PROPAGATION OF SMALL DISTURBANCES IN A VISCOELASTIC
FELUID CONTAINED BETWEEN TW(Q COAXIAL CYLINDERS

P. N, Srivastava(*)

The propagalion of small djsturbances in a viacoelaatic flujd contained ' L
between two coaxial cylinders due tp the slow angular motjon of its baae ;
is discu.ssed in two cages: (1) .the angular velocity of the disc is given E
by o(f) = wad(f) (Dirac.delta function) ; (11) «w(t) = wosin(nf): The solu-
tions ag {(the relaxation time parameter) tends Lo zero are shown to
correspond to those for an ordinary viascous fluld, It has been observed that [
uniike the ordinary viscous fluid, the velocity of propagation of the dis- !
turbances in case (1) is finite and the disturbance does not reach all

points of the fluid instantaneously,

1. Introduction. Variousauthors such as RoBerTs[¥], Lunpguist [7], BaaTna-
car and Komar]!], KoMar [%*] have discussed the propagation of small disturban-
ces in viscous incompressible . fluids and in inviscid and electrically conducting
floids in the préseuce of a magnetic field. . '

The author elsewhere [.W] has diascussed the propagation of disturbances in an
idealized viscoelastic fluid in two cases:

({) The fluid occupies the space (z >>0), The disturbance is produced by the
slow angular motion of a disc #*4-g*=a°, z=0.

(i) The fluid is contained in an infinite circular cylinder. The disturbance
is produced by the slow angular motion of its base,.

In this paper, when the relaxation phenomenon of the fluid is congidered,
we study the propagation of disturbances in the viscoelastic fluid contained in the
annular space z =0, b= r = q. The disturbance is produced by giving the base of
the annulus a slow angular motion abont the z-axis at time f = which ia repre-
gented for time ¢ >0 by «(f), where

6] T w{f) = o, 8() (8(f) is the Dirac-delta function),

(i) " w{f) = @, 8in naf.

O] The Author is grateful to Dr. J.N. Karur for his advice and guidance throughout
the preparation of the present paper.
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It is interesting to note that as 1 (the relaxation time) tends to zero, the so0-
lutions give the solution of the correspondipg problem for an ordinary viscous fluid
as obtained earlier [*].

2. Formauiation of the problem. The stress- strain rate relation for an idea-
lized incompressible visco-elastic fluid when only the relaxation phenomenon is
taken into consideration is of the form

5 .
1 3ik+l[‘m‘sik—l_ﬂjsik-j—'vinjsjk_ "'-’Ic.jst'j:l = 20 ey,

where 4 is the relaxation time constant and ¢ is the coeflicient of viscosity. The
equations of motion in the absence of éxtraneous forces are ’

0 w;
(2} Q[Tt!+wi,jwf:|=—P)i+sijsjy
¢ being the density of the fluid, and the equation of continuity is

(3) Vi — 0.

We take cylindrical polar coordinates (r,#, z). We assume «,—=«¢,=0 and
2
dé
tisfied identically., We thus get @ (the component of velocity in the #.direction as
v {r, z, ).

=0 (due to symmetry [about z-axis). Then the equation of continuity is sa-

Equation (1) when transformed. to cylindrical polar coordinates, gives. under
these assumptions, the following equations

() srrt 1 (srr) =0,
i 8‘ ; ‘—
(5} spz+ s (sp,)=10
©6) o _‘SMJF,V =0,
: i . 2 ___ é'u
(7) . L5 P + A W (sﬂ'z) =t a; 3
- L b o

(8) sro - A (sr) = (52— T)
Vand

. N a \
@) sy Ao (s.ﬁ-ﬂ.\ —24 sy < g; — f:L.) =0.

Equations (4), (5) and (8} give
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(10) spr=0y s,=0, s,=0.

Then from (2) we get

. 3
(ay =0,
a 2
w =ty
and
0 a
(13) 00 = o)t 5 (oo
From equations (7), {(8) and (18) we get the following equation. for determi-
ning v :
9%y 1 do
14) 5?*&"[3—#+r’$_‘+

where ».= (g/o)} is the kinematic ecoefficient of viscosity.

3. Solution of the problem. The fluid contained in the annular gpace
20, g =< r=a is at rest. At the instant =0 the disturbance i initiated by
giving the base of the anuulus a slow angular motion about the z-axis which at
later times ig defined by o {¢). ’

Therefore we solve equation (14) under the following initial and houndary -

eonditions.

@) Initial conditions

(15) _ ‘ w=0, #<=0,
do
(18 7 =0, t£0,

5} Boundary conditions

17) v=rolt), b=Zr<a, z=0,
{18) v =0, r=oua, 20,
(19) v=10, r==5, z>0,
(20) v=10 when z—+ oo,

Case (i). Let
@) = w, 3(8),

where 3(#) ia the Dirac delta function.
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Multiplying equation (14) by e~ Pt and integrating between the limits ¢=0
to t =0, we get

9o 1 0% T 321_1:]

(21) (AP'“I“P)'E:"’[EE““FW;“E“—rE +E_T;§
where '
(22) 5= f ety dt

u
is the Laprace transform of v.

Let

2
(28) . Tg—= f‘r K(rya, &) o dr
. b -

be the finite Hanker transform of @, where

24) K a8 =1 (& ) Gy (& @) — Jo (& a) G (& 7)

and &; is a positive root of the equation

(25) Ji(E YeR a)— G, (Ed) JiEa)=0.
Multiplying equation (21} by r K (r, a, B and integrating between the limits &

to ¢ we get

(26) L[l k(o) e

We solve equation (26) under the boundary conditions

(27) =10 when zZ == o0

and
. a )
(28) - T = Uy f ¥ K(r) a, &) dr

_@ I".]l(aE:'\ : _‘
-——E?n m - a] when z =0

The solution of equation (26) is

(29} 6,,:% Z{‘T("’E%')—a]e exp. _{_ [%p(:"“*'%)—i—E?Tﬂz}.
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e Hanker inversion of (29) and ‘then using the inversion theorem for

Taking th

Laprace transform, we get

| bJitat) 7 JIGENK (@)

(80) "_2“”2[ et ) e - ke

1 &+ joo X . e
s/ - exp. | pt -z [p(pt )44 L J being V-
c— oo

We split

(31) ¥ into Y, + Y
=1 i=1 =k+1 \

where k is such that : ‘ |

(32) < \/ < g | | ) ‘

Now on evaluating the p-integral {°] in (30) we get when
Az2\ 12
()
Ly

Z[bjt(ag)_afl(btz}Jl(bE!)K("aﬂsE: I

1

Jiatp — Ji (b5} (—4 WED T

2y 12
1 —4ivED'? (t2—3'—:—) I

bt 2l
(33) o= —— T mia
1(‘ ‘T) _Z{sf,(ars.a_aj,(bzw}fl(hz)mr,aE,J
' A e e v —y
. o le l,l?
S(wag?—ﬂ! (: MT)
2%
and
34 0=0

when

1z2\ /2
5

Now we proceed to take the limit as A—0. As 20 the gecond summation in

(33) vanishes and we get
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L Wy z e—(22/4vt)
(35) Cyis = yf‘l)v = Ty e

Z 5 Joiat)—al, BEN [ BENK (r, a, E) eV IE
= /7 (aE) — ST (6EN]

This YMmiting value of o denoted by w,;, corresponds to the solution of the
problem of an ordinary viscous incompressible fluid as already obtained [®].

It is interesting to note that (33) is valid when

We may have a physical picture of this in the following manner. Keeping z=z;

2'1 I,l‘!
f< (ZL

Py

we see that so far as

the disturbance has not reached the region z>z,. Thus we conclude that the
disturbance is not propagated instantaneously in the whole region occupied by the
fluid as in the case of an ordinary viscous fluid but it has a finite velocity of

- propagation and reaches any particular point z ==z, only after { =¢;, where

zz;l e
W (3)"
Case (ii). We take «f)= w,sin at.

Applying the same technigques as in case (1) we get the same equation (28)
for determining Ty,

We solve equation (26) under the boundary conditions

(86) Ty =10, when z=c0
and
_ o oyn b [ {at)—a [ bE) -
(87 B = & b when z=0
and get
- nw, b/ i) —aj (b R 1 1y
(9 anm i ST e e ~rr(rri) ve)’ -

Taking the Hangrr inversion of (38) and then finding the LarLace inversion

we get
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— {bjl (QE;“““‘I'JTI (bE:“} J’I (bE,-)K(r.. a»,Ei)“
(39) v=2a, )] 7t~ /T (b &1
et fo . . i 1 . 172
' ne exp. [pf——z{-;p(p"f“T)“f'Ef} ]
L . . dp. =
wn (o7 -+ %)
s E

The p-integral entering in (39) has been evaluated by the author elsewhe-
re [']. Subatituting the value of the p-integral in (89) and aplitting the sum

o

i=1

into

&

i=1 i

. and
' oo
i=k41

aa in case (1), we get

.
<O

b/ eE) —a i (bE) L (b K (ry 0. 1\
@0 v=20, ) (J7(a &) — J1{6 EM = o [_(7') “

=1

. k
) (22 20yt me—ti2A{b [ (at) —a Ji(bE) S BEN K ry 2, 8)
sin ["f 5( w) ]+ % Z [Jitag)— fi(bEp]

F==1
1 n N\ 17z
1 e—lf gin {(-;i’) ! z1{1 -—x2)‘f2}
—‘i T -{—(xl-}-ﬁ)
where
. (1 44 EFyi/2
(41) . [.w——_—ér*—t:
_;17 ﬁia 2‘2 ‘lz V&3 ""_Ej;_ . PR
(42‘ a—\/?[{(ﬁ' ﬂ)+ I +(J. R)] ]
. 1 {(re L\ Aty B . 14
) r=gsl {8 -) e 5 = ()T
and
|
(44) k<?\7}:v<\k%~1.




56 ‘ P. N. Srivastava

Now we take the limit as 1 - 0 and obtain

(4:5) Vyis — lim v
A0

[£]

B (bJlatd —a i B8N J (bE) K (r, a, E) A
=2 ), F@e) — Fley e e [- (*) ]

. z:! ij2
~sin I:mf—— B, \%) ]

=1

o

. 2Wuﬂ {b-}rl(agi)uajl(bEf\}j:(bEi)K(r!a‘gi)
M Z‘l [Jilat)— JF (5]
e exp. [—OEt+go)] [sin (J)’] )
n’+ (gt ey v
0

where

(46) a =[Gt 4 ) g

and
S - Bi=10" 5+ n?)2 — G112,

The solution givea in (40) is valid for an ordinary viscbus incompressible flaid
and agrees with that already obtained['].
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OZET

Ayni eksenll iki stlindlr arasinda bulunan vizkoselastik bir sivida, tabanin
agir apmsal hareketinden dogan kigtk distdrbanslarin bu sivi igindeki
yayilimi iki ayri balde incelenmigtir.




