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Abstract. It is known that if X is a topological group, then the fundamen-
tal groupoid π1(X) is a group-groupoid, i,e, a group object in the category of
groupoids. The group structure of a group-groupoid lifts to a covering groupoid.
Further if G is a group-groupoid, then the category GpGdAct(G) of group-
groupoid operations and the category GpGdCov/G of group-groupoid coverings
of G are equivalent.

In this paper we prove the corresponding results for local topological groups
and local group objects in the category of groupoids.
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1. Introduction

The theory of covering groupoids plays an important role in the applications of groupoids

(cf. [1], [6]) and covering spaces are not only important for algebraic topology, but also

they have important applications in many other branches of mathematics including dif-

ferential topology, the theory of topological groups and the theory of Riemann surfaces.

There are two important results about group-groupoids given in [2]. One is that the group

structure of a group-groupoid lifts to a covering groupoid, i.e., if G is a group-groupoid

and p : G̃ → G is covering morphism of groupoids, then G̃ becomes a group-groupoid

such that p is group-groupoid morphism. The other is that if G is a group-groupoid, then

the category GpGdCov/G of covering morphisms over G is equivalent to the category

GpGdAct(G) of group-groupoid actions of G on groups.

In this paper we introduce the notion of a local group-groupoid as a local group object in

the category of groupoids and prove local group-groupoid versions of these results. For the

first result we prove that if G is a local group-groupoid and p : G̃ → G is covering morphism

of groupoids, then G̃ becomes a group-groupoid such that p is a local group-groupoid

morphism. For the second result we prove that if G is a local group-groupoid, then

the category LGpGdCov/G of local group-groupoid covers is equivalent to the category

LGpGdAct(G) of local group-groupoid actions of G on local groups.
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2. Covering maps and covering morphisms of groupoids

We assume the usual theory of covering maps. All spaces X are assumed to be locally

path connected and semilocally 1-connected, so that each path component of X admits

a simply connected cover. Recall that a covering map p : X̃ → X of connected spaces is

called universal if it covers every covering of X in the sense that if q : Ỹ → X is another

covering of X then there exists a map r : X̃ → Ỹ such that p = qr (hence r becomes a

covering). A covering map p : X̃ → X is called simply connected if X̃ is simply connected.

So a simply connected covering is a universal covering.

Definition 2.1. We call a subset A of X liftable if it is open, path connected and A lifts

to each covering of X, that is, if p : X̃ → X is a covering map, ı : A → X is the inclusion

map, and x̃ ∈ X̃ satisfies p(x̃) = x ∈ A, then there exists a map (necessarily unique)

ı̃ : A → X̃ such that p̃ı = ı and ı̃(x) = x̃.

It is easy to see that A is liftable if and only if it is open, path connected and for all

x ∈ A, the fundamental group π1(A, x) is mapped to singleton by the morphism induced

by the inclusion map ı : A → X and e is the identity element of the fundamental group

π1(X, x). Remark that if X is a semilocally simply connected topological space then each

point x ∈ X has a liftable neighbourhood.

A groupoid is a small category in which each morphism is an isomorphism, that is, a

groupoid G has a set of morphisms, which we call just elements of G, a set OG of objects

together with maps s, t : G → OG and ε : OG → G such that sε = tε = 1OG
, the identity

map. The maps s, t are called initial and final point maps respectively and the map ε

is called object inclusion. If a, b ∈ G and t(a) = s(b), then the composite ab exists such

that s(ab) = s(a) and t(ab) = t(b). So there exists a partial composite defined by the

map Gt ×s G → G, (a, b) 7→ ab, where Gt ×s G is the pullback of t and s. Further, this

partial composite is associative, for x ∈ OG the element ε(x) denoted by 1x acts as the

identity, and each element a has an inverse a−1 such that s(a−1) = t(a), t(a−1) = s(a),

aa−1 = (εs)(a), a−1a = (εt)(a). The map G → G, a 7→ a−1 is called the inversion.

So a group can be thought as a groupoid with only one object and a groupoid can be

thought as a group with many objects.

In a groupoid G for x, y ∈ OG we write G(x, y) for the set of all morphisms with initial

point x and final point y. We say G is connected if for all x, y ∈ OG, G(x, y) is not empty.



For x ∈ OG we denote the star {a ∈ G | s(a) = x} of x by Gx. The object group at x is

G(x) = G(x, x).

Let G and H be groupoids. A morphism from H to G is a pair of maps f : H → G and

Of : OH → OG such that s ◦ f = Of ◦ s, t ◦ f = Of ◦ t and f(ab) = f(a)f(b) for all

(a, b) ∈ Ht ×s H. For such a morphism we simply write f : H → G.

Covering morphisms and universal covering groupoids of groupoids are defined in [1] as

follows:

Definition 2.2. Let p : G̃ → G be a morphism of groupoids. Then p is called a covering

morphism and G̃ a covering groupoid of G if for each x̃ ∈ OG̃ the restriction of p

px : (G̃)x̃ → Gp(x̃)

is bijective.

As an example a group homomorphism p : G̃ → G is a covering morphism if and only if

it is an isomorphism.

A covering morphism p : G̃ → G is called connected if both G̃ and G are connected.

A connected covering morphism p : G̃ → G is called universal if G̃ covers every cover of

G, i.e. if for every covering morphism q : H̃ → G there is a unique morphism of groupoids

p̃ : G̃ → H̃ such that qp̃ = p (and hence p̃ is also a covering morphism), this is equivalent

to that for x̃, ỹ ∈ OG̃ the set G̃(x̃, ỹ) has not more than one element.

A pointed morphism p : G̃, x̃ → G, x is called a covering morphism if the morphism

p : G̃ → G is a covering morphism.

Definition 2.3. Let p : (G̃, x̃) → (G, x) be a covering morphism of groupoids and f : (H, z) →
(G, x) a morphism of groupoids. We say f lifts to p if there exists a unique morphism

f̃ : (H, z) → (G̃, x̃) such that f = pf̃ .

For any groupoid morphism p : G̃ → G and an object x̃ of G̃ we call the subgroup p(G̃(x̃))

of G(px̃) the characteristic group of p at x̃. The following result gives a criterion on the

liftings of morphisms ( [1]).

Theorem 2.1. Let p : (G̃, x̃) → (G, x) be a covering morphism of groupoids and f : (H, z) →
(G, x) a morphism such that H is connected. Then the morphism f : (H, z) → (G, x) lifts

uniquely to a morphism f̃ : (H, z) → (G̃, x̃) if and only if the characteristic group of f is

contained in that of p.



As a result of this theorem we have the following corollary

Corollary 2.2. Let p : (G̃, x̃) → (G, x) and q : (H̃, z̃) → (G, x) be connected covering

morphisms with characteristic groups C and D respectively. If C ⊆ D, then there is a

unique covering morphism r : (G̃, x̃) −→ (H̃, z̃) such that p = qr. If C = D, then r is an

isomorphism.

Let X be a topological space. Then we have a category TCov/X of covering maps

p : X̃ → X of topological spaces. Further we have a category GdCov/π1X of covering

morphisms p : G̃ → π1X.

The following result was given in [1].

Proposition 2.1. Let X be a connected topological space which has a universal cover.

Then the categories TCov/X and GdCov/π1X are equivalent.

Let G be a groupoid. An action of G on a set consists of a set X, a function θ : X → OG

and a partial function Xθ ×s G → X, (x, a) 7→ xa defined on the pullback Xθ ×s G of θ

and s such that

(i) θ(xa) = t(a)

(ii) x(ab) = (xa)b

(iii) x1θ(x) = x

As an example if p : G̃ → G is a covering morphism of groupoids and X = OG̃, θ = Op,

then we obtain an action of G on X via θ by assigning to x̃ ∈ X and a ∈ Gp(x̃) the target

of the unique lift ã of a with source x̃.

Given such an action, action groupoid GnX is defined to be the groupoid with object set

X and elements of (GnX)(x, y) the pairs (a, x) such that a ∈ G(θ(x), θ(y)) and xa = y.

The groupoid composite is defined to be

(a, x)(b, y) = (ab, x))

when y = xa

Theorem 2.3 ([1]). Let x be an object of a connected groupoid G and let C be a subgroup

of the object group G(x). Then there exists a covering morphism q : (G̃C , x̃) −→ (G, x)

with characteristic group C.

Proof. We give the sketch proof for the technical methods: Let X be the set of cosets

Ca = {ca | c ∈ C} for a in Gx. Let θ : X → OG send Ca to the final point of a. Then G



acts on X by

Xθ ×s G → X, (Ca, g) 7→ C(ag).

The required groupoid G̃C is taken to be the action groupoid GnX. Then the projection

q : G̃C → G given on objects by θ : X → OG and on elements by (g, Ca) 7→ g, is a covering

morphism of groupoids and has the characteristic group C. So the groupoid composite is

defined by

(g, Ca)(h,Cb) = (gh, Ca).

The required object x̃ ∈ G̃C is the coset C. ¤

3. Local topological groups

Local Lie group is defined in [5]. We deal with the topological case of this definition. For

this we first state local group notion algebraically as follows.

Definition 3.1. A set L is called a local group if there exists

a) a distinguish element e ∈ L, the identity element,

b) a multiplication µ : U −→ L, (x, y) 7−→ x ◦ y defined on a subset U of L× L such that

({e} × L) ∪ (L× {e}) ⊆ U ,

c) an inversion map ı : V −→ L, x 7−→ x defined on a subset e ∈ V ⊆ L such that

V × ı(V ) ⊆ U and ı(V )× V ⊆ U ,

all satisfying the following properties:

(i) Identity: e ◦ x = x = x ◦ e for all x ∈ L

(ii) Inverse: ı(x) ◦ x = e = x ◦ ı(x) for all x ∈ V

(iii) Associativity: If (x, y), (y, z), (x ◦ y, z) and (x, y ◦ z) all belong to U , then

x ◦ (y ◦ z) = (x ◦ y) ◦ z).

We denote such a local group by (L, µ,U , ı, V ) or only by L. Here we note that if U = L×L

and V = L, then a local group becomes a group. So the concept of local group generalizes

that of group.

As the topological version of Definition 3.1 a local topological group is defined as follows:

Definition 3.2. In Definition 3.1, if L is a topological space such that U is open in L×L,

V is open in L, the maps µ and ı are continuous, then (L, µ,U , ı, V ) is called a local

topological group.

If U = L× L and V = L, then a local topological groups becomes a topological group.



Example 3.1. ([5]) Let G be a topological group with the group multiplication µ : G×
G −→ G, (x, y) 7→ x ◦ y and the inversion map ı : G −→ G, x 7→ x−1. Let L be an open

neighbourhood of the identity element e in G. Then we can choose a local topological

group (L, µ,U , ı, V ) taking U = (L×L)∩ µ−1(L) and V = L∩L−1. Here the group mul-

tiplication µ and the inversion ı on G are restricted to define a local group multiplication

and an inversion maps on L.

More generally if U and V are chosen such that

({e} × L) ∪ (L× {e}) ⊆ U ⊆ (L× L) ∩ µ−1(L)

{e} ⊆ V ⊆ L ∩ ı−1(L)

and

(V × ı(V )) ∪ (ı(V )× V ) ⊆ U
then we have a local topological groupoid.

Definition 3.3. Let (L, µ,U , ı, V ) and (L̃, µ̃, Ũ , ı̃, Ṽ ) be local topological groups. A con-

tinuous map f : L −→ L̃ is called a local topological group morphism if

(i) (f × f)(U) ⊆ Ũ , f(V ) ⊆ Ṽ , f(e) = ẽ,

(ii) f(x ◦ y) = f(x) ◦ f(y) for (x, y) ∈ U , and

(iii) f(ı(x)) = ı̃(f(x)) for x ∈ V .

A local topological group morphism is called a homeomorphism if it is one-to one and

onto , with continuous inverse.

Note that the composition of local topological group homomorphisms is again a local

group homomorphism. So local topological groups and morphisms between them form a

category. We write LTGp for this category.

Proposition 3.1. Let (L, µ,U , ı, V ) be a local topological group and A an open neigh-

bourhood of the identity element e in L. Then there is an open neighbourhood B of e in

L such that B2 ⊆ A. Further if A is liftable then B can be chosen to be liftable.

Proof. Since (L, µ,U , ı, V ) is a local topological group, the multiplication µ : U → L,

(a, b) 7→ a ◦ b is continuous. So there is an open neighbourhood B of (e, e) in U such

that µ(B) ⊆ A. Therefore there are open neighbourhoods B1 and B2 of e in L such that

B1 ◦B2 ⊆ A. Hence for B = B1 ∩B2 we have B2 ⊆ A as required.

Further if A is liftable then B can be chosen as liftable. For if A is liftable then for each

x ∈ B, the fundamental group π1(B, x) is mapped to the singleton by the morphism



induced by the inclusion map ı : B → L. But B is not necessarily path connected and

hence not necessarily liftable. Since the path component Ce(B) of e in B is liftable and

satisfies these conditions, if necessary, we can replace B by Ce(B) and suppose that B is

liftable. ¤

Definition 3.4. Let L and L̃ be local topological groups. A morphism f : L̃ −→ L of

local topological groups is called a cover if it is a covering map on the underlying spaces.

4. Local group-groupoids

We know from [3] that if X is a topological group, then the fundamental groupoid π1X is

a group object in the category of groupoids. This is called a group-groupoid. If L is a local

topological group rather than a topological group, then similarly we obtain a local group

object in the category of groupoids. As a local group object in the category of groupoids

we define a local group-groupoid as follows:

Definition 4.1. A local group-groupoid G is a groupoid in which OG and G both have

local group structures such that the following maps are the local morphisms of groupoids:

(i) µ : U −→ G, (a, b) 7→ a ◦ b

(ii) ı : V → G, a 7→ a

(iii) e : (?) → G, where (?) is singleton.

Remark 4.1. Let G be a local group-groupoid. Then from Definition 4.1, we have the

following:

(i) If (a, b) ∈ U ⊆ G×G, then s(a ◦ b) = s(a) ◦ s(b) and t(a ◦ b) = t(a) ◦ t(b)

(ii) If a ∈ V ⊆ G, then s(a) = s(a) and t(a) = t(a)

(iii) If e is the identity of local group OG, then 1e is the identity of local group G.

In a local group-groupoid G for a, b ∈ G the groupoid composite is denoted by ab when

s(b) = t(a) and the local group multiplication by a ◦ b when (a, b) ∈ U . The local group

inverse of a ∈ V is denoted by a while the groupoid inverse is written a−1.

Proposition 4.1. In a local group-groupoid G we have

(ac) ◦ (bd) = (a ◦ b)(c ◦ d)

for a, b, c, d ∈ G such that the necessary compositions and multiplications are defined



Proof. Since µ preserves the groupoid composite for a, b, c, d ∈ G such that ((a, b), (c, d) ∈
U , (ac, bd) ∈ U and ac, bd are defined we have that

(ac) ◦ (bd) = µ[ac, bd]

= µ[(a, b)(c, d)]

= µ(a, b)µ(c, d)

= (a ◦ b)(c ◦ d).

¤

Proposition 4.2. If L is a local topological group, then the fundamental groupoid π1L is

a local group-groupoid.

Proof. Let L be a local topological group, with the continuous multiplication

µ : U → L, (x, y) 7→ x ◦ y

and the continuous inversion

ı : V → L, x 7→ x.

Then these maps induce the following morphisms

π1µ : π1U → π1L, [(a, b)] 7→ [a ◦ b]

π1ı : π1V → π1L, [a] 7→ [a] = [a].

Here the path a ◦ b is defined by (a ◦ b)(t) = a(t) ◦ b(t) for 0 ≤ t ≤ 1. Note that since

(a, b) is a path in U , the path a ◦ b is defined. The path in L denoted by a is defined by

a(t) = a(t). So π1L becomes a local group. To prove that π1L is a local group-groupoid

we have to check the conditions of Definition 4.1.

Let (a, b) and (c, d) be the paths in U such that the multiplications of paths ac and bd are

defined such that (ac, bd) is a path in U . Then evaluating at t ∈ [0, 1] gives the interchange

law

(ac) ◦ (bd) = (a ◦ b)(c ◦ d)

i.e, the map µ : U −→ G, (a, b) 7→ a ◦ b is a morphism of groupoids. The other conditions

are trivial. ¤

Example 4.1. If X is a local group, then G = X ×X becomes a local group-groupoid

on X. Here a pair (x, y) is a morphism from x to y and the groupoid composite is defined



by (x, y)(z, u) = (x, u) whenever y = z. The local group multiplication is defined by

(x, y) ◦ (z, u) = (x ◦ z, y ◦ u)

whenever x ◦ z and y ◦ u are defined.

Proposition 4.3. Let G be a local group-groupoid, e the identity of OG. Then the con-

nected component C(G)e of e in groupoid is a local group-groupoid.

Proof. Recall that the connected component C(G)e of e is a full subgroupoid of G on

those objects x such that G(x, e) is nonempty. Since G is a local group-groupoid there

are local morphisms µ : U −→ G, ı : V → G and e : (?) → G, where (?) is singleton. Then

restrictions of these local morphisms yield the following local morphisms

(i) µ : U ∩ (C(G)e × C(G)e) −→ C(G)e

(ii) ı : V ∩ C(G)e → C(G)e

(iii) e : (?) → C(G)e). ¤

Proposition 4.4. Let G be a local group-groupoid and e the identity of OG. Then the

star Ge = {a ∈ G : s(a) = e} of e becomes a local group.

Proof. Let G be a local group-groupoid with local morphism µ : U −→ G. We have

s(a ◦ b) = s(a) ◦ s(a) for (a, b) ∈ U . So the restriction of local morphism µ : U −→ G

yields a local morphism µ : U ∩ (Ge×Ge) −→ Ge. Similarly, since for a ∈ V , s(a) = s(a),

the restriction of local morphism ı : V −→ G yields ı : V ∩ Ge −→ Ge. The rest of the

proof are straightforward. ¤

5. Covering morphisms of local group-groupoids

Definition 5.1. Let H and G be two local group-groupoids. A morphism f : H → G

from H to G is a morphism of underlying groupoids preserving local group structure, i.e,

f(a ◦ b) = f(a) ◦ f(b) for (a, b) ∈ U ⊆ H ×H.

A morphism f : H → G of local group-groupoids is called covering (resp. universal

covering) if it is a covering morphism (resp. universal covering) on underlying groupoids.

Example 5.1. If p : L̃ → L is a covering morphism of local topological groups, then the

induced morphism π1p : π1L̃ → π1L is a covering morphism of local group-groupoids.



Definition 5.2. Suppose that G is a local group-groupoid and e is the identity of OG.

Let G̃ be a groupoid, p : G̃ → G a covering morphism of groupoids and ẽ ∈ OG̃ such that

p(ẽ) = e. We say that the local group structure of G lifts to G̃ if there exists a local group

structure on G̃ with the identity element ẽ ∈ OG̃ such that p : G̃ → G is a morphism of

local group-groupoids.

We now use Theorem 2.3 to prove that the local group structure of a group-groupoid lifts

to a covering groupoid.

Theorem 5.1. Let G̃ be a local groupoid and G a group-groupoid whose underlying

groupoid is connected. Suppose that p : G̃ → G is a covering morphism of groupoids,

e is the identity element of the group OG and ẽ is an element of OG̃ such that p(ẽ) = e.

Then the local group structure of G lifts to G̃ with identity ẽ.

Proof. Let C be the characteristic group of p : (G̃, ẽ) → (G, e). Then by Theorem 2.3

we have a covering morphism q : (G̃C , ẽ) → (G, e) with characteristic group C. So by

Corollary 2.2 the covering morphisms p and q are equivalent. Therefore it is sufficient to

prove that the group structure of G lifts to G̃C by the covering morphism q : (G̃C , x̃) →
(G, e).

Let m : U → G, (g, h) 7→ g◦h be the local group multiplication of the local group-groupoid

G. Now define a local group multiplication on X = OG̃C
by

(Ca) ◦ (Cb) = C(a ◦ b)

when a ◦ b is defined and a local group multiplication on G̃C by

(g, Ca) ◦ (h,C ◦ b) 7→ (g ◦ h,C(a ◦ b)).

when g ◦ h and a ◦ b are defined.

Here note that if a, b ∈ Ge and a◦b is defined, then a◦b ∈ Ge and so C(a◦b) is defined. It

is straightforward to see that G̃C is a local group-groupoid. When the necessary groupoid

composites and local group multiplications are possible we have

(g, Ca)(k, Cc) ◦ (h,Cb)(t, Cd) = (gk, Ca) ◦ (ht, Cb)

= (gk ◦ ht, C(a ◦ b)).

((g, Ca) ◦ (h,Cb))((k, Cc) ◦ (t, Cd)) = (g ◦ h,C(a ◦ b))(k ◦ t, C(c ◦ d))

= ((g ◦ h)(k ◦ t), C(a ◦ b)).



Since G is a local group-groupoid, when the necessary groupoid composites and local

group multiplications are possible we have that gk ◦ ht = (g ◦ h)(k ◦ t), so

(g, Ca)(k, Cc) ◦ (h,Cb)(t, Cd) = ((g, Ca) ◦ (h,Cb))((k, Cc) ◦ (t, Cd))

i.e, the interchange low is satisfied.

Further the morphism q preserves the local group structure as follows: If the necessary

groupoid composites and local group multiplications are possible then we have that

q((g, Ca) ◦ (h,C ◦ b)) = q(g ◦ h,C ◦ (a ◦ b))

= g ◦ h

= q(g, Ca) ◦ q(h,Cb).

¤

Definition 5.3. Let G be a local group-groupoid and L a local group. An action or

operation of the local group-groupoid G on L consists of a local group morphism θ : L →
OG and an operation of the underlying groupoid of G on the underlying set of L via

θ : L → OG such that the following interchange law holds

(xa) ◦ (yb) = (a ◦ b)(x ◦ y)

whenever both sides are defined.

We write (L, θ) for such an action.

As an example if G is a local group-groupoid, then G acts on L = OG via the identity

map L → OG.

Example 5.2. If f : H → G is a covering morphism of local group-groupoids, then the

local group-groupoid G acts on OH .

Example 5.3. Let G be a local group-groupoid which acts on a local group L. Then the

action groupoid Gn L is a local group-groupoid with local group operation defined by

(a, x) ◦ (b, y) = (a ◦ b, x ◦ y)

whenever both sides are defined and the projection p : GnL → G, (a, x) 7→ a is a covering

morphism of local group-groupoids.

Let G be a local group-groupoid. We obtain a category denoted by LGpGdCov/G whose

objects are the covering morphisms of groupoids f : H → G which are also local group



morphisms and a morphism from f : H → G to g : K → G is a morphism h : H → K of

local group-groupoids which becomes also a covering morphism.

A morphism of local group-groupoid operations f : (L, θ) → (L′, θ′) is a morphism of local

groups f : L → L′ such that θ = θ′f and f(xa) = (fx)a whenever xa is defined. So we

have a category LGpGdAct(G).

Theorem 5.2. For a local group-groupoid G, the categories LGpGdAct(G) and LGpGdCov(G)

are equivalent.

Proof. For an action (L, θ) of G, we have the action groupoid G n L and a local group

structure on it defined by

(a, x) ◦ (b, y) = (a ◦ b, x ◦ y)

whenever both sides are defined. Then G n L becomes a local group-groupoid and the

projection p : G n L → G, (a, x) → a is a covering morphisms of local group-groupoid.

Therefore we have an object of the category LGpGdCov/G. This gives a functor

Γ: LGpGdAct(G) → LGpGdCov(G).

Conversely if f : H → G is a covering morphism of local group-groupoids, then we have

a bijection OH f×s G → H. Then the composition of this bijection with the final point

map t : H → OH gives an action OH f×s G → OH via Of : OH → OG. So we obtain a

functor

Φ: LGpGdCov(G) → LGpGdAct(G).

The natural equivalences ΓΦ ' 1 and ΦΓ ' 1 follow. ¤
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