ ∈

⊂∏ ∏  and * *r r
i i

i J i J

τ τ ′

∈ ∈

⊂∏ ∏ . Thus 

r r r r
i Y i Y

i J i J

τ τ τ τ′ ′

∈ ∈

= ⊂ =∏ ∏  and * * * *r r r r
i Y i Y

i J i J

τ τ τ τ′ ′

∈ ∈

= ⊂ =∏ ∏ . 

Hence ( ){ }
0

*,r r

r I
τ τ

∈
 is a descending family of fuzzy bitopological spaces on Y . Then 

by using the family ( ){ }
0

*,r r

r I
τ τ

∈
, gradation of openness :Y Iτ → , * :Y Iτ →  are 

defined by 
( ) { } ( ) { }* *

0 : , 1 :r rr I rτ μ μ τ τ μ μ τ= ∨ ∈ ∈ = ∧ − ∈ . 



It follows that *τ τ⊂ . 
 
Let 

( ) ( ){ }* *: , , , , (5)i i i i i J
P Y Xτ τ τ τ

∈
→  

be a family of projection maps. Since  

( ) ( )* *: , , , ,r r r r
i i i iP Y Xτ τ τ τ→  

is fuzzy continuous mapping of fuzzy bitopological spaces for each 0r I∈ , (5) is a 
family of gp-maps.  

Now, let us show that the family ( ){ }*, , , iY Pτ τ  is a unique limit of the inverse system 

(1). It suffices to show that for every FTSS
∨

 ( )*, ,Z σ σ  and family of gp-maps 

( ) ( ){ }* *: , , , ,i i i i i J
q Z Xσ σ τ τ

∈
→  which satisfies the condition , ,i

i i iq p q i i′
′ ′= ∀D ≺  there 

exists a unique gp-map  

( ) ( )* *: , , , ,Z Yψ σ σ τ τ→  

which satisfies the condition i iP qψ =D .  

For each 0r I∈ ,  

( ) ( ){ }* *: , , , ,r r r r
i i i i i J

q Z Xσ σ τ τ
∈

→  

is a family of fuzzy continuous mappings of fuzzy bitopological spaces. Since the 
inverse systems (3) and (4) have limits in the category of fuzzy topological spaces, there 
exists a unique fuzzy continuous mapping ( ) ( )* *: , , , ,r r r rZ Yψ σ σ τ τ→  which makes 

up the following commutative diagram : 
 
 

 
 
The mapping ( ) ( )* *: , , , ,r r r rZ Yψ σ σ τ τ→  is fuzzy continuous mapping of fuzzy 

bitopological spaces for each 0r I∈ . Hence  

Z  

Y  

ψ  

iP

iX  
iq  



( ) ( )* *: , , , ,Z Yψ σ σ τ τ→  

is a gp-map [12, Theorem 4.3] and i iP qψ =D  is satisfied. This completes the proof. 
 
Now let us show that the operation of inverse limit is a functor in the category of  

FTSS
∨

. For this, we define limit of morphism of inverse systems. Let  

( ){ }: , :i ii
i J

f J J f X Y
ϕ

ϕ
∈

⎛ ⎞= → →⎜ ⎟
⎝ ⎠

 

be a morphism from the inverse system (1) to inverse system 

( ){ } ( ) ( ){ }* * *
, , , : , , , ,

i i i i i ii i

i
i i

i J i i
Y Y q Y Yτ τ τ τ τ τ

′ ′

′
′

′∈

⎛ ⎞= →⎜ ⎟
⎝ ⎠≺

 

in the category of  FTSS
∨

. 
 
For each 0r I∈ , 

( )
( ) ( ) ( )( ) ( ){ }**: , : , , , ,

i ii i

r rr r r
i ii

i J
f J J f X Y

ϕ ϕϕ
ϕ τ τ τ τ

∈

⎛ ⎞= → →⎜ ⎟
⎝ ⎠

 

is a morphism of inverse system of fuzzy bitopological spaces generated by the 
morphism f . This morphism induces fuzzy continuous mappings of inverse limit 

spaces as 
( ) ( ) ( )lim : lim , lim ,

rr r
ii i if X Yτ τ→HJJJ HJJJ HJJJ  

( ) ( ) ( )**lim : lim , lim ,
rr r

ii i if X Yτ τ→HJJJ HJJJ HJJJ  

in the category of fuzzy topological spaces. Hence for each 0r I∈ , ( )lim rfHJJJ  is fuzzy 

continuous mapping of fuzzy bitopological spaces. Thus 

( ) ( )**lim : lim , , lim , ,i if X Yτ τ τ τ→HJJJ HJJJ HJJJ  

is a gp-map of FTSsS
∨

 [12, Theorem 4.3]. 
 

Theorem 3.6. Let )( FTSSInv
∨

 be a category of all inverse systems in FTSS
∨

 and all 
mappings between them. Then limHJJJ  operation is a functor from the category of 

)( FTSSInv
∨

 to the category of FTSS
∨

.  
 



Theorem 3.7. The limit of product of inverse systems is equal to product of limits of 

these inverse systems in the category of FTSS
∨

. 
 
Proof. Proof is done similar to [10, Theorem 3.4]. 
 

Lemma 3.8. Let ( ) ( )* *: , , , ,f X Yτ τ σ σ→  be a mapping of FTSsS
∨

. 

a) f  is a Šostak fuzzy open gp-map if and only if ( ) ( )* *: , , , ,r r r rf X Yτ τ σ σ→  is a 

fuzzy open mapping of fuzzy bitopological spaces for each 0r I∈ . 

b) f  is a Šostak fuzzy closed gp-map if and only if ( ) ( )* *: , , , ,r r r rf X Yτ τ σ σ→  is a 

fuzzy closed mapping of fuzzy bitopological spaces for each 0r I∈ . 
 
Proof. a) Suppose ( ) ( )* *: , , , ,f X Yτ τ σ σ→  is an Šostak fuzzy open gp-map. Then for 

each Xλ ∈ , ( ) ( )( )fτ λ σ λ≤  and ( ) ( )( )* * fτ λ σ λ≥ . Let us show that 

( ) ( ): , ,r rf X Yτ σ→  and ( ) ( )* *: , ,r rf X Yτ σ→  are fuzzy open for each 0r I∈ .  For 

each ( ), .rG G rτ τ∈ ≥  We have  

( )( ) ( )f G G rσ τ≥ ≥ , 

i.e., ( ) rf G σ∈ .  

For each ( )* *, 1rG G rτ τ∈ ≤ − . Then  

( )( ) ( )* * 1f G G rσ τ≤ ≤ − , 

i.e., ( ) *rf G σ∈ . 

Conversely, assume the condition holds. Let us take arbitrary fuzzy set Xλ∈ . 
If ( ) 0τ λ = , then ( )( ) 0fσ λ ≥ , i.e., ( )( ) ( )fσ λ τ λ≥ . Similarly, If ( )* 1τ λ = , then 

( )( )* 1fσ λ ≤ , i.e., ( )( ) ( )* *fσ λ τ λ≤ . This implies that f  is a Šostak fuzzy open 

mapping. 
Let ( ) 0 0rτ λ = >  and ( )*

1 1rτ λ = < , then 0rλ τ∈  and ( )1* 1 rλ τ −∈ . Since 

( ) ( )0 0: , ,r rf X Yτ σ→  and ( )( ) ( )( )1 1* 1 * 1: , ,r rf X Yτ σ− −→  are fuzzy open mappings, 

( ) 0rf λ σ∈  and ( ) ( )1* 1 rf λ σ −∈  , hence ( )( ) ( )0f rσ λ τ λ≥ = , 

( )( ) ( ) ( )* *
1 11 1f r rσ λ τ λ≤ − − = =  i.e., f  is a Šostak fuzzy open gp-map. 

 



b) Let ( ) ( )* *: , , , ,f X Yτ τ σ σ→  be a Šostak fuzzy closed gp-map. Then for each 

Xλ ∈ , ( ) ( )( )1 1 fτ λ σ λ− ≤ −  and ( ) ( )( )* *1 1 fτ λ σ λ− ≥ −  are satisfied. Now let us 

show that ( ) ( )* *: , , , ,r r r rf X Yτ τ σ σ→  is fuzzy closed in the fuzzy bitopological 

spaces for each 0r I∈ . For arbitrary two fuzzy closed sets ( )rF τ ′∈  and ( )* *rF τ ′∈ , 

( )1 F rτ − ≥  and ( )* *1 1F rτ − ≤ − . To complete the proof, we only need to check if 

( )1 rf F σ− ∈  and ( )* *1 rf F σ− ∈ . Since  

( )( ) ( )1 1f F F rσ τ− ≥ − ≥ , ( )( ) ( )* * * *1 1 1f F F rσ τ− ≤ − ≤ −  

( ) ( )rf F σ ′∈  and ( ) ( )* *rf F σ ′∈  ,i.e., f  is fuzzy closed mapping of fuzzy 

bitopological spaces. 
Conversely, let ( ) ( )* *: , , , ,r r r rf X Yτ τ σ σ→  be fuzzy closed mapping of fuzzy 

bitopological spaces for each 0r I∈ . Let Xλ ∈  be arbitrary fuzzy set. If ( ) 01 rτ λ− =  

and ( )*
11 rτ λ− = , then since ( ) ( )0 0: , ,r rf X Yτ σ→  and ( )( ) ( )( )1 1* 1 * 1: , ,r rf X Yτ σ− −→  

are fuzzy closed mappings, ( ) 01 rf λ σ− ∈  and ( ) ( )1* 11 rf λ σ −− ∈ . Then 

( )( ) ( )01 1f rσ λ τ λ− ≥ = − , ( )( ) ( ) ( )* *
1 11 1 1 1f r rσ λ τ λ− ≤ − − = = −  

i.e., f  is a Šostak fuzzy closed gp-map. 
 

Lemma 3.9. Let ( ) ( )* *: , , , ,f X Yτ τ σ σ→  be a mapping of FTSsS
∨

. Then the 

following conditions are equivalent to each other: 
a) The mapping f  is a Šostak fuzzy homeomorphism; 
b) The mapping f  is a bijective Šostak fuzzy open gp-map; 
c) The mapping f  is a bijective Šostak fuzzy closed gp-map. 
 
Proof. a)⇒b) Let ( ) ( )* *: , , , ,f X Yτ τ σ σ→  be a Šostak fuzzy homeomorphism. Then 

for each 0r I∈ , ( ) ( )* *: , , , ,r r r rf X Yτ τ σ σ→  is a fuzzy homeomorphism of  

bitopological spaces. Every fuzzy homeomorphism ise a fuzzy open and fuzzy 
continuous mapping. From Lemma 3.8, for each 0r I∈  since 



( ) ( )* *: , , , ,r r r rf X Yτ τ σ σ→  is fuzzy open and fuzzy continuous mapping, 

( ) ( )* *: , , , ,f X Yτ τ σ σ→  is a bijective Šostak fuzzy open gp-map. 

b) ⇒a) Let ( ) ( )* *: , , , ,f X Yτ τ σ σ→  be a bijective Šostak fuzzy open gp-map. From 

Lemma 3.8, ( ) ( )* *: , , , ,r r r rf X Yτ τ σ σ→  is a bijective fuzzy open and fuzzy 

continuous mapping ( f  is a fuzzy homeomorphism of  fuzzy bitopological spaces). For 

each 0r I∈ , since ( ) ( )* *: , , , ,r r r rf X Yτ τ σ σ→  is a fuzzy homeomorphism, 

( ) ( )* *: , , , ,f X Yτ τ σ σ→  is a  Šostak fuzzy homeomorphism. 

Similarly,  a)⇒ c) and c) ⇒ a) are proved. 
 

Theorem 3.10. Let 
( ){ }: , :

iii
i J

f J J f X Y
ϕ

ϕ
∈

⎛ ⎞= → →⎜ ⎟
⎝ ⎠

 be a morphism from the inverse 

system { }i i J
X X

∈
=  to the inverse system { }

i i J
Y Y

∈
=  in the category of )( FTSSInv

∨

. If 

if  is injective (bijective) gp-map for each i J∈ , then 

lim : lim limf X Y→HJJJ HJJJ HJJJ  

is injective (bijective) gp-map. 
 
Proof. For each 0r I∈ ,  

( ) ( ) ( )( ) ( ){ }* *
,: , : , , , ,

ii i i

r r r r
i r i ir

i J

f J J f X Y
ϕ ϕ ϕ

ϕ τ τ σ σ
∈

⎛ ⎞= → →⎜ ⎟
⎝ ⎠

 

is a morphism of inverse systems of fuzzy bitopological spaces. Since ,i rf  is injective 

(bijective) mapping for each i J∈ , lim
r

fHJJJ  is injective (bijective) fuzzy continuous 

mapping from [11, Theorem2.1, Theorem 2.4]. Then  
lim : lim limf X Y→HJJJ HJJJ HJJJ  

is injective (bijective) gp-map.  
 
 
Corallary 3.11. Let us take the mapping f  in Theorem 3.10. If if  is Šostak fuzzy 

homeomorphism for each i J∈ , then 
lim : lim limf X Y→HJJJ HJJJ HJJJ  

is also Šostak fuzzy homeomorphism. 



 
Proof. From Theorem 3.10, lim fHJJJ  is bijective gp-map. From Lemma 3.9, each if  is 

Šostak fuzzy open gp-map and from Lemma 3.8.  

( ) ( ) ( )( ) ( )* *
, : , , , ,

ii i i

r r r r
i r i if X Y

ϕ ϕ ϕ
τ τ σ σ→  

is fuzzy open mapping for each 0r I∈ . Then lim
r

fHJJJ  is fuzzy homeomorphism for each 

0r I∈ .  Hence lim fHJJJ  is Šostak fuzzy homeomorphism. 

 

Theorem 3.12. Let X  be an inverse system in the category of S FTS
∨

. 

a) If each ( ) ( )* *: , , , ,
i i

i
i i i i ip X Xτ τ τ τ

′ ′

′
′ →  ( )i i′≺  is injective gp-map, then each mapping 

( ) ( )* *: lim , , , ,i i i iX Xπ τ τ τ τ→HJJJ  

is also an injective gp-map. 

b) If each ( ) ( )* *: , , , ,
i i

i
i i i i ip X Xτ τ τ τ

′ ′

′
′ →  ( )i i′≺  is bijective gp-map, then each mapping 

( ) ( )* *: lim , , , ,i i i iX Xπ τ τ τ τ→HJJJ  

is also a bijective gp-map. 

Proof. a) For two arbitrary fuzzy points { } { }i i

i ix x y yλ λ μ μ= ≠ = , let  

1 1

1 11 1
( ) ( )

i i

i i
i ix x y yλ λ μ μπ π= = = . 

Then  
1 1 1 1

1 1i i

i i i ix y x yλ μ= ⇔ = and 
1 1i iλ μ= . 

Since ( ) ( )* *: , , , ,
i i

i
i i i i ip X Xτ τ τ τ

′ ′

′
′ →  is injective and for each 1i i′ ;  

( ) ( )1 1

1 11 1i i i i

i ii i i i
i ip x x p y yλ λ μ μ′ ′

′ ′ ′ ′= = =  ,  

i i

i ix yλ μ′ ′

′ ′=  is satisfied. Since J  is directed poset for each i J∈ , there exists i J′∈  such 

that i i′ ;  and 1i i′ ;  for 1,i i J∈ . Since 
i i

i ix yλ μ′ ′

′ ′= ,  ( ) ( )i i i i

i i i i i i
i ix p x p y yλ λ μ μ′ ′

′ ′ ′ ′= = = . Hence 

x yλ μ=  is obtained. 

b) Let us show that 
1i

π  is surjective mapping. Let 1 1

1

i

i

Xix Iλ ∈  be an arbitrary fuzzy point. 

For each 1i i′ ; , there exists a unique fuzzy point 
i

ixλ ′

′  such that ( ) 1

1 1i i

ii i
ip x xλ λ′

′ ′ = . For each 

i J∈ , there exists i J′∈  such that i i′ ;  and 1i i′ ; . Then we get ( )i i

i i i
ip x xλ λ′

′ ′ = . Now, 



we show that { }iix xλ λ=  belongs to limXHJJJ . Let  1,i i i i′ ′; ;  and 
~ ~ ~

1,i i i i′ ′; ;  be for each 
~
i i′; . Then  

( ) ~ ~ ~

~ ~ ~
, i i i

i i
i i i

i i i
ix p x x p xλ λ λ λ

′ ′

′
′

′ ′ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

. 

We can choose i J′′∈  such that 
~

,i i i i′′ ′ ′′ ′; ;  for the elements 
~

,i i J′ ′∈ . Then  

( ) ( )( ) ( )
~

1
~1 1 11i i i i

i i i i i i i i i
i i i i

i
x p x p p x p p xλ λ λ λ′′ ′′ ′′

′′ ′′ ′ ′′ ′′ ′ ′′ ′′
′

′

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

D D  

and 

( )
~ ~

1

1 1 ~1i i
i

i i i i i
i ix p x p xλ λ λ′

′

′ ′ ′ ′⎛ ⎞= = ⎜ ⎟
⎝ ⎠

. 

Since the mappings 
~

1 1
,i i

i ip p′ ′  are bijective, 

( )i i

i i i
ip x xλ λ′′ ′

′′ ′′ ′
′ =  and ( )

~

~ ~i
i

i i i

i
p x xλ λ′′

′

′′ ′′ ′

′
= . 

Hence ( ) ( )( ) ( ) ( )
~ ~

~ ~ ~ ~
,

i i i i i
i

i i i i i i i i i i i i
i i i

i i i
p x p p x x p x p p x xλ λ λ λ λ λ′′ ′′ ′′ ′′

′′ ′′ ′ ′′ ′′ ′′ ′′ ′ ′′ ′′
′

′

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

D D  and thus 

( )
~ ~

~ i i
i

i i i i i
i ip x p x xλ λ λ′′

′′ ′′⎛ ⎞ = =⎜ ⎟
⎝ ⎠

 

is obtained. It is clear that 
( ) 1

1 1i

i
i x xλ λπ = . 

 

Corallary 3.13. If ( ) ( )* *: , , , ,
i i

i
i i i i ip X Xτ τ τ τ

′ ′

′
′ →  is a Šostak fuzzy homeomorphism in 

the inverse system X  in the category of  S FTS
∨

, then  

( ) ( )* *: lim , , , ,i i i iX Xπ τ τ τ τ→HJJJ  

is a Šostak fuzzy homeomorphism. 
 
Let ( ) ( )* *, ,X T T T T⊂  be bitopological space. By using the topologies T  and *T , let 

us convert the space X  to fuzzy bitopological space. For arbitrary fuzzy set Xμ∈ , 

( ){ }sup : 0p x X xμ μ= ∈ > . 

 
It is clear that the families 



{ } { }
~~

* *:sup p , :sup pT X T T X Tμ μ μ μ= ∈ ∈ = ∈ ∈  

generate fuzzy topology in the space X  and since *T T⊂ , 
~~

*T T⊂  is satisfied. Thus 
~~

*, ,X T T⎛ ⎞
⎜ ⎟
⎝ ⎠

 is a fuzzy bitopological space. 

 
Lemma 3.14. If ( )*, ,X τ τ  is a fuzzy compact space, then ( )*, ,X T T  is a compact 

space. 

Proof. If fuzzy topological space 
~

*,X T⎛ ⎞
⎜ ⎟
⎝ ⎠

 is fuzzy compact space, then 
~

,X T⎛ ⎞
⎜ ⎟
⎝ ⎠

 is also 

fuzzy compact space. Let ( )*,X T  be a fuzzy compact space and { }Gλ λ∈∧
 be an 

arbitrary open cover of ( )*,X T . Then X Gλ
λ∈∧

=∪ . For each *G Tλ ∈ , let us consider 

fuzzy set G X
λ

χ ∈ . Since ( ) *sup p G G T
λ λχ = ∈ ⇒

~
*

G T
λ

χ ∈ . Hence the family of fuzzy 

open sets { }Gλ λ
χ

∈∧
 is fuzzy open cover of

~
*,X T⎛ ⎞

⎜ ⎟
⎝ ⎠

. Since 
~

*,X T⎛ ⎞
⎜ ⎟
⎝ ⎠

 is fuzzy compact 

space, { }Gλ λ
χ

∈∧
 has a finite subcover, say { }jG j J

χ
∈

 where J  is finite. Then  

jG jj J
j J

X X Gχ
∈

∈

= ∨ ⇒ =∪ , 

i.e., ( )*,X T  is a compact space. Since *T T⊂ , the space ( ),X T  is also compact, i.e., 

bitopological space ( )*, ,X T T  is a compact. 

 
 
The converse of Lemma 3.14. is not true. 
 
Example 3.15. Let [ ]0,1I =  be a closed unit interval and *T T=  be Euclid topology. 

Let us consider open sets 10,1 , 2,nU n
n

⎡ ⎞= − = ∞⎟⎢⎣ ⎠
 and 1 ,1

2
V ⎛ ⎤= ⎜ ⎥⎝ ⎦

 in I . Then the family 

{ } 2,
,n n

U V
= ∞

 is open cover of I . Define fuzzy sets :nf I I→  and :g I I→  as follow 

respectively, 



( )
11 ,

0 ,

n
n

n

x U
f x n

x U

⎧ − ∈⎪= ⎨
⎪ ∉⎩

 and ( )
1 ,
5
0,

x V
g x

x V

⎧ ∈⎪= ⎨
⎪ ∉⎩

. 

Thus for 2,n∀ = ∞ , sup p , sup pn nf U g V= = . It is clear that { } 2,
,n n

f g
= ∞

 is the family 

of fuzzy open sets in II . Since 
2

( ) 1nn
f g

∞

=
∨ ∨ = , the family { } 2,

,n n
f g

= ∞
 is fuzzy open 

cover of II . But the fuzzy open cover { } 2,
,n n

f g
= ∞

  has no finite subcover. Although I  

is compact space, II  is not fuzzy compact space. 
 
Lemma 3.16. Let ( )*, ,X T T  be bitopological space. Then ( )*, ,X T T  is Hausdorff 

space if and only if fuzzy bitopological space ( )*, ,X τ τ  is fuzzy Hausdorff space. 

 
Proof. If the space ( ),X T  is Hausdorff, then ( )*,X T  is also Hausdorff space. 

Similarly, if 
~

,X T⎛ ⎞
⎜ ⎟
⎝ ⎠

 is fuzzy Hausdorff space, then 
~

*,X T⎛ ⎞
⎜ ⎟
⎝ ⎠

 is also fuzzy Hausdorff 

space. Hence proof of the lemma is given for the spaces ( ),X T  and 
~

,X T⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

Let ( ),X T  be Hausdorff space and ( ),x y x yλ μ ≠  be arbitrary fuzzy points in X  such 

that x yλ μ≠ . Since ( ),X T  is Hausdorff space and x y X≠ ∈ , there exist ,G H T∈  

such that ,x G y H∈ ∈  and G H∩ =∅ . Then Gχ  and Hχ  are two fuzzy open sets 

in X . It is clear that Gxλ χ≤  and Hyμ χ≤ , i.e., Gχ  and Hχ  are fuzzy open 

neighborhood of fuzzy points xλ  and yμ , respectively. Since 

0G H G Hχ χ χ χ∩ ∅∧ = = = , 
~

,X T⎛ ⎞
⎜ ⎟
⎝ ⎠

 is fuzzy Hausdorff space. 

Conversely, suppose 
~

,X T⎛ ⎞
⎜ ⎟
⎝ ⎠

 is fuzzy Hausdorff space and x y X≠ ∈  are two points. 

For each { }, / 0Iλ μ∈ , fuzzy points xλ  and yμ  belong to X . Since x y≠ , x yλ μ≠ . 

Also since 
~

,X T⎛ ⎞
⎜ ⎟
⎝ ⎠

 is fuzzy Hausdorff space, there exist 
~

,A B T∈  such that 

,x A y Bλ μ≤ ≤  and 0A B∧ = . If x Aλ ≤ , then ( )A x λ≥  and sup px A∈ . If y Bμ ≤ , 



then ( )B y μ≥  and supy pB∈ . Since ,A B  are fuzzy open sets, sup p ,sup pA T B T∈ ∈ . 

Since 0A B∧ = , sup suppA pB∩ =∅ , i.e., ( ),X T  is Hausdorff space. 

 
Lemma 3.17. ( ) ( )* *: , , , ,f X T T Y T T ′′→  is continuous if and only if 

( ) ( )* *: , , , ,f X Yτ τ τ τ ′′→
JG

 is fuzzy continuous.  

 
Proof. Let us prove this lemma for the functions ( ) ( ): , ,f X T Y T ′→  and 

~ ~
: , ,f X T Y T⎛ ⎞ ⎛ ⎞′→⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

JG
 

Let ( ) ( ): , ,f X T Y T ′→  be continuous and 
~

Tμ ′∈ . We show that ( )
~

f f Tμ μ= ∈
HJ

D . 

Here  
( ) ( ) ( )( ){ }sup p sup p : 0f f x X f xμ μ μ= = ∈ >

HJ
D D . 

Since 
~

Tμ ′∈ , sup p Tμ ′∈ . Also since f  is continuous mapping, ( )1 sup pf Tμ− ∈ . 

( ) ( ){ } ( )( ){ }1 sup p : sup p : 0f x X f x x X f xμ μ μ− = ∈ ∈ = ∈ > . 

Hence ( ) ( )1sup p sup pf f Tμ μ−= ∈
HJ

, i.e., f
JG

 is fuzzy continuous. 

Conversely, let us assume that 
~ ~

: , ,f X T Y T⎛ ⎞ ⎛ ⎞′→⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

JG
 be fuzzy continuous and G T ′∈  be 

an arbitrary open set. Now, let us show that ( )1f G−  is open set. The fuzzy set Gχ  is 

fuzzy open in YI . Since f
JG

 is fuzzy continuous, ( )Gf χ
HJ

 is fuzzy open, where 

( )G Gf fχ χ=
HJ

D . Then 

( )( ) ( )( ) ( )
( )

( )
( )

1

1

1, 1,

0, 0,G G

f x G x f G
f x f x

f x G x f G
χ χ

−

−

⎧∈ ∈⎧⎪ ⎪= = =⎨ ⎨
∉ ∉⎪ ⎪⎩ ⎩

D . 

Hence ( ) ( )1 sup Gf G p fχ− = D , i.e., f  is continuous. 

Similarly, proof of the lemma can be done for the functions ( ) ( )* *: , ,f X T Y T ′→  and 
~~

* *: , ,f X T Y T
⎛ ⎞⎛ ⎞ ′→ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

JG
. 

If  
( ){ } { }( )ii

i
iJiiii pTTX ′
′

∈ ≺,,, *     (6) 



 
is an inverse system of bitopological spaces, then  
 

{ }~~
*, , ,

i J

i

i i i i
i i

X T T p
∈

′

′

⎛ ⎞⎧ ⎫⎛ ⎞⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎩ ⎭⎝ ⎠≺

JG
     (7) 

is an inverse system of fuzzy bitopological spaces. 
 
Theorem 3.18. If (7) is an inverse system of fuzzy compact Hausdorff spaces, then 
fuzzy bitopological space lim iXIHJJJ  is also fuzzy compact space. 
Proof. It is enough to prove for inverse system of fuzzy topological spaces 

~
*,i i

i J

X T
∈

⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

. Since the inverse system 
~

*,i i
i J

X T
∈

⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 is fuzzy compact Hausdorff, 

( ){ }*,i i i J
X T

∈
 is inverse system of compact Hausdorff spaces from Lemma 3.19., 

Lemma 3.21 . Limit of this inverse system is compact [4]. Since this limit is compact 
subset of Hausdorff space i

i J

X
∈
∏ , it is closed. 

Now, let us show that lim iXIHJJJ  is a fuzzy compact space. Let { }α α
μ

∈∧
 be arbitrary fuzzy 

open cover of fuzzy space lim iXIHJJJ . Since limlim i iX XI I= HJJJHJJJ  [ 11], this space is fuzzy 

subspace of product space. Then iX

i J

Iα αμ λ
∈

= ∧∏  for each α ∈∧ , where αλ  is fuzzy 

open set in iX

i J

I
∈
∏ . Hence lim iXI αα

λ
∈∧

≤ ∨HJJJ . Since lim iXHJJJ  is closed set, / limi i
i J

U X X
∈

=∏ HJJJ  

is open set. Then the family { }, Uα α
λ χ

∈∧
 is a fuzzy open cover of fuzzy space iX

i J

I
∈
∏ . 

Since this space is fuzzy compact, there exists a finite subcover as { },
i U i Jαλ χ

∈
 of this 

cover, where J is finite. Hence the family { }i i Jαλ ∈
 is finite subcover of iX

i J

I
∈
∏  and so 

{ }i i Jαμ ∈
 is a finite subcover of lim iXIHJJJ . 

Definition 3.19. Let ( )*, ,X τ τ  be a FTSS
∨

. 

a) The space ( )*, ,X τ τ  is called r −  Hausdorff if and only if for each fuzzy points 

,x y Xα β ∈ , there exist fuzzy set ,λ μ  such that 

, , 0x yα βλ μ λ μ≤ ≤ ∧ =  and ( ) ( ) ( ) ( )* *, ; , 1r rτ λ τ μ τ λ τ μ≥ ≤ − . 



b) If ( )*, ,X τ τ  is r −  Hausdorff for each 0r I∈ , then this space is called strong 

Hausdorff space. 
 
It is clear that if ( )*, ,X τ τ  is strong Hausdorff space, then the fuzzy topological space 

( ), rX τ  is fuzzy Hausdorff space for each 0r I∈ . Since *rrτ τ⊂ , ( )*,
r

X τ  is fuzzy 

Hausdorff space. Thus the fuzzy bitopological space ( )*, ,
rrX τ τ  is fuzzy Hausdorff 

space with respect to rτ  and *r

τ . Similarly if the fuzzy bitopological space ( )*, ,
rrX τ τ  

is fuzzy Hausdorff space for each 0r I∈ , then FTSS
∨

 ( )*, ,X τ τ  generated by 

bitopologies ( ){ }*,
rrτ τ  is strong Hausdorff space. 

 

Definition 3.20. a) Let ( )*, ,X τ τ  be FTSS
∨

 and G X∈  be a fuzzy set. G  is said to be 

smooth compact space if for each family of fuzzy sets U = { ( ): 0A Aτ > , or ( )* 1Aτ < } 

which satisfies the condition ( ) ( )( )x X A U
G x A x p

∈ ∈
′∧ ∨ ∨ >  1p I∀ ∈ , there exists a finite 

subfamily F  of U  such that 
( ) ( )( )

x X A F
G x A x p

∈ ∈
′∧ ∨ ∨ > . 

If 1G = , then the space ( )*, ,X τ τ  is called smooth compact space.  

b) If G  is fuzzy compact space in ( )*, ,r rX τ τ  for each 0r I∈ , then G X∈  is said to be 

strong smooth compact space. 
 

Lemma 3.21. If the fuzzy set G  is smooth compact in FTSS
∨

 ( )*, ,X τ τ , then the fuzzy 

set G  is fuzzy compact space in the fuzzy topological spaces ( ), rX τ  and ( )*, rX τ  for 

each 0r I∈ .  

Proof. Let the fuzzy set G  be smooth compact in ( )*, ,X τ τ . For each 0r I∈ , let us 

consider { }U A=  which are strong p - shading fuzzy sets of G  in ( )*, rX τ  for 1p I∀ ∈ , 

i.e., the following condition 

( ) ( )( )x X A U
G x A x p

∈ ∈
′∧ ∨ ∨ >  



is satisfied. Since { }U A=  is a family of fuzzy open sets, ( )* 1A rτ ≤ −  for each A U∈ . 

Since 0r > , ( )* 1Aτ <  or ( ) 0Aτ >  are satisfied. Then by using definition of smooth 

compact, it can be found a finite subfamily F  of U  such that  

( ) ( )( )x X A F
G x A x p

∈ ∈
′∧ ∨ ∨ > , 

i.e., F  is strong p - shading of fuzzy set G . Hence from [14], the fuzzy set G  is fuzzy 

compact in the fuzzy space ( )*, rX τ . Since *r rτ τ⊂ , the fuzzy set G  is fuzzy compact 

in the fuzzy space ( ), rX τ , too. 

Theorem 3.22. If the inverse system ( ){ } { }*, , ,
i

i i i ii J i i
X pτ τ

′

∈ ′

⎛ ⎞
⎜ ⎟
⎝ ⎠≺

JG
 is smooth compact, 

strong Hausdorff in the category of FTSS
∨

 and fuzzy topologies ( )*,r r
i iτ τ  are given by 

sup p  , for each 0,i J r I∈ ∈ , then lim iXIHJJJ  is a strong smooth compact space. 
 

Proof. From Definition 3.19, Definition 3.20 and Lemma 3.21, ( ){ },iX r
iI τ  is an inverse 

system of fuzzy compact Hausdorff spaces for each 0r I∈ . From Theorem 3.18, 

( )lim ,iX r
iI τHJJJ  is a fuzzy compact space. Since ( )lim ,iX r

iI τHJJJ  is fuzzy compact space for 

each 0r I∈ , ( )lim ,iX
iI τHJJJ  is strong smooth compact space in the category of FTSS

∨

. 
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