Dirac Equation in a 5-dimensional Kaluza-Klein Theory
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Abstract. Dirac equation is discussed in 5-dimensional space time having topol-
ogy M* x T', where M* and T" both are curved. It is shown that 4-dimensional
fermion can be obtained from 5-dimensional fermion, as a result of compactification
of extra dimension. It is found that the realistic 4-dimensional fermions are possible
in higher modes earlier than those in lower modes during the course of expansion of
4-dimensional universe. 4-dimensional Dirac equation, obtained from 5-dimensional
Dirac equation after compactification, is solved for an arbitrary modes for super-
heavy as well as light (realistic) fermions. Time-dependence of polarization vector
and magnetization density, as a result of Gordon-decomposition of the current vector
for 4-dimensional spin-3 field (with arbitrary mode), is exhibited.
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1 Introduction

In the context of unification of gravity with gauge interactions, Kaluza-Klein type theories
[1-4] are good candidates. In these theories, the spacetime is supposed to have the topology
M* x T"=* (n is the total number of dimension), where M?* denotes the usual para-
compact four-dim. spacetime (flat or curved) and 7"~* is the extra (n-4)-dim.compact
manifold. The observed universe is 4-dimensional , hence it is supposed that the extra-
manifold due to gauge interactions might be compact and very small in size so that
these are not observed today. Physically, it is very much appealing to think that 774
manifold is curved due to its compact nature[5]. The action for higher-dim. gravity is
s = [d'z\/=gR where g = det g,, (gu is the metric tensor for the n-dimensional
space time) and R is the Ricci curvature scalar for M* x T4, n-dimensional Einstein’s
equations derived from the above action yields that 7"~* can be curved (1) when M* is
also curved or (2) action contains some lagrangian for matter field also so that energy-

momentum tensor is non-vanishing[6]. This discussion shows that if M* is curved, the
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extra-dim. manifold will definitely be curved. Motivated by this idea, the line-element

for 5-dim. space time is taken as
ds* = dt* — a*(t)[dx} + das + da3) — A*(t)dy? (1.1)

Using the metric tensor from (1.1) in the Einstein’s field equations|7] derived from the

above action, it is interesting to see that
aA=1 (1.2)

Thus (1.1) deserves a model in which one spatial dimension shrinks with time while
the other three expand. Earlier, Chodos and Detweiler[8] have considered this type of
spacetime.

In 4-dim. spacetime, Dirac equation has been solved and discussed by many authors[9].
The aim of present paper is to discuss and solve Dirac equation for spin—% field ¥y in
5-dim. spacetime (1.1) for different time-function a(t).

The degrees of freedom for a spin- field ¥ in n dimensions[10] is given by 2% where
(n—1)
2

a =75 (if nis even) and o = (if n is odd). The dimension of the space-time, here,
is 5, so degrees of freedom for W is 4. The flat space Dirac matrices in 5-dim. will be
o5 Y15 V2, V3, V5 Where ¥5 = YoF179273 (other y— matrices are the usual standard matrices
for 4-dim.)[11]. Now for Weyl’s transformation a matrix 7 = %9293 = 1 can be

defined. So operation of chiral projection operators %(1 + #) on the Dirac equation
Z"s/’uau\l/5 + m5\115 =0 (13)

shows that chiral fermions are not possible in 5-dim.[10]. Hence my, the mass of ¥ is not

zero. This is true for fermions in curved spacetime also which obey the Dirac equation
’i’}/uD#\Dg) + m5\115 =0 (14)
where v# are curved space Dirac-matrices and D,, denotes covariant derivatives in curved

spacetime (1.1).

The paper is planned as follows: Section 2 contains 5-dim. Dirac Equation in the space-
time (1.1) and a brief discussion on the effective mass of 4-dim. fermion produced by

5-dim. fermion is given. Section 3 contains some explicit examples of solutions for 5-dim.



Dirac Equation. In the last section, Gordon-decomposition[12] of 4-dim. W,, obtained

after compactification of 5.dim spacetime, has been discussed.

h = ¢ =1 is used as fundamental unit where A and c¢ carry their usual meaning. Here

indices a, pu---=0,1,2,3,5.

2. Dirac Equation for U5

The vierbein h* on the manifold M* x TH(T" is circle) is defined as

h/z: hzg;w = Nab

(2.1)

where (p, v) are curved space indices, (a,b) are flat space indices , g, is the curved space

metric tensor and 7y, is the Minkowskian metric. So, in the space time (1.1)
hy =1,hi =h5=h3=a"'(t),hs = A (t) = a(t)
The operator D,, in (1.4) is defined as [13]
D,=0,-T,
where I',, is the spin coefficient or Ricci rotation coefficient given as

1 o
H:Z(@@+{£J%>%%ﬂyb

where {a’; } is the affine-connection.

4% are flat space Dirac matrices satisfying the anti-commutation rule
{33 = 2.
Curved space Dirac matrices v* satisfy
{+", 7"} =29
~# is related to ¥* through vierbein as
Y= hgyt.
So, Dirac equation in (1.1) is written as

- 9a 1, _ B _ )
i |7°(9, + 1_15) +a ' (301 + 7200 + 72 03) + a7°05 | Vs — ms U5 = 0, (@ = Goa)

(2.5)

(2.6)

(2.7)



The internal space is compactified, so

Us(z,y) = Y ouly)¥”(2) (2.9)

n=—0oo

where 0" () are 4-dim. spinor fields in nth mode and ¢,(y) are harmonic functions

which obey the equation|[4]

750500 (y) 0" = 0 (y) U4 (2.10)

R is the compactification scale. ¢, is normalised as

OnPm = Opm.
Connecting (2.8) and (2.10)
@+ )+ a7 (30 + 0, + 7)) — (ms — ) Wi =0 (211)
(2.11) shows that effective mass for U7} is
M =ms — % = ms — anl, (2.12)

where R~ = M, is the compactification mass.

The Extra dimension y which is assumed to be a circle of radius R, has the range
0<y<2rR (2.13)

The distance around the extra dimension is given by [13]
2TR
2rR
05 = / dyv/'—gss = — (2.14)
o a(t)
which is time-dependent and decreases as a(t) increases.

At t = t. (compactification time), it is assumed that

2R
a(tC)

For realistic fermions, M ~ 0. So, as a particular time ¢t = tp

~ Lp (PlankLength) (2.15)

(2.16)



Connecting (2.15) and (2.16)
ms =~ 2mnalt,)Mp (2.17)

a(tc)
where Mp is the Planck mass and is equal to (Lp)

Hence from (2.17)

-1

msa(t.) ms
n o~
QFa(tp)Mp - 27TMP

as a(t,) 2 a(t.) in the expanding 4-dim. universe. So (2.18) puts a constraint on modes

(2.18)

n. Also (2.18) states that if one gets realistic 4-dim. fermion from 5-dim fermion as a
result of compactification of the extra dimension, number of physically allowed modes
depends on ms. For example, n = 0,1 if ms = 27M,; n = 0,1,2 it ms = 47, ;

n=0,1,2,.....(r = 1),r if ms = 27rM, where r is positive integer. From (2.16)

R
a(t,) = mz (2.19)
So, one gets
2nrM,R
a(t,) = Tp (2.20)

where n = 0,1,2,...(r — 1),r. Now it is interesting to see that if a(¢,1) = a1 when n =r
and a(tye) = az when n = r—1,ay > a;. It means that realistic fermions may be obtained
in higher modes earlier than those in lower modes during the course of expansion of the

obsevable 4-dim. universe, as ¢, < tp.

3. Solution of Dirac Equation

Substituting ¥ defined as

W= 3w (3.1)
(2.11) is re-written as
(30, +4'01 + 7202 + 7°05) + ia(ms — anM,)] ¥ = 0 (3.2)
with .
T = / m (3.3)
Writing

U= Z Uy, = (QW)’%exp(ikx) [fl
k



One gets two coupled equations
[0, +ia(ms — anM.)| fr + i(k.o) frr =0 (3.5a)

[0, —ia(ms —anM.)|fir +i(k.o)fr =0 (3.50)

where 01, 09, 03 are pauli matrices.
From (3.5a)
fr1 = ik 2(k.0)[0; + ia(ms — anM.)] fr (3.6)

Connecting (3.5b)and (3.6)
!+ [K* 4+ a*(ms — anM.)* 4+ i0,{a(ms — anM_.)}f; = 0 (3.7)

where prime (/) denotes differentiation with respect to 7.

The norm for 5 is defined at T=constant hypersurface as

(%m;%k/y) :/\/ |g5|d3xdy 1;5165’701/151%'5' (3-8)

where g5 is the determinant of 5-dim. metric tensor.

Connecting (2.9) and (3.8)

(Vsks, Ysirs) = / V195 d%dy sz;ks Z On (Y %k/ ! (3.9)

which yields, on integration over extra dimension y having the range 0 <y < 27R
(¢5ksvw5k’s’) = 27TR/ V |95|d3x ZJ’ZMVO@D&’S' (310)
T n

The normalization constants are determined using the prescription that in the flat space

limit
(Vsks, Ysrer) — G0 (k — K) (3.11)
or,
278 [ Vlglds Y 0 e — sk = ) (3.12)
T n

Now, some explicit examples of solutions of Dirac equation for v} utilising the above

mentioned procedure of normalization are given as under for different a(t).




From (3.3)

1
=22 and a(t) = 57 (3.13)
so (3.7) is written as
2 nM,7\> i nM,
TR (s = ) 20 {r(ms — )Y fr=0 (3.14)
4 2 2 2
(3.14) can be approximated in two different ways:
Case I: When ms >> %HMCT (3.14) is approximated as
' mM.r  mir?
vy gy e > =0 3.15
e (3.15)
which has exact solution
nM. m
f[ = exp |::i:4m57_ F T57—2:| [Nl 1F1((1, _7X)+
i(6r+1)% M 1 3
e 4 n c .
No——— — Fi(= -, X 3.16
2 \/2—7715 (2m5 2m57)1 1(2 +a,2, )] ( )

where

1Fi(a, ¢, X) is confluent hypergeometric function and r =0,1,2,. ...

Connecting (3.6)and(3.16)

frr= i(l]z.;)exp {izrj\ng + ”7757_2] X
N 7 0 g T Ty 2 ) 20X (14 0, 5 X))
Nie O DT{(G o i) (£ F T 4 TR M) By(E a2 )
i\/glﬂ(% +a, g,X) e EMX’(% ;;TBT)lFl(g +a, g,X)}] (3.17)
Corresponding to f; and frr, ¥}y, and 7, are written as
e = @n) Q) Reapiibe & 0oy 2 T, 0, By, X0
Nyt el Crtbm/a (g — ims7) (5 +a,2,X)] (3.18)

2m5 2 2



tar, = o) G B capli o 1y B0,

[Ngus{(izﬂ]\f; ¥ ”72157 + ”;57 - mTzMC) \Fi(a, % X) +2aX" 1 Fi(1 +a, g X))+
NyitgelOrn/ag (5o ;TZ”’T)( Zﬂj\i == iT;ST i ”557 - mTzMC)lFl(% ta, ; X)—
i\/?lﬂ(% +a, g,X) e EQG)X’(% ;;Zmlﬂ(; +a, g,X)}] (3.19)

where u; and 4, are column matrices (with spin quantum number s==+1) given as

1 0
N |1
Uy = 0 9 U_1 = 0
0 0
(3.20)
0 0
_ 0 and _ 0
R (S " T ke ik
—k1 — ik ks

Normalization constants Ny,N,,N3 and N, are determined through (3.12) as

V" M.exp(FnM,/2ms)

Ny =
2kj\/_| lFl( 727X) |
No — VvV M.exp(FnM./2ms5)
2 —
2\/_ M ‘ 1F1( a, 5 —|—CL7%,X) ‘
vV M._.exp (:FnMc/Qm5)
N3 =
2ﬁ S1
v Mexp (FnM./2ms)
N, =
Qkﬁ S9
where
% — 4 (nM )
2m5

M. . , , 1 — M. . 3 —
S =| (j:Z— F imy + ims — inM.)1 Fi(a, §,X) + 2a(n —ims) 1 F1(1 + a, §,X) |
ms

2m5



and

(e — 2ims) M 1 3
S pu— m5 ¢ ) ) - ) F - - X -
y =] S i Fims + ims — inM,); 1(2 +a, 3, )
ms 13— (1+42a) (B —2ims) 3 5 _
2R (= °X 5 F (= °X
W5 1(2+a,2, )+ 3 S 1 1(2+a,2, )|

Case I When ms 2 %M., a new variable 7/ is defined as 7/ = ms; —

1s written as

nMer. Now (3.14)

d*fr 4 9 1 9 g 0 d
ECI W22 [k” + RESVE (ms —7')* 7" — §F{T'(m5 —)}Hfr=0
Since ms >> 7', so one gets
d? fr 4 ,  iMmg 4mi
@ LW ) gy =0 (3:21)
having the exact solution
2. - 1 ~ 13
f[ = e:[,‘p(—§)[N1 1F1<k, 5, Z) -+ N221/2 1F1<k + 5, 5, Z)] (322)
where
iy 2ms
7 2 (7 nMC)
and
21 im5
4k =1+ —(k* - —=
* m5< 2 )
Connecting (3.6) and (3.22)
i(k.o) P | inM.m%  imsT 1
Jir = Texp(—é)[Ng{(ﬁz’ S 5 ) 11 (k, > z)+
3 1 inM, imsT 2 13
2%k \Fy(k+1,2 Ny {22 (52 — —==72 L ) Rk+ 5,2
kz' 1 Fy(k + z)}+ 4{z (2 T 5 +22)1 1(k~|—2,2,z)
2k+1 35
+ %2'21/2 Fi(k+ 3307 2)}] (3.23)
Corresponding to f; and frr, ¥y, and V7, as are written as
1 ~ 13
Y. = (21) " 2explik. x](2) N Nyug  Fy (k= 5 2) 4+ Nytiy2/?  Fy (k + 27 5,2)] (3.24)
n - —z (kO')
Vs, = (2m) " eaplik.a)(5) Ve 2
~ 1 mM,12  inM, 1 3
[N3Us{(52, - 1 L 5 57) 1Fi(k, > z) + 2k 1 Fi(k + 1, o z)}
. 1 inM.?  inMst 227! 1 3
+N4U5{Zl/2(—2/— 1 25 9 )1F1(]€+§,§,Z)+
2k+1 1 35
( 3 )Z,Z; 1 1<k+§,§,2)}] (325)



On normalizing these solutions

Ny = VAL bV | \Fi(k, 5, ans (nM — ms)?) |1

n2 M2
1 3 2zm5 9
N2 = ’I”L\/ 2\/_ nM — m5)\/ | 1F1( 5 5 S (TLMC — m5) ) | ]
- n
iy = e )
\/_
~ kn~/M,
Ni=——=(%)"
\/_
where
9 x 12 1 2ims 9
S1 = | {ims(nM. — ms) —in"M: + inms M.}, Fy (k, 1 2]\/[2( nM. — ms)
3 2img 9
+ dikms(nM, — ms) 1 F1(k + 1, = 3 2N ———(nM,. — ms)?) |
and
~ 2 ms ims(nM. —ms) . , nM.,
— (1 — —inM, _ e
(S2)” = ms( nMC) | { L inM, +ims + 2(nMc—m5}x
1 3 2ims 9
1F1<k+2 2 2M2(nM —m5) )+
(2k + 1) 2ims(nM,. — ms) 3 5 2ims 9
3 o T g5 e (WM = ms))
3B. a(t) ~t
From (3.3), in this case
T = Int, a(t) = exp(r)

Connecting (3.7) and (3.26)
V4 [k + e¥(ms — nMee™)? +ie" (my — nMee™) — inM.e*7] f; = 0
Case 1 When ms >> nM, €7, (3.27) is approximated as
!+ [K* 4 imse” + (m2 — inM.)e*|fr =0

which yields the exact solutions
201 + im5 e’

f1(1) = exp[Fikt + (inM, — m2)e™] X |1 1 Fi( 2~ 5p

T

)+

e’ 2 (2l’ — 2" +ims e
1

CQ<_ﬁ

2l 2l

22, — ] (3.29)

(3.26)

(3.27)

(3.28)



where

1
I=gi2k], I'=inM.~

Connecting (3.6) and (3.29)

k.o
fr(r) = Z(k >6:L‘p[:FZk‘T + (inM, — m2)eT][es X () + csY (7))] (3.30)
where
20"+ T
X (1) = {Fik + inM, — mi — ie"(nMqe" —ms)} 1]%(%, 21, —%)
(21 +ims) 20" + 1ms + 2l e’
— F 1 +2
TR 20 25
and
Y(r)= (- ;l’)l {1 =20 F ik +inM, — m2 — ie” (nM.e™ — ms)} x
20 =2l +imy e’
F , 2 — 21,
o 2 2l’>
(21" = 2" +ims) Al" = 2l 4 imy e’
. 39,2
grz(1—1) ! i o2l ’ oy
So,
n —3/2 - 97 __ - 2\
Vs = (2m) 7 2explik.a — = T ikT + (inM, — m3)eT] x
201 + im5 e’
[crus IFI(T’ 2L, _ﬁ)
e” 1 o 20 =21l +img e’
+ C2us(—ﬁ) 1 ( o7 ,2 =21, —ﬁ)] (3.31)
and
(k. . 9 : :
Viarrs = Z<k—;)(27r)_3/26xp[zk.x - ZT T ikt + (inM, — m2)e™] x
[csus X (T) + catisY (7)] (3.32)
On normalising these solutions
v Mexp(m3)

G = '+im,
Zﬁk | 1 (2”;75 2l 21/) |
VM (21)' " eap(m?)

C: ! !
P oym | (B o o) LY

VM.exp(m3)
2/ [ X(0) |

C3 =



_ V/Meexp(m3)

C4 = ———

2y | Y(0) |
where X (7) and Y (7) are defined as in (3.30)

Case II. When m; 2 nM,. €™ , (3.27) is approximated a
" 2 . 2T _
[k —inMeT|fr =0

which integrates to

21 — inM,
Tﬁ”, 2, —2l'e™)+

o — 2l — inM,
o Me 9 91, —2l'e™)] (3.34)

where L = 1[1 & 2ik] and L' = /nM, x exp[(2r 4+ 1)5] with r = 0,1,2,. ..
(3.6) and (3.34) yield

f1 = exp(FikT +1'e")[¢1 1 Fi(

62(_2l/)1—2l€7'(1—2l) 1F1(

i(k.o , R . O
frr = (k2 )exp(:lzzlm' + L'eN)[es X (1) &Y (7)]
where
. 2LL —inM.,
X(7) = {tikt + L'e” +ie"(ms — nMCeT)}lFl(Tlm, 2L, —2L'e")
(2LL' —inM,) . . 2L' +2LL — inM, i
- 9], (& 1F1( oY, ,1+2L,—2L/€ )
and
Y (1) = {#ikt + L'e” + (=2L")' 722 — 20)e™ ) e (mg — inM.e™) } x
oL/ — 2LL — inM, .
1F1( Y ,2 — 2L, —2L/€ )+
L' — 2LL — inM,)
_2L/ 1—2L( c) 2(1-L)T
(=2L) 2L-1 <~
AL — 2LL — inM, .
1 ( 5T/ ,3—2L,—2L'e")
So,

9
Viars = (27?)_3/2exp[ika: — ZT + ikt + L'e™]x

2LL — inM;
2L

62113(—2L/)1_2L€T(1_2L) 1F1(

[élus 1F1( ,2L, —2.[/67—) + (336)

9L — 2LL — inM,
— MPe 9 9p,—21/¢T)

(3.33)

(3.35)



and

i(ho o
Vrarrs = (lc? )(27r) 3 2cxplik.x — T + ikr + L'e™] x

(3w, X (1) + E40,Y (7)) (3.37)

where X (7) and Y (7) are defined in (3.35)

On normalizing the above solutions

e L'/,
k2m | Fy(RRL=inMe o, 21)) |

2L/

) e~ L' \/ML(—2L") =D
© T Vam | R (EEEERME 9 oL o)) |
. e VYN,
“ T Var [ X(0)|
. ke
V2| Y(0) |

€1 =

3C. a(t) =e*
From (3.3)
—a7 =e ", a(t) = —(z7)7! (3.38)
s0, (3.7) reduces to
1 nM, d 1 nM,
2 C\2 c o
//+[k + 2T2(m5+ o ) —Za E(m5+ )}]f[—() (3 39)
Case 1 When ms >> ”x—]\;[c (3.39) is approximated to
ry ety s T (3.40)
x
having exact solution
1
Jr = eapltikT + S(1 £ iVAa = D)in7][Dy 15(%, 29, —2¢'7)
+ Dy(=2g/ )V F (L4 5 — 29,2 - 29,~29'7) (3.41)

where

1
a=ms(ms +iv)r > | g= 5[1 + Vida? — 1]



and ¢’ = Fik.
Connecting (3.6) and(3.41)

(k. 1
fir = Z(kf) caplikr + 5(1 % iv4a® = 1)in7)[DsXi(r) + DaYi(r) (3.42)
where
1+ +v4da? -1 i nM, ag’ a
Xi(r)={—F—— +ik— —(—¢ — 2V Fi(3,29, 29
(1) ={ o ik — —(—— +ms) 21! 1(5,29,-29'7)
and
_ (_ o/ \EiVia®—1 1+ivide® -1 _ & nM, -1
Yi(r) = (—24'7) { 5 + 1k xT( o +ms) + T X
a (24 a—4g) 44 a—4g
Fi(1+=—29,2—-2g,—2¢'7) — ~—— ¢ |Fi(———2,3 29, —2¢
(145 —29.2 - 29, —29'7) 20— g) (53 -29,-2¢'7)]

So,

. 1 1
Y. = (2m) 732k n) (- ) egp[tikT + 5(1 +iv4da? — 1)lnTt]x
xT

a
[Dl Us 1F1<§7 2g7 _2gl7—)+

. 2 —4
Dyiiy(—2¢/7)FVia* 1 15(%, 2 — 29, —2¢'7)] (3.43)

and

; 1 1
Viarrs = (27r)’3/261(k‘x)(—x—)’g/‘le:cp[iikr + 5(1 +iv4a? — 1)InT]x
T
i(k.o .
(k2 ) [D3USX1 (7_) + D4us}/1(7_)] (344)

Normalization of these solutions yields

/

)

2+a—4qg 2¢

Dy = /M e ™P2v7 | \R(———.2-29. =) [I”"
| 1
Dy = /M.x e™"™?2/7 | Xl(—;) I

. 2
Dy =+/M.x eﬂﬂ/z[zﬁk | 1F1(%7297 J

T

and
‘ 1
Dy = ky/Mx e ™22/ | Yi(==) |7
i

Case IT When ms 2 nM.x7, (3.39) approximates to

2 f] +la+ pr+473fr =0 (3.45)



where a=mix"2 | [B=m2(2—iz)(nM,)™!
and v = k* + m3(ms — iz)(nM,) >
(3.45)yields the solution

2j5'+ B8 . o )

1 -
fr = expl|i/T + 5(1 + iv4a — 1)int] X [D1 1 Fi( 57 .29, —25'T
J

(23" —2jj'+ 5
2;'

where j = $[1 +iv4a — 1] and j' = +i,/7
Connecting (3.6) and (3.46)

+ Dy(=2§'7)"% | Fy L2 — 25, —25'7)] (3.46)

i(k.o)

fir = " enpliin A 4 (1 iVAG— T)inr] x [DsXol(r) + Dia(r)]  (3.47)

where

1 ) . i nM,
Xo(1) = {E(l Fivida—1)F i/ — E( o +ms)}
<2jj/+5 275"+ B) 277"+ 5 +25
27’ 29 27

1F1 ,2j,—2j/’7'> — ( 1F1( ,1+2j,—2j/7')

and
1 i nM,
Yo(r) = [— (1 Fivda — 1 /Y — —
(1) = (L F VA= 1) F iy — ("
9il _9jil &
Yl
J
2j' =255’ + 8
29/
1295 (27 — 255" + B)
2(1—-j)

+ ms)](—25'7) 7 x
,2 — 24, —25'7) — 24(1 — 2j)(—2j7) "%

1F1( 72—2j7—2j/7')

45" = 25"+ 8
27’

— (—=2j7) 11 ( ,3—2j,—25'T)

So

; 1
s = (2m) 32 "D ep ki AT + 5L+ ivia —T)in]x

2jj'+ 5

(D1 ug 1 Fi( 2j'

) 2]7 _2J/7)+

(2j'—2jj'+ﬁ

Dyitg(—257)" "% 1 Fy ¥

,2 — 27, —2j’7)] (3.48)
and

5 (k. 1
Viarrs = (27r)3/261k'xz(k—;)exp[j:i\/f_y7' + 5(1 +ivaa — 1)InT] X

[Ds us X5 () + Dy uYo(T)] (3.49)



On normalization of these solutions

~ s ar
Dy = v/Mez P2k | (R 2, ) )

- . 1
Dy =/ M.z e"™?2/7 | Xz(—;) Ins
and

by

xz

Dy = /M e”™2k[2y/7 | Yo(

4. Current for ¢}

The current is defined as

St =g (i=0,1,2,3)
which is divergence - free as J; i = 0 . For a massive field

Ji" = gy = ﬁlﬁf (1057 = v 0y — il T3, 7)oy
where M = ms — a(t)nM,
which can be re-expressed as
T = S (o), A~ g Oy vy
- ﬁ@f(h% A+ A" s DY
- ﬁlﬁhﬁﬁmﬂ]%

where
a(t)n

ke

Uy 05 Ul = PROs — Yiosuy, M =ms —
(here fi, v, 5\, ... run from 0 to 3)
In the M* spacetime

Pa=0, hhAisl=F%F(—aa?)  (i=1,2,3)

. 7 i ii 7 i i
OZ:%[ Oa ]7 012_2[,}/,7]]

~0 .0
=0
h/ et 70} y 0 %2,
Lo=0, I'1=d7"3", Ty=a7"7" and s =a7*3

0

(4.1)

(4.2)



So

1 - . SN
T3 = S (R U = Do (4.3)
and
Jf"— o(Ro™ W) + =0y (Fho? v+
7
2&( AT + Ma w4 (4.4)

In terms of polarization density and magnetization density JJ° and J} is written as

JZO = Vﬁf + pZ(convective)

and
J — 8,5]52 +V X MZ + .]Z(ccmvective) + 7(a>ﬁ2 (45)
When ms >> %% M ~ms , so Pj" = 2m5a¢ AR
and
n __ _ijk ? Tnix n
M" = €Y (4m5a2)¢4 V5, )t
n i 7n(—> n
Pi(convective) = _4_77”L5w4 Do ¢4
and
i _n<—i> n
J4(com)ectwe) = _Ww4 d w4 (46)
But when m; 2 #*, one has
Pin — nxizo
4 2(m Rc) 77Z)4 ¢4
M — ijk n
4 € [4(m _ R_C> ]w4 [’Y;,’}%]?ﬁ
n ¢ _n<—> n
P4(convective) = _[M]w4 aO 7?4
and
an iR _
Jin n z o . n i n A7
4(convective) — Qa(m5R —an ) ¢4 ( 5R — an)a4 ¢4 1/}4 ( )

Thus, it is found that polarization vector, magnetization density (which is a pseudo-

vector),p@mecme) and Jiconvective)[9] , depend on time . It is interesting to note that

an

R
an IMIER0,,M
Tatma iy VIV VUL -

when ms 2 (which yields realistic fermions ) J(convective) cONtains an extra term
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