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1. INTRODUCTION

Since Chang [2] introduced fuzzy theory into topology, many authors investigated
various aspects of fuzzy topology. Hohle [8] was one of the first authors who had
created the notion of a topology being viewed as an L —subset of a powerset (in his
case, 2°). Later Kubiak [9] and Sostak [15] independently extended Hohle’s notion to
L — subsets of L*.

In [8] , it is shown that L—FTOP is a topological category over SET for each L. In
[3], Chattopadhyay et al gave a definition of fuzzy topology by introducing a concept of
gradation of openness of fuzzy subsets. They constructed connections between r —level
Chang fuzzy topology and the new fuzzy topological space. In [12], Mondal et al
defined the category of intuitionistic fuzzy topological spaces (briefly IFTS) and also
established connections between a descending family of inclusive bitopologies of fuzzy
subsets on X and intuitionistic fuzzy topological spaces. By using the connection, they
defined product operation in the category of intuitionistic fuzzy topological spaces.
Since firstly this definition was given as independently by Kubiak [8] and Sostak [15],
these spaces are called as Sostak fuzzy topological spaces.

In [6], Fang gave internal characterizations of L -fuzzy topological sum spaces and
examined some additional properties of L-fuzzy topological spaces. Yue [21]
introduced base (subbase) of gradation of openness and by using these definitions, he
presented product and quotient spaces. In [14], Shi introduced a new definition of fuzzy
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compactness in L - topological spaces when L is a complete De Morgan algebra (in
case of Chang). He proved that the intersection of a fuzzy compact L -set with a closed
L -set is fuzzy compact and the continuous image of a fuzzy compact L -set is fuzzy
compact. In [10,11], Inverse (direct) limits are described as inverse (direct) systems in
the category of fuzzy topological spaces and series of their properties are investigated.
Furthermore, the mappings between two arbitrary inverse systems are defined and some
of their properties are discussed for the case of category of fuzzy topological spaces.
The purpose of this paper is to construct inverse system in Sostak fuzzy topological
spaces. Firstly, we prove that the inverse limit is compact under some conditions. Some
definitions of compactness are given in [1,12,13]. In this study, we give a new
definition of compactness by using the idea in Shi [14].

2. PRELIMINARIES

Let X be a non-empty set and | be the closed unit interval [0,1], 1,=(0,1] and
I, =[0,1) . Let I denote a collection of all fuzzy sets in X . By 0 and 1 we denote

characteristic functions y, and y,, respectively. All other notations are standart

notations of fuzzy set theory. We use all notations from [12].

Definition 2.1. ( Mondal, Samanta [12]) Let X be a non-empty set. An 1GO of fuzzy
subsets of X is an ordered pair (r, r*) of functions from 1* to | such that
(IGOI)T(A)JrI*(/l)SI viel”,

(1602)7(0) =z (1)=1,7"(0) =7 (1) =0,

(1GO3) r (4 nA)27(4)At(A) and 7 (4 NA) <t (4)vr (4), 4el™, i=12,

(1G04) 7

1G04 (Ui]>l/\Ar(ﬁ,) and 7 (Uijf!f (4), 4 el™ ieA

ieA ieA

The triplet (X,T, z'*) is called an IFTS. 7 and 7 may be interpreted as gradation of

openness and gradation of nonopenness, respectively.

Definition 2.2. ( Mondal, Samanta [12]) Let (X,r, f) and (Y,O', 0'*) be two IFTSs

and f:X —Y beamapping. Then f is called a gp-map if for each pel”,
a(,u)ﬁr(f’l(,u)) and a*(,u)Zr*(f’l(,u)).



Theorem 2.3. ( Mondal, Samanta [12]) Let {(Tr,Tr*); re IO} be a descending family of

inclusive bitopologies of fuzzy subsets on X . Define 7,7 : 1* — 1 by
t(A)=v{r:i1eT}
and
T*(i):/\{l—r A eTr*}.
Then,
a) (r,r*) isan IGO on X,

b) 7, =T, iff (T, =T, ,vrel,,

r
s<r

o7, =T iff T, =T, ,vrel,.

s<r

Definition 2.4. (Shi [16]) Let (X ,T) be an L—space. G € L is called fuzzy compact
if for every family U < T, it follows that

A (G (v v A< v A (B (v v A

xeX AcU VeV xeX AeV

Let (X,T) be an L—space (in case of Chang).

Definition 2.5. (Shi [14]) Let (X,T) be an L—space, aeL\{l} and Gel*. A

subfamily U in L is said to be
(1) an a- shading of G if for any x € X , it follows G'(x)v v A(x) £ a.

AeU
(2) a strong a - shading of G if A (G (X)v M A(X)) Xa.

It is obvious that a strong a - shading of G is an a - shading of G .

Theorem 2.6. (Shi [14]) Let (X,T) be an L—space and G € L*. Then the following

conditions are equivalent to each other:
(1) G is fuzzy compact.

(2) For anya e L\{l} , each open strong a- shading U of G has a finite subfamily V

which is a strong a - shading of G .
(3) For anya e L\{O} , each closed strong a- remote family of G has a finite subfamily

F which is a strong a- remote family of G .



Theorem 2.7. (Shi [14]) If G is fuzzy compact and H is closed, then G A H is fuzzy
compact.

3. INVERSE LIMITS IN é FTS

We called the triplet (X,r,r*) , where 7 and 7" are grad functions on 1%, as Sostak

fuzzy topological space. Sostak fuzzy topological spaces and gp-maps are consisted of a
category. We denote this category as S FTS. In this section we give some of the

necessary definitions and operations in S FTSs that we will be using in the sequel.
Later we investigate series of their properties.

Definition 3.1. Let (X,r,r*) be é FTS.
(1) B,B": X — | are called a base of 7 and 7 if B and B’ satisfy the following

conditions:
‘v’AeX,T(A): vV AB(B/I),'[*(A): A VB*(B/I),

v B;=Alen v B;=Alen
Jen Jen

where the expression . - AIE\AB(BA) and ) Q:M\E/AB (B,) will be denoted by

B (A) and B (A), respectively.
(2) 4,4 : X — | are called a subbase of 7 and 7* if 'V, ¢ : X — 1 are a base for

7 and 7", where
9" (8)=

forall Ae X with (I]) standing for “finite intersection”.

v /\¢(Bﬂ),¢*(n)(A): A v¢*(Bi)

(IT).,B,~A i< (1), By=A 223

Definition 3.2. Let {(X,,7.7/)} _ be a family of S FTSs and P[] X, - X, be the

teT

projection map for each teT . Then the grad functions on H X, whose subbases are
teT

defined by
VAe[[X.. #(A)=v v 7(B),¢ (A)=A A 7/(B)

1T R (B



are called the product of {Tt,T:}teT , denoted by H(Tt,ft*) (H Xt,H(Tt,Tt )] I

teT teT teT

called the product space of {( X, T, T, )} (briefly H(XUTUT'( ))

teT

Let Hrt = T,HZ’: =7 . Now we show that P :H X, — X, 1sagp-map forall teT.

teT teT teT

Since

and

T*(F{’I(B)):/\ LN T:(B)ST:(B),

teT ' (8)=R"(B)
R 3H(xt,ftﬁ:)—>(Xt,rt,rt*) is a gp-map, forall teT.

teT

Lemma 3.3. If { f, :(Xt,rt,rt*) — (Yt,at,at* )}t . is a family of gp-maps, then

f =H f, :H(Xt,rt,r:)—>H(Yt,0't,0:), teT

teT teT

is also gp-map.

Proof. We prove lemma for subbase. For VA e HYt

teT

Similarly, 4" (™' (A))<¢"(A) is obtained.

Let é FTS be the category of Sostak fuzzy topological spaces and J be direct poset
(consider as a category).



Definition 3.4. Any functor D: J* — é FTS is called an inverse system in é FTS, the
limit of D is called an inverse limit of D.

Theorem 3.5. Every inverse system in the category of S FTS has a unique limit.

Proof. Let
X =({(%0m ) [0 (X ) > (X)) L)

be arbitrary inverse system in Sostak fuzzy topological spaces. For each r e |,

KO =80 ) () ) 0

is inverse system of fuzzy bitopological spaces [10, Definition 1.6, Theorem 2.3], [12,
Theorem 2.13, Remark 2.14]. Thus we obtain two inverse systems of fuzzy topological

spaces as follows:
(x7).) ©

),

_—
L~
X X
S
~—  —
m m
[ [

- -
S =
< X
D05

=5 T =

There exist limits of inverse system (3) and (4) in the category of fuzzy topological
spaces [10, Theorem 2.3]. These limits are denoted by (mxi,rr),(@xi,r*f),

respectively. Here the fuzzy topology 7' (r*r) is a restriction to a subspace

ied iel iel

Y =limX; c[[X; of product topology []z/ [Hr,*rJ Since 7 cr",

[17 <] ]=" is obtained. It follows that z" = z". Hence fuzzy bitopological space

iel iel
(gn_lxi,f,r*f) is inverse limit of inverse system (2). If r =1’ |, then for each i€ J,

’ * *p! ' * *p!
't and 7" <" . Then [ [« <[]+ and [[7" <] ]7" - Thus

iel iel ied ied
r__ r r' . *ro_ *r *r' o
T —Hri |Yc1_[ri |Y—2' and 7 —Hri |Yc1_[ri y =T .
iel iel iel iel

Hence {(rr,r*r )} is a descending family of fuzzy bitopological spaces on Y . Then

rel,

by using the family {(rr,r*r)} , gradation of openness 7:Y > 1, 7 :Y > 1 are

rel,

defined by
r(,u):v{re IO:,uerr}, z'*(y):/\{l—r:,uer*r} .



It follows that 7 — 7.

Let
{F’i:(Y,Z',Z'*)—>(Xi,z'i,2'i*)}ieJ (5)
be a family of projection maps. Since
P :(Y,rr,r*r)—>(Xi,rir,ri*r)
is fuzzy continuous mapping of fuzzy bitopological spaces for each rel,, (5) is a
family of gp-maps.

Now, let us show that the family {(Y,z’, r*), P.} is a unique limit of the inverse system

(1). It suffices to show that for every éFTS (Z,G,O'*) and family of gp-maps

{qi :(Z,O', a*) — (Xi,ri,ri* )} which satisfies the condition g, = p! oq, Vi<i’, there

iel
exists a unique gp-map
% :(Z,G,O'*) —>(Y,2',z'*)
which satisfies the condition P oy =g .
Foreachrel,
{qi :(Z,O'r,a*r)—)(Xi,rir,z'i*r)}iEJ
i1s a family of fuzzy continuous mappings of fuzzy bitopological spaces. Since the
inverse systems (3) and (4) have limits in the category of fuzzy topological spaces, there

exists a unique fuzzy continuous mapping w:(Z,aﬂa“)—)(Y,r',r*r) which makes

up the following commutative diagram :

The mapping 1//:(Z,J',O'”)—)(Y,rr,r*') is fuzzy continuous mapping of fuzzy

bitopological spaces for each r € | ;. Hence



% :(Z,a,a*) —>(Y,r,r*)
is a gp-map [12, Theorem 4.3] and P, oy =@ is satisfied. This completes the proof.

Now let us show that the operation of inverse limit is a functor in the category of
S FTS . For this, we define limit of morphism of inverse systems. Let

i:(¢:j—>3,{fi : X(p(i) —>Yi}iEJj

be a morphism from the inverse system (1) to inverse system

() oo ) o)

in the category of é FTS.

Foreach rel,

fO- .7 J{f.:(X_ ' *r) (Y_r_r)}
2 ((/’ —>J it co(u)’Tw(i)’Tw(i) BAAHNE el

1s a morphism of inverse system of fuzzy bitopological spaces generated by the
morphism i This morphism induces fuzzy continuous mappings of inverse limit

spaces as
i, ) lim(, 7
ml-li(r) :h—m(xi’ri*r)_) ml.l(Yi,;?r)

in the category of fuzzy topological spaces. Hence for each rel, lin_qi(r) is fuzzy

continuous mapping of fuzzy bitopological spaces. Thus

tim f :(timX,, 7,") > lim¥, 7,7 |

is a gp-map of é FTSs [12, Theorem 4.3].

Theorem 3.6. Let Inv(S FTS) be a category of all inverse systems in S FTS and all

mappings between them. Then lim operation is a functor from the category of

Inv(é FTS) to the category of é FTS.



Theorem 3.7. The limit of product of inverse systems is equal to product of limits of

these inverse systems in the category of S FTS.

Proof. Proof is done similar to [10, Theorem 3.4].

Lemma 3.8. Let f Z(X,T, T*) - (Y,O', 0'*> be a mapping of SFETSs.

a) f is a Sostak fuzzy open gp-map if and only if f :(X,rﬂr”)—)(Y,ar,a*r) is a
fuzzy open mapping of fuzzy bitopological spaces for each r 1.

b) f is a Sostak fuzzy closed gp-map if and only if f :(X,z‘r,r*r)—) (Y,ar,a*r) is a

fuzzy closed mapping of fuzzy bitopological spaces for each r e l,.

Proof. a) Suppose f :(X,z‘, z'*) - (Y,O‘, a*) is an Sostak fuzzy open gp-map. Then for
each AeX, 7(4)< G( f (/”t)) and 7 (4)> a*(f (/1)) Let us show that
f Z(X,Tr)—)(Y,Gr) and f Z(X,T*r)—)(Y,G*r) are fuzzy open for each rel,. For
each Gez',7(G)>r. We have
o(f(G))=2z(G)=r,

ie, f(G)eo'.
Foreach Gez",7 (G)<1-r. Then

0*(f(G))ST*(G)S1—r,
ie., f (G) eo’.
Conversely, assume the condition holds. Let us take arbitrary fuzzy set A € X .
If 7(2)=0, then o(f(1))20, ie, o(f(2))27(4). Similarly, If z"(1)=1, then

o' (f(2))<1,ie, o' (f(4))<7"(4). This implies that f is a Sostak fuzzy open
mapping.

Let 7(4)=r,>0 and ¢ (4)=r<l, then Aez® and Aer"™. Since
f: (X,r ) (Y,ar") and f: (X,r - ")) —)(Y,a*(H‘)) are fuzzy open mappings,
f(1)eo® and f /1)60' (1=) , hence a(f(/l))> rL=7(4),

%

o-(f(/1 )<1 (1-r)=r=7"(4) ie., f isaSostak fuzzy open gp-map.



b) Let f: ( ) (Y,a,a*) be a Sostak fuzzy closed gp-map. Then for each
AeX, r(l- A)Sa(l f (/1)) and 7 (1-1)>0" (1— f (/1)) are satisfied. Now let us

show that f:(X,Tr,r*r)—>(Y,0'r,0'*r) is fuzzy closed in the fuzzy bitopological

spaces for each T e ,. For arbitrary two fuzzy closed sets F e(z) and F'e(r7),
r(1-F)=r and 7'(1- F*)s 1-r. To complete the proof, we only need to check if
1-f(F)eo" and 1-f(F ) . Since

o(1-f(F))2¢ )>r, a(l—f(F*))Sf*(l—F*)Sl—r

!

f(F) e(o“)' and f (F*) e(a*r) je., f is fuzzy closed mapping of fuzzy
bitopological spaces.

Conversely, let f :(X,rr,r*r)—> (Y,ar,a*r) be fuzzy closed mapping of fuzzy
bitopological spaces for each rel,. Let 1 € X be arbitrary fuzzy set. If 7(1—/1) =TI,
and 7 (1-A)=r,, then since f :(X,r“)—)(Y,O'rO) and f: (X - rl))—>(Y,0'*(l_r‘))

are fuzzy closed mappings, 1- f (4)eo® and 1-f (1) e o™ Then

o(l-f(4))=r=2r(1-2), o’ (1-f(2))<1-(1-r)=r=7"(1-2)

e., f isa Sostak fuzzy closed gp-map.

Lemma 3.9. Let f:(X,T,f)—)(Y,a,a*) be a mapping of éFTSS. Then the

following conditions are equivalent to each other:
a) The mapping f is a Sostak fuzzy homeomorphism;

b) The mapping f is a bijective Sostak fuzzy open gp-map;
¢) The mapping f is a bijective Sostak fuzzy closed gp-map.

Proof. a)=Db) Let f :(X , T, z'*) - (Y,O‘, 0'*) be a Sostak fuzzy homeomorphism. Then

for each rel,, f:(X,rHr“)—)(Y,a’,a*r) is a fuzzy homeomorphism of

bitopological spaces. Every fuzzy homeomorphism ise a fuzzy open and fuzzy
continuous  mapping. From Lemma 3.8, for each rel, since



f :(X ,Tr,T*r) > (Y,o*r,a*r) is fuzzy open and fuzzy continuous mapping,
f :(X , r,r*) — (Y ,0, 0'*) is a bijective Sostak fuzzy open gp-map.

b) =a) Let f :(X,T,r*) — (Y,O', 0'*) be a bijective Sostak fuzzy open gp-map. From
Lemma 3.8, f :(X,z‘r,r*r)—> (Y,o",oﬁ) is a bijective fuzzy open and fuzzy
continuous mapping ( f is a fuzzy homeomorphism of fuzzy bitopological spaces). For
each rel,, since f :(X,rr,r*r) - (Y,O‘r,O'*r) is a fuzzy homeomorphism,
f :(X , r,z'*) - (Y ,0, 0'*) is a Sostak fuzzy homeomorphism.

Similarly, a)=c) and ¢) = a) are proved.

Theorem 3.10. Let f = ((ﬂ -1 ,{ f:X , -Y } ) be a morphism from the inverse
- o i

system X ={X;} _, to the inverse system Y = {Y } : in the category of Inv(é FTS). If

f. is injective (bijective) gp-map for each ieJ,then

lim f : limX —> limY

is injective (bijective) gp-map.

Proof. Foreach re |,

f =|p:d>J.f :(X , T ,r”)—) Y.,o o' }
—r (¢ { Lr o) o) o)) ( i : ) el
is a morphism of inverse systems of fuzzy bitopological spaces. Since f. is injective

(bijective) mapping for each ied, @ir is injective (bijective) fuzzy continuous

mapping from [11, Theorem2.1, Theorem 2.4]. Then
fim f :limX_ > limY

is injective (bijective) gp-map.

Corallary 3.11. Let us take the mapping f in Theorem 3.10. If f. is Sostak fuzzy

homeomorphism for each ieJ, then
fim f :limX > limY

is also Sostak fuzzy homeomorphism.



Proof. From Theorem 3.10, ]Lmi is bijective gp-map. From Lemma 3.9, each f. is

Sostak fuzzy open gp-map and from Lemma 3.8.
f :(X AR )—)(Y,O'.r,a*')
Lr fﬂ(') () i 1 1
is fuzzy open mapping for each r € l;. Then @ir is fuzzy homeomorphism for each

rel,. Hence limf is Sostak fuzzy homeomorphism.

Theorem 3.12. Let X be an inverse system in the category of é FTS.

a) Ifeach p : (X . Ti,,Tj) — ( Xz, Z'i*) (i<1i’) is injective gp-map, then each mapping
7 :(lin_qi,r,r*) —>(Xi,ri,z':)

is also an injective gp-map.

b) If each p/ :(Xi, ,ri,,r:) — (Xi ,ri,ri*) (i<i'") is bijective gp-map, then each mapping
7 :(lin_qi,r,r*) —>(Xi,ri,z':)

is also a bijective gp-map.

Proof. a) For two arbitrary fuzzy points X, = {X'% } # {yLi } =y,, let

T ()= Xil = yil,il =7 (yy) .
Then

i i
X! =y
i Hiy

< x'=y" and 4 =y .
Since p; :(Xi,,ri,,z’:) —>(Xi,ri,ri*) is injective and for each i’ > i,

o ()=, =0l (91 ) ¥

is satisfied. Since J is directed poset for each i€ J, there exists i'e J such

o i
1 1

oo = Yu
that i’ >1i and i'>1i, for i,i, €J . Since X;q = yLi, , ng_ = pii'(xiﬂ;,)= pii’(y;i,)= yLi . Hence
X, =Y, Is obtained.

b) Let us show that 7; is surjective mapping. Let X}i] e 1™ bean arbitrary fuzzy point.

For each i' > i, there exists a unique fuzzy point XA such that piil' (x;H ) = X;:_l . For each

i€ J, there exists i'e J such that i'>i and i’ > i . Then we get pii'(x;;, ) = X; . Now,



we show that X, :{X;i} belongs to limX . Let i">1,i">1i, and i 0, i, be for each
i =i'. Then

X;, = pii'(xi,)v X/'L = p (xl)

HA
1,1

We can choose i" € J such that i" =1,

X;lil = piiln (X;q ) = ( piill °© pii'” (X;q )) = ( p:: ° pli (X;1 ))

>~ 1" for the elements i’,i" € J . Then

and
X;:.l = piill (XA ) = pii, (Xi j .

Since the mappings pii', piiI’ are bijective,

Hence pii” (X'& ) = ( pii' ° pii," (x;q )) = X;q_ , p: (X'jq ) = ( p' ° pl' (XA )] = Xi and thus

is obtained. It is clear that

Corallary 3.13. If p/ :(Xi,,ri',r:) — (Xi,z'i,z'i*) is a Sostak fuzzy homeomorphism in

the inverse system X in the category of é FTS, then
7 :(li_ml,r,z'*) —)(Xi,ri,ri*)

is a Sostak fuzzy homeomorphism.

Let (X ,T,T*) (T CT*) be bitopological space. By using the topologies T and T~ let
us convert the space X to fuzzy bitopological space. For arbitrary fuzzy set pe X,

supp,u:{XeX:y(x)>0}.

It is clear that the families



T :{ye X :supp u eT}, T :{ye X :suppueT*}
generate fuzzy topology in the space X and since T<T’, T T is satisfied. Thus

(X T ,T*j is a fuzzy bitopological space.

Lemma 3.14. If (X,T,T*) is a fuzzy compact space, then (X,T,T*) is a compact

space.

Proof. If fuzzy topological space (X ,T*j is fuzzy compact space, then (X ,1:) is also

fuzzy compact space. Let (X,T*) be a fuzzy compact space and {Gl} ... be an

arbitrary open cover of (X,T*). Then X = UG/1 . For each G, eT", let us consider

AEN

fuzzy set y, € X . Since supp(;(Gi ) =G, eT = X, eT’. Hence the family of fuzzy

open sets { ;(Gi} is fuzzy open cover of[X,T*J. Since (X,T*} is fuzzy compact

Aen

space, { X, }zm has a finite subcover, say { ;{Gj} where J is finite. Then

jed

X = ~Xx=|]c.,
v % ,u ,

1.€., (X,T*) is a compact space. Since T cT", the space (X,T) is also compact, i.e.,

bitopological space (X ,T,T*) 1S a compact.

The converse of Lemma 3.14. is not true.

Example 3.15. Let | = [0,1] be a closed unit interval and T =T  be Euclid topology.

Let us consider open sets U = [0,1 —lj, n= 2,_00 and V = (%,1} in | . Then the family
n

{U,.V} — is open cover of | . Define fuzzy sets f,:1 —>1 and g:1 -1 as follow

n=2,0

respectively,



1 1
fn(X): I—H,XEUH and g(X): g,XEV
0 ,xeU, 0,xeV

Thus for Vn=2,0, supp f, =U_,suppg =V . It is clear that {fn,g} —— is the family

n=2,0

of fuzzy open sets in |'. Since (Z f.)vg=1, the family {fn,g} — 1is fuzzy open

n=2,00

cover of |'. But the fuzzy open cover { f, g}n=27> has no finite subcover. Although |

is compact space, |' is not fuzzy compact space.

Lemma 3.16. Let (X,T,T*) be bitopological space. Then (X,T,T*) is Hausdorff

space if and only if fuzzy bitopological space (X , T, T*) is fuzzy Hausdorff space.

Proof. If the space (X,T) is Hausdorff, then (X,T*) is also Hausdorff space.

Similarly, if (X,fj is fuzzy Hausdorff space, then (X,T*j is also fuzzy Hausdorff

space. Hence proof of the lemma is given for the spaces (X ,T) and (X ,'I:j .

Let (X,T) be Hausdorff space and x,,y,(x#y) be arbitrary fuzzy points in X such
that x, #y, . Since (X,T) is Hausdorff space and x=ye X, there exist G,H €T
such that xeG,yeH and GNnH =0. Then y; and y, are two fuzzy open sets
inX. It is clear that X, <y, and y, <y, ie, x; and y, are fuzzy open

neighborhood of fuzzy points X, and Yy, , respectively. Since

X ANXu =Xorn =Xz =0, (X,fj is fuzzy Hausdorff space.

Conversely, suppose (X,fj is fuzzy Hausdorff space and X# Yy e X are two points.
For each A, u el /{0} , fuzzy points X, and y, belong to X . Since x#Yy, X, #y, .
Also since (X,'I:j is fuzzy Hausdorff space, there exist A,B e'l: such that

X, <Ay, <B and AAB=0.If x, <A, then A(Xx)>4 and xesuppA. If y, <B,



then B(y)> u and y esup pB. Since A,B are fuzzy open sets, suppAeT,suppBeT .
Since AAB=0, sup pAnsup pB=0, i.e., (X,T) is Hausdorff space.

Lemma 3.17. f:(X,T,T*)—>(Y,T',T*’) is continuous if and only if

IE ( X, r,f) — (Y .7, T*') is fuzzy continuous.

Proof. Let us prove this lemma for the functions f:(X,T)—(Y,T’) and

?;(x,fj{v,f’j

Let f:(X,T)—(Y,T’) be continuous and ,ue'l:'. We show that f(u)=uo f eT.
Here
supp f (u)=supp(uo f)={Xe X :(po f)(x)>0}.

Since u e'l:’, suppu eT'. Also since f is continuous mapping, f~' (sup py) eT.
f’l(supp,u):{Xe X :f (X)esupp,u}:{Xe X : ,u(f(x))>0}.
Hence suppf (1) =f ' (suppu)eT ,ie., f is fuzzy continuous.

Conversely, let us assume that T (X ,'IN') - (Y ,TN'j be fuzzy continuous and G € T’ be

an arbitrary open set. Now, let us show that ' (G) is open set. The fuzzy set y is

fuzzy open in 1. Since f is fuzzy continuous, T( Zs) is fuzzy open, where

f(xs)=xs°f.Then

(Ze°f)(x)=le(f(x))={

Hence f~'(G)=supp(ys°f),ie., f iscontinuous.

1, f(X)eG B I,Xxe f_l(G)
0, f(x)gG_{O,xg f7(G)

Similarly, proof of the lemma can be done for the functions f :(X ,T*) - (Y,T*’) and

?;(x,f*j{v,{“].

If

({(Xi’Ti’Ti*)}ieJ’{pii'}Ri’) (6)



is an inverse system of bitopological spaces, then

H(XTT} ’{55’}.“} g

ied

is an inverse system of fuzzy bitopological spaces.

Theorem 3.18. If (7) is an inverse system of fuzzy compact Hausdorff spaces, then
fuzzy bitopological space liml*' is also fuzzy compact space.

Proof. It is enough to prove for inverse system of fuzzy topological spaces

{(Xi,Ti*J} . Since the inverse system {(Xi,Ti*j} is fuzzy compact Hausdorff,
il il

{(Xi,Ti*)}_J is inverse system of compact Hausdorff spaces from Lemma 3.19.,

Lemma 3.21 . Limit of this inverse system is compact [4]. Since this limit is compact
subset of Hausdorft space H X, ,it1is closed.

iel

Now, let us show that liml*' is a fuzzy compact space. Let { ,ua}  be arbitrary fuzzy

ae

— |1mei

open cover of fuzzy space liml* . Since liml™ [ 11], this space is fuzzy

subspace of product space. Then p, = H I A4, for each a € A, where A, is fuzzy
ied
open set in H 1. Hence liml ™ < v 4. Since limX; is closed set, U :1_[Xi /limX,

icl “en ie]

is open set. Then the family {/Ia, ;(U} is a fuzzy open cover of fuzzy space H R

iel

QAEN

Since this space is fuzzy compact, there exists a finite subcover as {/1 i,}(u} of this

o iel

cover, where J is finite. Hence the family {/1 } ; is finite subcover of H I and so
le

i ied
{,uai } ; is a finite subcover of liml ™/ .
Definition 3.19. Let (X,z‘, z'*) bea é FTS.
a) The space (X , T, z'*) is called r — Hausdorff if and only if for each fuzzy points

X,» Yy € X, there exist fuzzy set A, u such that
Xy $A, Yy <, AN =0 and T(/l),r(,u)z r; T*(i),r*(,u)ﬁl—r .



b) If (X , T, T*) is r — Hausdorff for each r e |, then this space is called strong
Hausdorff space.

It is clear that if (X,r, r*) is strong Hausdorff space, then the fuzzy topological space

(X,z‘r) is fuzzy Hausdorff space for each rel,. Since 7' cr, (X,z'*r) is fuzzy
Hausdorff space. Thus the fuzzy bitopological space (X,r',r*r) is fuzzy Hausdorff

space with respect to 7" and . Similarly if the fuzzy bitopological space (X,z‘r,z'*r )

is fuzzy Hausdorff space for each rel;, then éFTS (X,r,z’*) generated by

bitopologies {(Tr,f*r )} is strong Hausdorff space.

Definition 3.20. a) Let (X,z', r*) be é FTS and G € X be a fuzzy set. G is said to be

smooth compact space if for each family of fuzzy sets U = { A :r(A) >0,0r 7 (A) <1}

which satisfies the condition A (G'(X) vV A(X)) > p Vpel,, there exists a finite
Xe E!

subfamily F of U such that
A (G'(X)v N A(X)) >p.

xeX

If G =1, then the space (X , T, T*) is called smooth compact space.

b) If G is fuzzy compact space in (X,Tr,T*r) foreach r el , then G € X is said to be

strong smooth compact space.

Lemma 3.21. If the fuzzy set G is smooth compact in é FTS (X,T, T*) , then the fuzzy
set G is fuzzy compact space in the fuzzy topological spaces (X,z") and (X ,T*r) for
eachrel,.

Proof. Let the fuzzy set G be smooth compact in (X,T, z'*). For each rel, let us

consider U = {A} which are strong p - shading fuzzy sets of G in (X ,T*r) for Vpel,,

i.e., the following condition

A (G'(X)v v A(X))> p

xeX AeU



is satisfied. Since U ={A} is a family of fuzzy open sets, 7 (A)<1-r for each AeU.

Since >0, 7 (A)<1 or 7(A)>0 are satisfied. Then by using definition of smooth

compact, it can be found a finite subfamily F of U such that

A (G’(X)\/A\E/F A(X))> P,

xeX

i.e., F is strong p - shading of fuzzy set G . Hence from [14], the fuzzy set G is fuzzy

compact in the fuzzy space(X T ) Since 7" <", the fuzzy set G is fuzzy compact

in the fuzzy space (X,rr ) , too.

i
—i

Theorem 3.22. If the inverse system ({(Xi,ri,ri*)}_ , ,{pi } ) is smooth compact,

strong Hausdorff in the category of S FTS and fuzzy topologies (rir,ri* ') are given by

sup p , for each ie J,r el,, then liml ™ is a strong smooth compact space.

Proof. From Definition 3.19, Definition 3.20 and Lemma 3.21, {(I Xi ,T; )} 1S an inverse
system of fuzzy compact Hausdorff spaces for each rel;,. From Theorem 3.18,

li_m(l X‘,rir) is a fuzzy compact space. Since li_m(l Xi ,rir) is fuzzy compact space for

each rel, m(l Xi ,Ti) is strong smooth compact space in the category of S FTS .
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