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Abstract. Dirac equation is discussed in 5-dimensional space time having topol-
ogy M4 × T 1, where M4 and T 1 both are curved. It is shown that 4-dimensional
fermion can be obtained from 5-dimensional fermion, as a result of compactification
of extra dimension. It is found that the realistic 4-dimensional fermions are possible
in higher modes earlier than those in lower modes during the course of expansion of
4-dimensional universe. 4-dimensional Dirac equation, obtained from 5-dimensional
Dirac equation after compactification, is solved for an arbitrary modes for super-
heavy as well as light (realistic) fermions. Time-dependence of polarization vector
and magnetization density, as a result of Gordon-decomposition of the current vector
for 4-dimensional spin-1

2 field (with arbitrary mode), is exhibited.
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1 Introduction

In the context of unification of gravity with gauge interactions, Kaluza-Klein type theories

[1-4] are good candidates. In these theories, the spacetime is supposed to have the topology

M4 × T n−4 (n is the total number of dimension), where M4 denotes the usual para-

compact four-dim. spacetime (flat or curved) and T n−4 is the extra (n-4)-dim.compact

manifold.The observed universe is 4-dimensional , hence it is supposed that the extra-

manifold due to gauge interactions might be compact and very small in size so that

these are not observed today. Physically, it is very much appealing to think that T n−4

manifold is curved due to its compact nature[5]. The action for higher-dim. gravity is

s =
∫

dnx
√−gR where g = det gµν (gµν is the metric tensor for the n-dimensional

space time) and R is the Ricci curvature scalar for M4 × T n−4. n-dimensional Einstein’s

equations derived from the above action yields that T n−4 can be curved (1) when M4 is

also curved or (2) action contains some lagrangian for matter field also so that energy-

momentum tensor is non-vanishing[6]. This discussion shows that if M4 is curved, the
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extra-dim. manifold will definitely be curved. Motivated by this idea, the line-element

for 5-dim. space time is taken as

ds2 = dt2 − a2(t)[dx2
1 + dx2

2 + dx2
3]− A2(t)dy2 (1.1)

Using the metric tensor from (1.1) in the Einstein’s field equations[7] derived from the

above action, it is interesting to see that

aA = 1 (1.2)

Thus (1.1) deserves a model in which one spatial dimension shrinks with time while

the other three expand. Earlier, Chodos and Detweiler[8] have considered this type of

spacetime.

In 4-dim. spacetime, Dirac equation has been solved and discussed by many authors[9].

The aim of present paper is to discuss and solve Dirac equation for spin-1
2

field Ψ5 in

5-dim. spacetime (1.1) for different time-function a(t).

The degrees of freedom for a spin-1
2

field Ψ in n dimensions[10] is given by 2α where

α = n
2

(if n is even) and α = (n−1)
2

(if n is odd). The dimension of the space-time, here,

is 5, so degrees of freedom for Ψ is 4. The flat space Dirac matrices in 5-dim. will be

γ̃0, γ̃1, γ̃2, γ̃3, γ̃5 where γ̃5 = γ̃0γ̃1γ̃2γ̃3 (other γ− matrices are the usual standard matrices

for 4-dim.)[11]. Now for Weyl’s transformation a matrix γ̄ = γ̃0γ̃1γ̃2γ̃3γ̃5 = 1 can be

defined. So operation of chiral projection operators 1
2
(1± γ̄) on the Dirac equation

iγ̃µ∂µΨ5 + m5Ψ5 = 0 (1.3)

shows that chiral fermions are not possible in 5-dim.[10]. Hence m5, the mass of Ψ5 is not

zero. This is true for fermions in curved spacetime also which obey the Dirac equation

iγµDµΨ5 + m5Ψ5 = 0 (1.4)

where γµ are curved space Dirac-matrices and Dµ denotes covariant derivatives in curved

spacetime (1.1).

The paper is planned as follows: Section 2 contains 5-dim. Dirac Equation in the space-

time (1.1) and a brief discussion on the effective mass of 4-dim. fermion produced by

5-dim. fermion is given. Section 3 contains some explicit examples of solutions for 5-dim.



Dirac Equation. In the last section, Gordon-decomposition[12] of 4-dim. Ψ4, obtained

after compactification of 5.dim spacetime, has been discussed.

~ = c = 1 is used as fundamental unit where ~ and c carry their usual meaning. Here

indices a, µ · · · = 0, 1, 2, 3, 5.

2. Dirac Equation for Ψ5

The vierbein hµ
a on the manifold M4 × T 1(T 1 is circle) is defined as

hµ
ah

ν
bgµν = ηab (2.1)

where (µ, ν) are curved space indices, (a,b) are flat space indices , gµν is the curved space

metric tensor and ηab is the Minkowskian metric. So, in the space time (1.1)

h0
0 = 1, h1

1 = h2
2 = h3

3 = a−1(t), h5
5 = A−1(t) = a(t) (2.2)

The operator Dµ in (1.4) is defined as [13]

Dµ = ∂µ − Γµ (2.3)

where Γµ is the spin coefficient or Ricci rotation coefficient given as

Γµ =
1

4

(
∂µh

ρ
a +

{
ρ

σµ

}
hσ

a

)
hν

bgρν γ̄
aγ̄b (2.4)

where
{

ρ
σµ

}
is the affine-connection.

γ̃a are flat space Dirac matrices satisfying the anti-commutation rule

{γ̃a, γ̃b} = 2ηab. (2.5)

Curved space Dirac matrices γµ satisfy

{γµ, γν} = 2gµν (2.6)

γµ is related to γ̃a through vierbein as

γµ = hµ
a γ̃

a. (2.7)

So, Dirac equation in (1.1) is written as

i

[
γ̃0(∂o +

9

4

ȧ

a
) + a−1(γ̄1∂1 + γ̄2∂2 + γ̄3∂3) + aγ̄5∂5

]
Ψ5 −m5Ψ5 = 0, (ȧ = ∂0a) (2.8)



The internal space is compactified, so

Ψ5(x, y) =
∞∑

n=−∞
φn(y)Ψ

(n)
4 (x) (2.9)

where Ψ
(n)
4 (x) are 4-dim. spinor fields in nth mode and φn(y) are harmonic functions

which obey the equation[4]

iγ̃5∂5φn(y) ψ
(n)
4 =

n

R
φn(y) ψ

(n)
4 (2.10)

R is the compactification scale. φn is normalised as

φnφm = δnm.

Connecting (2.8) and (2.10)

[
i{γ̃0(∂0 +

9ȧ

4a
) + a−1(γ̃1∂1 + γ̃2∂2 + γ̄3∂3)} − (m5 − an

R
)

]
Ψn

4 = 0 (2.11)

(2.11) shows that effective mass for Ψn
4 is

M = m5 − an

R
= m5 − anMc (2.12)

where R−1 = Mc is the compactification mass.

The Extra dimension y which is assumed to be a circle of radius R, has the range

0 ≤ y ≤ 2πR (2.13)

The distance around the extra dimension is given by [13]

δ5 =

∫ 2πR

o

dy
√−g55 =

2πR

a(t)
(2.14)

which is time-dependent and decreases as a(t) increases.

At t = tc (compactification time), it is assumed that

2πR

a(tc)
∼ LP (PlankLength) (2.15)

For realistic fermions, M ' 0. So, as a particular time t = tP

m5 ' na(tp)

R
(2.16)



Connecting (2.15) and (2.16)

m5 ' 2πna(tp)MP

a(tc)
(2.17)

where MP is the Planck mass and is equal to (LP )−1

Hence from (2.17)

n ' m5a(tc)

2πa(tp)MP

≤ m5

2πMP

(2.18)

as a(tp) & a(tc) in the expanding 4-dim. universe. So (2.18) puts a constraint on modes

n. Also (2.18) states that if one gets realistic 4-dim. fermion from 5-dim fermion as a

result of compactification of the extra dimension, number of physically allowed modes

depends on m5. For example, n = 0, 1 if m5 = 2πMp; n = 0, 1, 2 if m5 = 4πMp ;

n = 0, 1, 2, .....(r − 1), r if m5 = 2πrMp where r is positive integer. From (2.16)

a(tp) w m5R

n
(2.19)

So, one gets

a(tp) w 2πrMpR

n
(2.20)

where n = 0, 1, 2, ...(r − 1), r. Now it is interesting to see that if a(tp1) = a1 when n = r

and a(tp2) = a2 when n = r−1, a2 > a1. It means that realistic fermions may be obtained

in higher modes earlier than those in lower modes during the course of expansion of the

obsevable 4-dim. universe, as tp1 < tp2.

3. Solution of Dirac Equation

Substituting Ψ defined as

ψ
(n)
4 = a−

9
4 Ψ (3.1)

(2.11) is re-written as

[
(γ̃0∂τ + γ̃1∂1 + γ̃2∂2 + γ̃3∂3) + ia(m5 − anMc)

]
Ψ = 0 (3.2)

with

τ =

∫ t dt′

a(t′)
(3.3)

Writing

Ψ =
∑

k

Ψk = (2π)−
3
2 exp(ikx)

[
fI(~k, τ)

fII(~k, τ)

]
(3.4)



One gets two coupled equations

[∂τ + ia(m5 − anMc)]fI + i(k.σ)fII = 0 (3.5a)

[∂τ − ia(m5 − anMc)]fII + i(k.σ)fI = 0 (3.5b)

where σ1, σ2, σ3 are pauli matrices.

From (3.5a)

fII = ik−2(k.σ)[∂τ + ia(m5 − anMc)]fI (3.6)

Connecting (3.5b)and (3.6)

f ′′I + [k2 + a2(m5 − anMc)
2 + i∂τ{a(m5 − anMc)}]fI = 0 (3.7)

where prime (/) denotes differentiation with respect to τ .

The norm for ψ5 is defined at τ=constant hypersurface as

(ψ5ks, ψ5k′s′) =

∫

τ

√
|g5|d3xdy ψ̄5ksγ

0ψ5k′s′ (3.8)

where g5 is the determinant of 5-dim. metric tensor.

Connecting (2.9) and (3.8)

(ψ5ks, ψ5k′s′) =

∫

τ

√
|g5|d3xdy

∑
n

ψ̄n
4ks(x)φ̄n(y)γ0

∑

n′
φn′(y)ψn′

4k′s′(x) (3.9)

which yields, on integration over extra dimension y having the range 0 ≤ y ≤ 2πR

(ψ5ks, ψ5k′s′) = 2πR

∫

τ

√
|g5|d3x

∑
n

ψ̄n
4ksγ

0ψn
4k′s′ (3.10)

The normalization constants are determined using the prescription that in the flat space

limit

(ψ5ks, ψ5k′s′) −→ δss′δ
3(k − k′) (3.11)

or,

2πR

∫

τ

√
|g5|d3x

∑
n

ψ̄n
4ksγ

0ψn
4k′s′ −→ δss′δ

3(k − k′) (3.12)

Now, some explicit examples of solutions of Dirac equation for ψn
4 utilising the above

mentioned procedure of normalization are given as under for different a(t).

3(A) a(t) ' t
1
2



From (3.3)

τ = 2t
1
2 and a(t) =

1

2
τ, (3.13)

so (3.7) is written as

f ′′I +

[
k2 +

τ 2

4

(
m5 − nMcτ

2

)2

+
i

2
∂τ

{
τ(m5 − nMcτ

2
)
}
]

fI = 0 (3.14)

(3.14) can be approximated in two different ways:

Case I: When m5 >> 1
2
nMcτ (3.14) is approximated as

f ′′I +

[
k2 +

im5

2
− inMcτ

4
+

m2
5τ

2

4

]
fI = 0 (3.15)

which has exact solution

fI = exp

[
±nMc

4m5

τ ∓ im5

4
τ 2

]
[N1 1F1(a,

1

2
, X)+

N2
ei(6r+1)π

4√
2m5

(
nMc

2m5

− im5τ) 1F1(
1

2
+ a,

3

2
, X)] (3.16)

where

a = ± i

m5

(
n2M2

c

32m4
5

+
k2

2m2
5

)
,

X = ± i

2m5

(
nMc

2m5

− im5τ

)2

,

1F1(a, c,X) is confluent hypergeometric function and r = 0, 1, 2, . . . .

Connecting (3.6)and(3.16)

fII =
i(k.σ)

k2
exp

[
±nMc

4m5

τ ∓ im5

4
τ 2

]
×

[N3{(±nMc

4m5

∓ im5

2
τ +

im5

2
τ − inτ 2Mc

4
) 1F1(a,

1

2
, X) + 2aX ′

1F1(1 + a,
3

2
, X)}+

N4e
i(6r+1)π

4 {(nMc

2m5

− im5τ)(±nMc

4m5

∓ im5

2
τ +

im5

2
τ − inτ 2Mc

4
) 1F1(

1

2
+ a,

3

2
, X)−

i

√
m5

2
1F1(

1

2
+ a,

3

2
, X) +

(1 + 2a)

3
X ′ (

nMc

2m5
− im5τ)√
2m5

1F1(
3

2
+ a,

5

2
, X)}] (3.17)

Corresponding to fI and fII , ψn
k4Is and ψn

k4IIs are written as

ψn
k4Is = (2π)−

3
2 (

τ

2
)−

9
4 exp[ikx± nMc

4m5

τ ∓ im5τ
2

4
]× [N1 us 1F1(a,

1

2
, X)+

N2ûse
i(6r+1)π/4

(nMc

2m5
− im5τ)√
2m5

1F1(
1

2
+ a,

3

2
, X)] (3.18)



ψn
k4IIs = (2π)−

3
2 (

τ

2
)−

9
4
i(k.σ)

k2
exp[ik.x± nMc

4m5

τ ∓ im5τ
2

4
]×

[N3us{(±nMc

4m5

∓ im5

2
τ +

im5

2
τ − inτ 2Mc

4
) 1F1(a,

1

2
, X) + 2aX ′

1F1(1 + a,
3

2
, X)}+

N4ûse
i(6r+1)π/4{(nMc

2m5
− im5τ)√
2m5

(±nMc

4m5

∓ im5

2
τ +

im5

2
τ − inτ 2Mc

4
)1F1(

1

2
+ a,

3

2
, X)−

i

√
m5

2
1F1(

1

2
+ a,

3

2
, X) +

(1 + 2a)

3
X ′ (

nMc

2m5
− im5τ)√
2m5

1F1(
3

2
+ a,

5

2
, X)}] (3.19)

where us and ûs are column matrices (with spin quantum number s=±1) given as

û1 =




1
0
0
0


 , û−1 =




0
1
0
0




(3.20)

u1 =




0
0
−k3

−k1 − ik2


 and u−1 =




0
0

−k1 + ik2

k3




Normalization constants N1,N2,N3 and N4 are determined through (3.12) as

N1 =

√
Mcexp(∓nMc/2m5)

2k
√

π | 1F1(a, 1
2
, X) |

N2 =

√
Mcexp(∓nMc/2m5)

2
√

π
√

n2M2
c +16m2

5

8m3
5

| 1F1(a, 1
2

+ a, 3
2
, X) |

N3 =

√
Mcexp (∓nMc/2m5)

2
√

π s1

N4 =

√
Mcexp (∓nMc/2m5)

2k
√

π s2

where

X = ±
(

nMc

2m5

− 2im5

)

S1 =| (±nMc

4m5

∓ im5 + im5 − inMc)1F1(a,
1

2
, X)± 2a(

nMc

2m5

− im5) 1F1(1 + a,
3

2
, X) |



and

S2 =| (nMc

2m5
− 2im5)√
2m5

(±nMc

4m5

∓ im5 + im5 − inMc)1F1(
1

2
+ a,

3

2
, X)−

i

√
m5

2
1F1(

1

2
+ a,

3

2
, X) +

(1 + 2a)

3

(nMc

2m5
− 2im5)√
2m5

1F1(
3

2
+ a,

5

2
, X) |

Case II When m5 & nτ
2

Mc, a new variable τ ′ is defined as τ ′ = m5 − nMc

2
τ . Now (3.14)

is written as

d2fI

dτ ′2
+

4

n2M2
c

[k2 +
1

n2M2
c

(m5 − τ ′)2τ ′2 − i

2

d

dτ ′
{τ ′(m5 − τ ′)}]fI = 0

Since m5 >> τ ′, so one gets

d2fI

dτ ′2
+ [

4

n2M2
c

(k2 − im5

2
) +

4m2
5

n4M4
c

τ ′2]fI = 0 (3.21)

having the exact solution

fI = exp(−z

2
)[Ñ1 1F1(k,

1

2
, z) + Ñ2z

1/2
1F1(k +

1

2
,
3

2
, z)] (3.22)

where

z =
im5

2
(τ − 2m5

nMc

)2

and

4k = 1 +
2i

m5

(k2 − im5

2
)

Connecting (3.6) and (3.22)

fII =
i(k.σ)

k2
exp(−z

2
)[Ñ3{(1

2
z′ − inMcτ

2

4
+

im5τ

2
) 1F1(k,

1

2
, z)+

2kz′ 1F1(k + 1,
3

2
, z)}+ Ñ4{z1/2(

1

2
z′ − inMc

4
τ 2 +

im5τ

2
+

z′

2z
) 1F1(k +

1

2
,
3

2
, z)

+
(2k + 1)

3
z′z1/2

1F1(k +
3

2
,
5

2
, z)}] (3.23)

Corresponding to fI and fII , ψn
k4Is and ψn

k4IIs as are written as

ψn
k4Is = (2π)−3/2exp[ik.x](

τ

2
)−9/4[Ñ1us 1F1(k,

1

2
, z) + Ñ2ûsz

1/2
1F1(k +

1

2
,
3

2
, z)] (3.24)

ψn
k4IIs = (2π)−3/2exp[ik.x](

τ

2
)−9/4e−z/2 i(k.σ)

k2
×

[Ñ3us{(1
2
z′ − inMcτ

2

4
+

inM5τ

2
) 1F1(k,

1

2
, z) + 2kz′ 1F1(k + 1,

3

2
, z)}

+ Ñ4ûs{z1/2(
1

2
z′ − inMcτ

2

4
+

inM5τ

2
+

z′z−1

2
) 1F1(k +

1

2
,
3

2
, z)+

(2k + 1)

3
z′z

1
2 1F1(k +

3

2
,
5

2
, z)}] (3.25)



On normalizing these solutions

Ñ1 =
√

Mc [2k
√

π | 1F1(k,
1

2
,

2im5

n2M2
c

(nMc −m5)
2) | ]−1

Ñ2 = n
√

Mc [2
√

π(nMc −m5)
√

2m5 | 1F1(k +
1

2
,
3

2
,

2im5

n2M2
c

(nMc −m5)
2) | ]−1

Ñ3 =
n
√

Mc

2
√

π
(s̃1)

−1

Ñ4 =
kn
√

Mc

2
√

n
(s̃2)

−1

where

S̃1 = | {im5(nMc −m5)− in2M2
c + inm5Mc}1F1(k,

1

2
,

2im5

n2M2
c

(nMc −m5)
2

+ 4ikm5(nMc −m5)1F1(k + 1,
3

2
,

2im5

n2M2
c

(nMc −m5)
2) |

and

(S̃2)
2

= m5(1− m5

nMc

) | { im5(nMc −m5)

nMc

− inMc + im5 +
nMc

2(nMc −m5

}×

1F1(k +
1

2
,
3

2
,

2im5

n2M2
c

(nMc −m5)
2)+

(2k + 1)

3

2im5(nMc −m5)

nMc
1F1(k +

3

2
,
5

2
,

2im5

n2M2
c

(nMc −m5)
2) |

3B. a(t) ' t

From (3.3), in this case

τ = lnt, a(t) = exp(τ) (3.26)

Connecting (3.7) and (3.26)

f ′′I + [k2 + e2τ (m5 − nMce
τ )2 + ieτ (m5 − nMce

τ )− inMce
2τ ]fI = 0 (3.27)

Case 1 When m5 >> nMc eτ , (3.27) is approximated as

f ′′I + [k2 + im5e
τ + (m2

5 − inMc)e
2τ ]fI = 0 (3.28)

which yields the exact solutions

fI(τ) = exp[∓ikτ + (inMc −m2
5)e

τ ]× [c1 1F1(
2ll′ + im5

2l′
, 2l,− eτ

2l′
)+

c2(− eτ

2l′
)1−2l

1F1(
2l′ − 2ll′ + im5

2l′
, 2− 2l,− eτ

2l′
)] (3.29)



where

l =
1

2
[1± i2k], l′ = inMc −m2

5

Connecting (3.6) and (3.29)

fII(τ) =
i(k.σ)

k2
exp[∓ikτ + (inMc −m2

5)e
τ ][c3X(τ) + c4Y (τ)] (3.30)

where

X(τ) = {∓ik + inMc −m2
5 − ieτ (nMce

τ −m5)} 1F1(
2ll′ + im5

2l′
, 2l,− eτ

2l′
)

− (2ll′ + im5)

8ll′2 1F1(
2ll′ + im5 + 2l′

2l′
, 1 + 2l,− eτ

2l′
)

and

Y (τ) = (− eτ

2l′
)1−2l[{1− 2l ∓ ik + inMc −m2

5 − ieτ (nMce
τ −m5)}×

1F1(
2l′ − 2ll′ + im5

2l′
, 2− 2l,− eτ

2l′
)

− (2l′ − 2ll′ + im5)

8l′2(1− l)
1F1(

4l′ − 2ll′ + im5

2l′
, 3− 2l,− eτ

2l′
)]

So,

ψn
k4Is = (2π)−3/2exp[ik.x− 9τ

4
∓ ikτ + (inMc −m2

5)e
τ ]×

[c1us 1F1(
2ll′ + im5

2l′
, 2l,− eτ

2l′
)

+ c2ûs(− eτ

2l′
)1−2l

1F1(
2l′ − 2ll′ + im5

2l′
, 2− 2l,− eτ

2l′
)] (3.31)

and

ψn
k4IIs =

i(k.σ)

k2
(2π)−3/2exp[ik.x− 9τ

4
∓ ikτ + (inMc −m2

5)e
τ ]×

[c3usX(τ) + c4ûsY (τ)] (3.32)

On normalising these solutions

c1 =

√
Mcexp(m2

5)

2
√

πk | 1F1(
2ll′+im5

2l′ , 2l,− 1
2l′ ) |

c2 =

√
Mc(2l

′)1−2lexp(m2
5)

2
√

π | 1F1(
2l′−2ll′+im5

2l′ , 2− 2l,− 1
2l′ ) |

c3 =

√
Mcexp(m2

5)

2
√

π | X(0) |



c4 =

√
Mcexp(m2

5)

2
√

π | Y (0) |
where X(τ) and Y (τ) are defined as in (3.30)

Case II. When m5 & nMc eτ , (3.27) is approximated a

f ′′I + [k2 − inMce
2τ ]fI = 0 (3.33)

which integrates to

fI = exp(±ikτ + l′eτ )[c̃1 1F1(
2ll′ − inMc

2l′
, 2l,−2l′eτ )+

c̃2(−2l′)1−2leτ(1−2l)
1F1(

2l′ − 2ll′ − inMc

2l′
, 2− 2l,−2l′eτ )] (3.34)

where L = 1
2
[1± 2ik] and L′ =

√
nMc × exp[(2r + 1)π

4
] with r = 0, 1, 2, . . .

(3.6) and (3.34) yield

fII =
i(k.σ)

k2
exp(±ikτ + L′eτ )[c̃3X̃(τ) c̃4Ỹ (τ)] (3.35)

where

X̃(τ) = {±ikτ + L′eτ + ieτ (m5 − nMce
τ )}1F1(

2LL′ − inMc

2L′
, 2L,−2L′eτ )

− (2LL′ − inMc)

2L
eτ

1F1(
2L′ + 2LL′ − inMc

2L′
, 1 + 2L,−2L′eτ )

and

Ỹ (τ) = {±ikτ + L′eτ + (−2L′)1−2L(2− 2L)eτ(1−2l) + ieτ (m5 − inMce
τ )}×

1F1(
2L′ − 2LL′ − inMc

2L′
, 2− 2L,−2L′eτ )+

(−2L′)1−2L (2L′ − 2LL′ − inMc)

2(L− 1)
e2(1−L)τ×

1F1(
4L′ − 2LL′ − inMc

2L′
, 3− 2L,−2L′eτ )

So,

ψn
k4Is = (2π)−3/2exp[ikx− 9τ

4
± ikτ + L′eτ ]×

[c̃1us 1F1(
2LL′ − inM5

2L′
, 2L,−2L′eτ ) + (3.36)

c̃2ûs(−2L′)1−2Leτ(1−2L)
1F1(

2L′ − 2LL′ − inMc

2L′
, 2− 2L,−2L′eτ )]



and

ψn
k4IIs =

i(k.σ)

k2
(2π)−3/2exp[ik.x− 9τ

4
± ikτ + L′eτ ]×

[c̃3usX̃(τ) + c̃4ûsỸ (τ)] (3.37)

where X̃(τ) and Ỹ (τ) are defined in (3.35)

On normalizing the above solutions

c̃1 =
e−L′√Mc

k
√

2π | 1F1(
2LL′−inMc

2L′ , 2L,−2L′) |

c̃2 =
e−L′√Mc(−2L′)(L−1)

√
2π | 1F1(

2L′−2LL′−inMc

2L′ , 2− 2L,−2L′) |

c̃3 =
e−L′√Mc√
2π | X̃(0) |

c̃4 =
ke−L′√Mc√
2π | Ỹ (0) |

3C. a(t) = ext

From (3.3)

−xτ = e−xt, a(τ) = −(xτ)−1 (3.38)

so, (3.7) reduces to

f ′′I + [k2 +
1

x2τ 2
(m5 +

nMc

xτ
)2 − i

d

dτ
{ 1

xτ
(m5 +

nMc

xτ
)}]fI = 0 (3.39)

Case 1 When m5 >> nMc

xτ
(3.39) is approximated to

τ 2f ′′I + [k2τ 2 +
m5(m5 + ix)

x2
]fI = 0 (3.40)

having exact solution

fI = exp[±ikτ +
1

2
(1± i

√
4a2 − 1)lnτ ][D1 1F1(

a

2
, 2g,−2g′τ)

+ D2(−2g′τ)±i
√

4a2−1
1F1(1 +

a

2
− 2g, 2− 2g,−2g′τ)] (3.41)

where

a = m5(m5 + ix)x−2 , g =
1

2
[1±

√
4a2 − 1]



and g′ = ∓ik.

Connecting (3.6) and(3.41)

fII =
i(k.σ)

k2
exp[±ikτ +

1

2
(1± i

√
4a2 − 1)lnτ ][D3X1(τ) + D4Y1(τ)] (3.42)

where

X1(τ) = {1±√4a2 − 1

2τ
± ik − i

xτ
(
nMc

xτ
+ m5)− ag′

2g
} 1F1(

a

2
, 2g,−2g′τ)

and

Y1(τ) = (−2g′τ)±i
√

4a2−1[{1± i
√

4a2 − 1

2τ
± ik − i

xτ
(
nMc

xτ
+ m5) + τ−1}×

1F1(1 +
a

2
− 2g, 2− 2g,−2g′τ)− (2 + a− 4g)

2(1− g)
g′ 1F1(

4 + a− 4g

2
, 3− 2g,−2g′τ)]

So,

ψn
k4Is = (2π)−3/2ei(k.x)(− 1

xτ
)−9/4exp[±ikτ +

1

2
(1± i

√
4a2 − 1)lnτ ]×

[D1 us 1F1(
a

2
, 2g,−2g′τ)+

D2ûs(−2g′τ)±i
√

4a2−1
1F1(

2 + a− 4g

2
, 2− 2g,−2g′τ)] (3.43)

and

ψn
k4IIs = (2π)−3/2ei(k.x)(− 1

xτ
)−9/4exp[±ikτ +

1

2
(1± i

√
4a2 − 1)lnτ ]×

i(k.σ)

k2
[D3usX1(τ) + D4ûsY1(τ)] (3.44)

Normalization of these solutions yields

D1 =
√

Mcx e−iπ/2[2
√

π k | 1F1(
a

2
, 2g,

2g′

x
) |]−1

D2 =
√

Mcx e−iπ/2[2
√

π | 1F1(
2 + a− 4g

2
, 2− 2g,

2g′

x
) |]−1

D3 =
√

Mcx e−iπ/2[2
√

π | X1(−1

x
) |]−1

and

D4 = k
√

Mcx e−iπ/2[2
√

π | Y1(−1

x
) |]−1

Case II When m5 & nMcxτ , (3.39) approximates to

τ 2f ′′I + [α + βτ + γτ 2]fI = 0 (3.45)



where α = m2
5x
−2 , β = m2

5(2− ix)(nMc)
−1

and γ = k2 + m3
5(m5 − ix)(nMc)

−2

(3.45)yields the solution

fI = exp[±i
√

γτ +
1

2
(1± i

√
4α− 1)lnτ ]× [D̃1 1F1(

2jj′ + β

2j′
, 2j,−2j′τ)

+ D̃2(−2j′τ)1−2j
1F1(

2j′ − 2jj′ + β

2j′
, 2− 2j,−2j′τ)] (3.46)

where j = 1
2
[1± i

√
4α− 1] and j′ = ±i

√
γ

Connecting (3.6) and (3.46)

fII =
i(k.σ)

k2
exp[±i

√
γτ +

1

2
(1± i

√
4α− 1)lnτ ]× [D̃3X2(τ) + D̃4Y2(τ)] (3.47)

where

X2(τ) = { 1

2τ
(1∓ i

√
4α− 1)∓ i

√
γ − i

xτ
(
nMc

xτ
+ m5)}

1F1(
2jj′ + β

2j′
, 2j,−2j′τ)− (2jj′ + β)

2j
1F1(

2jj′ + β + 2j′

2j′
, 1 + 2j,−2j′τ)

and

Y2(τ) = [
1

2τ
(1∓ i

√
4α− 1)∓ i

√
γ − i

xτ
(
nMc

xτ
+ m5)](−2j′τ)1−2j×

1F1(
2j′ − 2jj′ + β

2j′
, 2− 2j,−2j′τ)− 2j(1− 2j)(−2jτ)−2j

1F1(
2j′ − 2jj′ + β

2j′
, 2− 2j,−2j′τ)

− (−2jτ)1−2j (2j − 2jj′ + β)

2(1− j)
1F1(

4j′ − 2jj′ + β

2j′
, 3− 2j,−2j′τ)

So

ψn
k4Is = (2π)−3/2ei(k.x)exp[±i

√
γτ +

1

2
(1± i

√
4α− 1)lnτ ]×

[D̃1 us 1F1(
2jj′ + β

2j′
, 2j,−2j′τ)+

D̃2ûs(−2jτ)1−2j
1F1(

2j′ − 2jj′ + β

2j′
, 2− 2j,−2j′τ)] (3.48)

and

ψn
k4IIs = (2π)−3/2eik.x i(k.σ)

k2
exp[±i

√
γτ +

1

2
(1± i

√
4α− 1)lnτ ]×

[D̃3 usX2(τ) + D̃4 usY2(τ)] (3.49)



On normalization of these solutions

D̃1 =
√

Mcx e−iπ/2[2k
√

π | 1F1(
2jj′ + β

2j′
, 2j,

2j′

x
) |]−1

D̃2 =
√

Mcx e−iπ/2[2
√

π | (2j
x

)1−2j
1F1(

2j′ − 2jj′ + β

2j′
, 2− 2j,

2j′

x
) |]−1

D̃3 =
√

Mcx e−iπ/2[2
√

π | X2(−1

x
) |]−1

and

D̃4 =
√

Mcx e−iπ/2k[2
√

π | Y2(−1

x
) |]−1

4. Current for ψn
4

The current is defined as

J µ̂n
4 = ψ̄n

4 γµ̂ψn
4 , (µ̂ = 0, 1, 2, 3) (4.1)

which is divergence - free as J µ̂n
4 ; µ̂ = 0 . For a massive field

J µ̂n
4 = ψ̄n

4 γµ̂ψn
4 =

1

2M
ψ̄n

4 (i∂λ̂γ
λ̂γµ̂ − iγµ̂γλ̂∂λ̂ − i[γλ̂Γλ̂, γ

µ̂])ψn
4 (4.2)

where M = m5 − a(t)nMc

which can be re-expressed as

Jnµ̂
4 =

1

2M
(ψ̄n

4 σλ̂µ̂ψn
4 ), λ̂− i

4M
gµ̂λ̂ψ̄n

4

←→
∂λ̂ ψn

4

− i

4M
ψ̄n

4 ([γλ̂,λ̂ , γµ̂] + [γλ̂, γµ̂,λ̂ ])ψn
4

− i

2M
ψ̄n

4 [γλ̂Γλ̂, γ
µ̂]ψn

4

where

ψ̄n
4

←→
∂λ̂ ψn

4 = ψ̄n
4 ∂λ̂ψ

n
4 − ψn

4 ∂λ̂ψ̄
n
4 , M = m5 − a(t)n

kc

(here µ̂, ν̂, λ̂, . . . run from 0 to 3)

In the M4 spacetime

γλ̂,λ̂ = 0, [γλ̂, γi,λ̂ ] = [γ̃0, γ̃i](−ȧā2) (i = 1, 2, 3)

[γ̃0, γ0,0 ] = 0, σ0i =
i

2a
[γ̃0, γ̃i], σij =

i

2a2
[γ̃i, γ̃j]

Γ0 = 0, Γ1 = ȧγ̃1γ̃0, Γ2 = ȧγ̃2γ̃0 and Γ3 = ȧγ̃3γ̃0



So

Jno
4 =

1

2M
(ψ̄n

4 σioψn
4 ),i− i

4M
ψ̄n

4

←→
∂0 ψn

4 (4.3)

and

Jni
4 =

1

2M
∂0(ψ̄

n
4 σoiψn

4 ) +
1

2M
∂j(ψ̄

n
4 σjiψn

4 )+

7i

2M
(

ȧ

a2
)ψ̄n

4 γ̃0γ̃iψn
4 +

i

4Ma2
ψ̄n

4

←→
∂i ψn

4 (4.4)

In terms of polarization density and magnetization density Jno
4 and Jni

4 is written as

Jno
4 = ~∇.~pn

4 + ρn
4(convective)

and

Jni
4 = ∂t~p

n
4 +∇× ~Mn

4 +~jn
4(convective) + 7(

ȧ

a
)~pn

4 (4.5)

When m5 >> an
kc

, M ' m5 , so P in
4 = i

2m5a
ψ̄n

4 γ̃iγ̃oψn
4

and

M in
4 = εijk(

i

4m5a2
)ψ̄n

4 [γ̃j, γ̃k]ψ
n
4

ρn
4(convective) = − i

4m5

ψ̄n
4

←→
∂0 ψn

4

and

J in
4(convective) = − i

4m5a4
ψ̄n

4

←→
∂i ψn

4 (4.6)

But when m5 & an
Rc

, one has

P in
4 =

i

2(m5 − an
Rc

)a
ψ̄n

4 γ̃iγ̃oψn
4

M in
4 = εijk[

i

4(m5 − an
Rc

)a2
]ψ̄n

4 [γ̃j, γ̃k]ψ
n
4

ρn
4(convective) = −[

i

4(m5 − an
Rc

)
]ψ̄n

4

←→
∂0 ψn

4

and

J in
4(convective) =

ian

2a(m5R− an)
ψ̄n

4 γ̃iγ̃oψn
4 −

iR

4(m5R− an)a4
ψ̄n

4

←→
∂i ψn

4 (4.7)

Thus, it is found that polarization vector, magnetization density (which is a pseudo-

vector),ρ
(convective)

and J(convective)[9] , depend on time . It is interesting to note that

when m5 & an
Rc

(which yields realistic fermions ) J(convective) contains an extra term

ian
2a(m5R−an)

ψ̄n
4 γ̃iγ̃oψn

4 .
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