Local Group-Groupoids
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Abstract. It is known that if X is a topological group, then the fundamen-
tal groupoid 71(X) is a group-groupoid, i,e, a group object in the category of
groupoids. The group structure of a group-groupoid lifts to a covering groupoid.
Further if G is a group-groupoid, then the category GpGdAct(G) of group-
groupoid operations and the category GpGdCov/G of group-groupoid coverings
of G are equivalent.

In this paper we prove the corresponding results for local topological groups
and local group objects in the category of groupoids.
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1. INTRODUCTION

The theory of covering groupoids plays an important role in the applications of groupoids
(cf. [1], [6]) and covering spaces are not only important for algebraic topology, but also
they have important applications in many other branches of mathematics including dif-
ferential topology, the theory of topological groups and the theory of Riemann surfaces.

There are two important results about group-groupoids given in [2]. One is that the group
structure of a group-groupoid lifts to a covering groupoid, i.e., if G is a group-groupoid
and p: G — Gis covering morphism of groupoids, then G becomes a group-groupoid
such that p is group-groupoid morphism. The other is that if G is a group-groupoid, then
the category GpGdCov/G of covering morphisms over G is equivalent to the category
GpGdAct(G) of group-groupoid actions of G on groups.

In this paper we introduce the notion of a local group-groupoid as a local group object in
the category of groupoids and prove local group-groupoid versions of these results. For the
first result we prove that if GG is a local group-groupoid and p: G— Gis covering morphism
of groupoids, then G becomes a group-groupoid such that p is a local group-groupoid
morphism. For the second result we prove that if G is a local group-groupoid, then
the category LGpGdCov/G of local group-groupoid covers is equivalent to the category
LGpGdAct(G) of local group-groupoid actions of G on local groups.
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2. COVERING MAPS AND COVERING MORPHISMS OF GROUPOIDS

We assume the usual theory of covering maps. All spaces X are assumed to be locally
path connected and semilocally 1-connected, so that each path component of X admits
a simply connected cover. Recall that a covering map p: X — X of connected spaces is
called universal if it covers every covering of X in the sense that if ¢: Y — X is another
covering of X then there exists a map r: X — Y such that p = qr (hence r becomes a
covering). A covering map p: X — X is called simply connected if X is simply connected.

So a simply connected covering is a universal covering.

Definition 2.1. We call a subset A of X liftable if it is open, path connected and A lifts
to each covering of X, that is, if p: X > Xisa covering map, ¢: A — X is the inclusion
map, and 7 € X satisfies p(z) = = € A, then there exists a map (necessarily unique)

7: A — X such that pi = ¢ and 7(z) = 7.

It is easy to see that A is liftable if and only if it is open, path connected and for all
x € A, the fundamental group 7 (A, x) is mapped to singleton by the morphism induced
by the inclusion map 2: A — X and e is the identity element of the fundamental group
m (X, z). Remark that if X is a semilocally simply connected topological space then each
point x € X has a liftable neighbourhood.

A groupoid is a small category in which each morphism is an isomorphism, that is, a
groupoid G has a set of morphisms, which we call just elements of G, a set Og of objects
together with maps s,t: G — O¢g and €: Og — G such that se = te = 1p, the identity
map. The maps s, t are called initial and final point maps respectively and the map €
is called object inclusion. 1If a,b € G and t(a) = s(b), then the composite ab exists such
that s(ab) = s(a) and t(ab) = t(b). So there exists a partial composite defined by the
map G; X; G — G, (a,b) — ab, where Gy x4 G is the pullback of ¢ and s. Further, this
partial composite is associative, for x € Og the element €(z) denoted by 1, acts as the
identity, and each element a has an inverse a~! such that s(a™') = t(a), t(a™!) = s(a),
aa”! = (es)(a), a~ta = (et)(a). The map G — G, a — a~! is called the inversion.

So a group can be thought as a groupoid with only one object and a groupoid can be
thought as a group with many objects.

In a groupoid G for z,y € Og we write G(z,y) for the set of all morphisms with initial
point x and final point y. We say G is connected if for all z,y € Og, G(z,y) is not empty.



For # € O¢g we denote the star {a € G | s(a) = z} of by G,. The object group at x is
G(z) = G(z, ).

Let G and H be groupoids. A morphism from H to GG is a pair of maps f: H — G and
Of: Oy — Og such that so f = Opos, tof = Ofotand f(ab) = f(a)f(b) for all
(a,b) € Hy x5 H. For such a morphism we simply write f: H — G.

Covering morphisms and universal covering groupoids of groupoids are defined in [1] as

follows:

Definition 2.2. Let p: G — G be a morphism of groupoids. Then p is called a covering

morphism and Ga covering groupoid of G if for each = € Og the restriction of p
Pa: (G)z = G
is bijective.

As an example a group homomorphism p: G—Gisa covering morphism if and only if
it is an isomorphism.

A covering morphism p: G — G is called connected if both G and G are connected.

A connected covering morphism p: G — G is called universal if G covers every cover of
G, i.e. if for every covering morphism ¢: H — G there is a unique morphism of groupoids
p: G — H such that gp = p (and hence p is also a covering morphism), this is equivalent
to that for 7,y € Og the set é(%, y) has not more than one element.

A pointed morphism p: é,f — G, x is called a covering morphism if the morphism

p: G—Gisa covering morphism.

Definition 2.3. Let p: (é, z) — (G, x) be a covering morphism of groupoids and f: (H, z) —
(G, z) a morphism of groupoids. We say f lifts to p if there exists a unique morphism
f: (H,z) — (é,fﬁ) such that [ = pf.

For any groupoid morphism p: G — G and an object 7 of G we call the subgroup p(é (7))
of G(pz) the characteristic group of p at . The following result gives a criterion on the

liftings of morphisms ( [1]).

Theorem 2.1. Letp: (G, %) — (G, x) be a covering morphism of groupoids and f: (H, z) —
(G,x) a morphism such that H is connected. Then the morphism f: (H,z) — (G, z) lifts
uniquely to a morphism f (H,z) — (é, z) if and only if the characteristic group of f is

contained in that of p.



As a result of this theorem we have the following corollary

Corollary 2.2. Let p: (G, %) — (G,z) and q: (H,2) — (G, ) be connected covering
morphisms with characteristic groups C and D respectively. If C C D, then there is a
unique covering morphism r: (é, z) — (ﬁ,%} such that p = qr. If C = D, then r is an

1somorphism.

Let X be a topological space. Then we have a category T'Cov/X of covering maps
p: X — X of topological spaces. Further we have a category GdCov/m X of covering
morphisms p: G — mX.

The following result was given in [1].

Proposition 2.1. Let X be a connected topological space which has a universal cover.

Then the categories TCov/X and GdCov/m X are equivalent.

Let G be a groupoid. An action of G on a set consists of a set X, a function 6: X — Og
and a partial function Xy X, G — X, (x,a) — za defined on the pullback Xy x G of ¢
and s such that

(i) O(za) = t(a)

(i) z(ab) = (za)b

(iii) 21pey) = 2

As an example if p: G—Gisa covering morphism of groupoids and X = Og, 6 = O,,
then we obtain an action of G on X via 6 by assigning to € X and a € G the target
of the unique lift @ of a with source z.

Given such an action, action groupoid G x X is defined to be the groupoid with object set
X and elements of (G x X)(x,y) the pairs (a,z) such that a € G(0(x),0(y)) and xa = y.
The groupoid composite is defined to be

(a,2)(b,y) = (ab, x))
when y = za
Theorem 2.3 ([1]). Let x be an object of a connected groupoid G and let C' be a subgroup

of the object group G(x). Then there ezists a covering morphism q: (CNJC,%) — (G, x)

with characteristic group C'.

Proof. We give the sketch proof for the technical methods: Let X be the set of cosets
Ca={ca|ce C}forain G,. Let §: X — Og send Ca to the final point of a. Then G



acts on X by
Xog xs G — X, (Ca,g) — C(ag).
The required groupoid CN;C is taken to be the action groupoid G x X. Then the projection
q: éc — (G given on objects by §: X — O and on elements by (g, Ca) — g, is a covering
morphism of groupoids and has the characteristic group C'. So the groupoid composite is
defined by
(g,Ca)(h,Cb) = (gh,Ca).

The required object = € G is the coset C. U

3. LOCAL TOPOLOGICAL GROUPS

Local Lie group is defined in [5]. We deal with the topological case of this definition. For

this we first state local group notion algebraically as follows.

Definition 3.1. A set L is called a local group if there exists

a) a distinguish element e € L, the identity element,

b) a multiplication p: U — L, (z,y) — x oy defined on a subset U of L x L such that
({e} x L)u (L x {e}) C U,

¢) an inversion map ¢: V. — L,z +—— T defined on a subset e € V C L such that
Vxuy(V)CUand (V) x V CU,

all satisfying the following properties:

(i) Identity: eox =z =zoeforallz € L

(ii) Inverse: 1(x)ox =e=xo(x) forallz € V

(iii) Associativity: If (z,y), (v, 2), (z oy, z) and (z,y o 2) all belong to U, then
zo(yoz)=(roy)oz).

We denote such a local group by (L, u,U, 2, V') or only by L. Here we note that if f = Lx L
and V = L, then a local group becomes a group. So the concept of local group generalizes
that of group.

As the topological version of Definition 3.1 a local topological group is defined as follows:

Definition 3.2. In Definition 3.1, if L is a topological space such that ¢ is open in L x L,
V' is open in L, the maps p and ¢ are continuous, then (L, u,U,1, V) is called a local

topological group.

Ifid =L x L and V = L, then a local topological groups becomes a topological group.



Example 3.1. ([5]) Let G be a topological group with the group multiplication p: G x
G — G, (z,y) — x oy and the inversion map 2: G — G,x — x~ . Let L be an open
neighbourhood of the identity element e in (G. Then we can choose a local topological
group (L, p,U,2, V) taking i = (L x L)Np~'(L) and V = LN L~'. Here the group mul-
tiplication p and the inversion 2 on G are restricted to define a local group multiplication
and an inversion maps on L.

More generally if &/ and V' are chosen such that
({e} x L)U(Lx{e}) CUC (Lx L)np (L)
{e}CcV LN YD)
and
(Vxa(V)u V) xVycu

then we have a local topological groupoid.

Definition 3.3. Let (L, u,U,1, V) and (Z, ﬁ,ﬁ,z XN/) be local topological groups. A con-
tinuous map f: L — L is called a local topological group morphism if

() (f x HU) SU, FV) SV, fle) ==,

(ii) f(zoy) = f(x)o fy) for (z,y) €U , and

(iii) f(u(z)) =2 f(x)) for z € V.

A local topological group morphism is called a homeomorphism if it is one-to one and
onto , with continuous inverse.

Note that the composition of local topological group homomorphisms is again a local
group homomorphism. So local topological groups and morphisms between them form a

category. We write LT'Gp for this category.

Proposition 3.1. Let (L, u,U,2, V) be a local topological group and A an open neigh-
bourhood of the identity element e in L. Then there is an open neighbourhood B of e in

L such that B* C A. Further if A is liftable then B can be chosen to be liftable.

Proof. Since (L, p,U,1, V) is a local topological group, the multiplication pu: U — L,
(a,b) — aob is continuous. So there is an open neighbourhood B of (e,e) in U such
that p(B) C A. Therefore there are open neighbourhoods By and Bj of e in L such that
By o By C A. Hence for B = B, N By, we have B? C A as required.

Further if A is liftable then B can be chosen as liftable. For if A is liftable then for each
x € B, the fundamental group (B, z) is mapped to the singleton by the morphism



induced by the inclusion map 2: B — L. But B is not necessarily path connected and
hence not necessarily liftable. Since the path component C.(B) of e in B is liftable and
satisfies these conditions, if necessary, we can replace B by C.(B) and suppose that B is

liftable. O

Definition 3.4. Let L and L be local topological groups. A morphism f: L — L of

local topological groups is called a cover if it is a covering map on the underlying spaces.

4. LOCAL GROUP-GROUPOIDS

We know from [3] that if X is a topological group, then the fundamental groupoid m; X is
a group object in the category of groupoids. This is called a group-groupoid. If L is a local
topological group rather than a topological group, then similarly we obtain a local group
object in the category of groupoids. As a local group object in the category of groupoids

we define a local group-groupoid as follows:

Definition 4.1. A local group-groupoid G is a groupoid in which Og and G both have
local group structures such that the following maps are the local morphisms of groupoids:
(i) p: U — G, (a,b) —aob

(ii)2:V—->G,a—a

(iii) e: (x) — G, where (%) is singleton.

Remark 4.1. Let G be a local group-groupoid. Then from Definition 4.1, we have the
following;:

(i) If (a,b) € U C G x G, then s(aob) = s(a) o s(b) and t(aob) = t(a) o t(b)

(i) If a € V C G, then s(@) = s(a) and t(a@) = t(a)
(iii) If e is the identity of local group Og, then 1, is the identity of local group G.

In a local group-groupoid G for a,b € G the groupoid composite is denoted by ab when

s(b) = t(a) and the local group multiplication by a o b when (a,b) € U. The local group

inverse of a € V' is denoted by @ while the groupoid inverse is written a~!.

Proposition 4.1. In a local group-groupoid G we have
(ac) o (bd) = (aob)(cod)

for a,b,c,d € G such that the necessary compositions and multiplications are defined



Proof. Since u preserves the groupoid composite for a,b, ¢, d € G such that ((a,b), (¢,d) €
U, (ac,bd) € U and ac, bd are defined we have that

(ac)o (bd) = plac, bd]
= pl(a,b)(c, d)]
= pla,b)u(c, d)
— (aob)(cod).

0

Proposition 4.2. If L is a local topological group, then the fundamental groupoid m L is

a local group-groupoid.

Proof. Let L be a local topological group, with the continuous multiplication
iU — Ly (0.y) — a0y
and the continuous inversion
1wV —Lx— 7.

Then these maps induce the following morphisms

mp: mU — mL,[(a,b)] — [aoD]

me: mV — mL,[a] — [a] = [a].

Here the path a o b is defined by (a o b)(t) = a(t) o b(t) for 0 < ¢ < 1. Note that since
(a,b) is a path in U, the path a o b is defined. The path in L denoted by @ is defined by
a(t) = ﬁ So w1 L becomes a local group. To prove that 7 L is a local group-groupoid
we have to check the conditions of Definition 4.1.

Let (a,b) and (¢, d) be the paths in ¢ such that the multiplications of paths ac and bd are
defined such that (ac, bd) is a path in U4. Then evaluating at ¢ € [0, 1] gives the interchange

law
(ac) o (bd) = (aob)(cod)

i.e, the map p: U — G, (a,b) — aobis a morphism of groupoids. The other conditions

are trivial. O

Example 4.1. If X is a local group, then G = X x X becomes a local group-groupoid

on X. Here a pair (x,y) is a morphism from z to y and the groupoid composite is defined



by (z,y)(z,u) = (x,u) whenever y = z. The local group multiplication is defined by

(z,y) o (2,u) = (z o2,y 0u)

whenever x o z and y o u are defined.

Proposition 4.3. Let G be a local group-groupoid, e the identity of Og. Then the con-

nected component C(G). of e in groupoid is a local group-groupoid.

Proof. Recall that the connected component C(G). of e is a full subgroupoid of G' on
those objects x such that G(x,e) is nonempty. Since G is a local group-groupoid there
are local morphisms py: Y — G, 1: V — G and e: (%) — G, where (%) is singleton. Then
restrictions of these local morphisms yield the following local morphisms

(i) p: UN(C(G)e x C(G)e) — C(G)e

(ii) 2: VN C(G)e — C(G)e

(iii) e: (x) = C(G)e). O

Proposition 4.4. Let G be a local group-groupoid and e the identity of Og. Then the

star G, = {a € G: s(a) = e} of e becomes a local group.

Proof. Let G be a local group-groupoid with local morphism p: 4 — G. We have
s(aob) = s(a) o s(a) for (a,b) € U. So the restriction of local morphism p: U — G
yields a local morphism p: U N (G X G.) — G.. Similarly, since for a € V', s(a) = Ta),
the restriction of local morphism 2: V — G yields +: V NG, — G.. The rest of the

proof are straightforward. O

5. COVERING MORPHISMS OF LOCAL GROUP-GROUPOIDS

Definition 5.1. Let H and G be two local group-groupoids. A morphism f: H — G

from H to G is a morphism of underlying groupoids preserving local group structure, i.e,
flaob) = f(a)o f(b) for (a,b) eUd C H x H.

A morphism f: H — G of local group-groupoids is called covering (resp. wuniversal

covering) if it is a covering morphism (resp. universal covering) on underlying groupoids.

Example 5.1. If p: L—Lisa covering morphism of local topological groups, then the

induced morphism 7p: mL — mLisa covering morphism of local group-groupoids.



Definition 5.2. Suppose that G is a local group-groupoid and e is the identity of Og.
Let G be a groupoid, p: G—Ga covering morphism of groupoids and € € Og such that
p(€) = e. We say that the local group structure of G lifts to G if there exists a local group
structure on G with the identity element € € Og such that p: G- Gisa morphism of

local group-groupoids.

We now use Theorem 2.3 to prove that the local group structure of a group-groupoid lifts

to a covering groupoid.

Theorem 5.1. Let G be a local groupoid and G a group-groupoid whose underlying
groupoid 1s connected. Suppose that p: G — Gisa covering morphism of groupoids,
e is the identity element of the group O and € is an element of Og such that p(€) = e.
Then the local group structure of G lifts to G with identity e.

Proof. Let C be the characteristic group of p: (G,2) — (G,e). Then by Theorem 2.3
we have a covering morphism g: (60757 — (G, e) with characteristic group C. So by
Corollary 2.2 the covering morphisms p and ¢ are equivalent. Therefore it is sufficient to
prove that the group structure of G lifts to Ge by the covering morphism ¢: (éc, z) —
(G,e).
Let m: U — G, (g, h) — goh be the local group multiplication of the local group-groupoid
G. Now define a local group multiplication on X = Og_, by

(Ca)o (Cb) =C(aob)
when a o b is defined and a local group multiplication on éc by

(9,Ca) o (h,Cob)r— (goh,C(aob)).

when g o h and a o b are defined.
Here note that if a,b € G, and aob is defined, then aob € G, and so C'(aob) is defined. It
is straightforward to see that éc is a local group-groupoid. When the necessary groupoid

composites and local group multiplications are possible we have
(9, Ca)(k,Cc) o (h,Cb)(t,Cd) = (gk,Ca) o (ht,Cb)
= (gkoht,C(aob)).

((g,Ca) o (h,Cb))((k,Cc) o (t,Cd))

(goh,Clacb))(kot,C(cod))
= ((goh)(kot),C(aob)).



Since G is a local group-groupoid, when the necessary groupoid composites and local

group multiplications are possible we have that gk o ht = (go h)(k ot), so
(9, Ca)(k, Cc) o (b, CB)(t,Cd) = ((g,Ca) o (h, CH))((k, Cc) o (t, Cd))

i.e, the interchange low is satisfied.
Further the morphism ¢ preserves the local group structure as follows: If the necessary

groupoid composites and local group multiplications are possible then we have that
q((g,Ca)o (h,Cob)) = q(goh,Co(acd))
= goh
= ¢q(g,Ca)oq(h,Cb).
g

Definition 5.3. Let G be a local group-groupoid and L a local group. An action or
operation of the local group-groupoid G on L consists of a local group morphism 6: L —
O¢ and an operation of the underlying groupoid of G on the underlying set of L via

0: L — Og such that the following interchange law holds

(za) o (yb) = (a0 b)(x oy)

whenever both sides are defined.

We write (L, #) for such an action.
As an example if G is a local group-groupoid, then G acts on L = Og via the identity

map L — Og.

Example 5.2. If f: H — (G is a covering morphism of local group-groupoids, then the

local group-groupoid G acts on Oy.

Example 5.3. Let GG be a local group-groupoid which acts on a local group L. Then the

action groupoid G X L is a local group-groupoid with local group operation defined by

(a,x) o (by) = (aobxzoy)
whenever both sides are defined and the projection p: Gx L — G, (a,x) + a is a covering

morphism of local group-groupoids.

Let G be a local group-groupoid. We obtain a category denoted by LGpGdCov/G whose

objects are the covering morphisms of groupoids f: H — G which are also local group



morphisms and a morphism from f: H — G to g: K — G is a morphism h: H — K of
local group-groupoids which becomes also a covering morphism.

A morphism of local group-groupoid operations f: (L,0) — (L', ') is a morphism of local
groups f: L — L’ such that § = 0'f and f(za) = (fx)a whenever za is defined. So we
have a category LGpGdAct(G).

Theorem 5.2. For a local group-groupoid G, the categories LGpGdAct(G) and LGpGdCov(G)

are equivalent.

Proof. For an action (L, ) of G, we have the action groupoid G x L and a local group
structure on it defined by

(a,x) o (b,y) = (aob,xoy)
whenever both sides are defined. Then G x L becomes a local group-groupoid and the
projection p: G X L — G, (a,z) — a is a covering morphisms of local group-groupoid.

Therefore we have an object of the category LGpGdCov/G. This gives a functor
[': LGpGdAct(G) — LGpGdCou(G).

Conversely if f: H — ( is a covering morphism of local group-groupoids, then we have
a bijection Oy fx, G — H. Then the composition of this bijection with the final point
map t: H — Opg gives an action O ¢x3 G — Oy via Of: Oy — Og. So we obtain a
functor

¢: LGpGdCov(G) — LGpGdAct(G).
The natural equivalences I'® ~ 1 and ®I" ~ 1 follow. U
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