CONVEX FUNCTIONS AND THEIR APPLICATIONS

P, K. KaumTHAN

Some properties of convex funciions are proved and the resulting formulae

are used to establish some inequalities for sueh functions.

1. Let M(z) be an increasing function of ». Suppese further that ¢(u)
is an increasing function of gz, absolutely continuous for 0<u< o (=0 is
an admissible value in some cases), Obviously ¢'(x) exists and is > 0. Let us
supposc that M(w) is & convex function with respect to g(u). Then if v, < v << u,,
we have ;

¢las) — @(a) \ g{u) — p(,)
M=) = @lug)— lu,) M)+ gl — glu,) M(ug)-

The precediﬂg inequality can be written down as:

M) — M) _ Mias) — Mlas) _ Mag) =~ Mia)
olu) —olu,) = elu) —ole) = @) — ¢lu)

1)
Let 0< h, << hy. Then (1) yields, neglecting the obvious steps,

M(z) — Ma — hy) . M{u) — Mu—h) . M+ ki) — M)
pla) —glu—hy) = ¢la)—gla—h) — ¢l@th)— )

_ Mia+ hy) — M{u}
= pla+ k) —ela)

1)

if follows then that

M(u) — M{a —h) [q@(u) —gp{e —h)7]
h A

does not decreasc as k>0 and se has a limit »_ (z). Similarly

M 4 B) — M{z) [‘P(u +h)— fp(u)]—‘
3 3

T
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does not increase as A— -0 and so has a limit a4 () and therefore
(2) n_(u) < ny (u).

Next we gshow: 7

The right-hand derivative ny (#) of the continuous convex funection M(x)
with respect to ¢(a) i8 a non-decreasing continuous function from the right.

Let u, < u,. Then for arbitrarily small A< 0, u;<<u, -} h<u,—h<u,,
and so

M{u, + h) — M(u,) [w(ul +h)— w(ul)] - Mlag) — Mz, — k) [m(ag) — ¢, — h)]—‘
h h = h h

and consequently we have, for A+ 0,
(3) ny () = n(u,)
= n4 (EQ),

from (2). Now we have, for 2 >0, from (1) that

M(u + B — M{n) . [tp(u + k) — tp(u)] =t
h

ny (u) = A

Let us fix A and take the limit as u > u,- 0; we have, since M(z) and @(n)
are eontinuous,

Iilﬂ N4 (u) é
u—+uo+G

Miay + B) — M{u,) [‘P(Uo + A} — ?’(Ho):l_l .
h h

“The limit on the left-hand side exists in view of the monotonocity of the
funetion ny (). Now let h > -}- 0, then

Hm  ny (4} = ny (ry)
a—uy+4
therefore

im ny (w) =n4 (ay)
u—>ug+0

and s0 r4 (z) is continuous from the right. Similarly, it can be shown that
rn— (2) i8 a non-decreasing continuous function from the left.

Next we shall show that M(n) is an absolutely continuous funetion.
Consider any interval [a, 8], u>0; b<<eo. Let a<u < w,< b In view of
(1’), we have :

M{u,) — M{u,) -

n+ (W) = lu,) —oluy) —

n_{b),
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and since @(z) is absolutely continuous, we find that-

2| Mty — M) |

(where ¥ denotes summation over [a, ] for all finite pairs (a,, z,)), is arbit-
rarily small and it gives the absolute continuity. It can also be seen that if
@(x) satisfies] the Lipscmrrz-condition (['], p. 216), so does the funetion M (x)
in [a, B].

Now suppose M(a) =0, then

a

(4) Ma) = f (1) d ().

(i3

To prove it, let us suppose », >, then from (2) and (3), we have:
{5) n—(u} = nq (a,) =n_ ().

But n_ (u), being monotonie, is continuous almost everywhere. If #, is a point
of eontinuity of »__(z), we have from (5), on letting u,» u,,

.. (ux) =ny (31) =>n_ (“1)=
and 80 n_— () = nt (z,), and consequently
M’ (u) = n (u) d g (u),

almost everywhere. Bul since «every absolutely continuous funetion is an in-
definite integral of its own derivatives, ([*], p. 255), we find that the result
(4) is estahlished.

2. Some important applications of the result (4).

Here we apply the result (4) to find certain more general results whose
particular cases are known for the case eovering entire funetions represented
by Tavror’s series and DiricereT-series. In faet, we shall, however, confine
ourselves to the results regarding the growths of M(a); u(u) with respeet to
eertain functions we will he defining. To obtain the results very precisely,
let us introduce a funetion ¢ (r) to satisfy the following conditions :

(i) e(r)>e; p>o;  Where (< p< oo}
(i e elr)
) ¢’ (r} o

uniformly as r+ o ;
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(iii) T - MO
raoo CXDlE () @ ()}
Let
r
M) = [e@nidet):  a>0.
il
Then M(r)~1lo M, (r), r-> . Define:
M(r) — nlr) _C,
.}T:o glr) e D’
where
sy =exp [o(x)do (o).
hil
Theorem 1. We shall prove :
(i) B= i;—{1 < log (%)} ; (in) A= .% ;
Gy AmZenic (t0) szl

Proof : To prove the results, let us suppose R=R(r, K) (K = a positive
constant) such that ¢(R) —¢ (r) > ¢ (K) =0, which is always possible for a
proper choice of ¢ (r) and then of R [for example, p(r)=r, R=r+K; K>0
and g (r)=logr, R—rK; K >1, ele.]. We shall use the following result:

2 (R}
1] 5 2@®(X),
©) g(r)
uniformly as » > co, and the proof of this is straight forward. Now

M (R) ~— My (R)

r R
Z%dfe(x) n(x)dwxwr%rfe(}z) n(e)dg (x)

r R
__1_ nix) , . i n g’ (x) »
edfg(x)g (x} e ef ) ?

<o +(E Y e+ Lrir10g {48

~(EE) s a0,
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Hence
@) Aé%e—Q‘F(K)+qu(K);
(8) Bé%e*@‘?([@ + D¢ (K).

The inequalities (7) and (8) will he the best possible in the sense that theyare
replaced (right hand expressiong) by their minimum values respectively for
some ¢ (K). These values are respectively ¢ and 1/d log (C/D), and substituling
these values of ¢ (K) in (7) and (8) we get (i) and (7} respectively. Ifurther it
can also be verified easily that for sufficiently large r,

D—e
MR (L) gt n ) 0 (),
and so
(%) A E%e“{?(lf) 4 Cog(K)e Q&)
(10) B 5%e~e¢(x)+p¢(g) e—QPK).

The maximum of the right-hand expression in (%) oceurs at ¢ (K) =(C—D)/e C,
and of the right-hand expression in (10} at ¢ (K)=0, and so {(iii} and (iv) are
proved.

Corollary, If C=0D, then A=B8=C/p.

This easily follows from (i), (i), (iif} and (ie).

We now show:

Theorem 2. If A—=B, then C=D=¢A4.

Proof: We have, for r >r, and « >0,

M)

A= <"

< A+

Now

(r@®=5)) ) =n0 fd¢(x)éfn(x>d¢(x)=M(R>—M(r)

(1o Ag—(14+0®)450)

I

(1 o (1)) (e€P&) — 1) Ag (r)

=(Lto)fer®+0 (e &) A20),
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where ¢ (K) is agsumed to be small. Hence

wir) 122 010 (@) 4
T ¥ (K) ’

and on making ¢ (K}-=~0 {on suitably choeosing ¢ (x) and K), we have:

lim n(r)_ A;
roo £(r)
similarly it can be proved that
lim n(r) A,
F-ro0 g‘(r) =
and the result follows.
8. It is obvious from (4) that
7
MR < [0 @),
F

where R =R (r} > r is chosen in such a way so as to satisfy
¢R)—glr)~Keglr) or ~K+tg)

as r - o, K i3 some positive constant (this always exists ; for let ¢ (r) =1logr,

R=r?, g@)=Iloglogr, R=2e"%7") and we find that

ﬁ((g)) >Kn(r)>o as r>o,
and go it is always that
lim M) _
rroo ‘P(")
But
Iim ____log' M (r)
roco g (r)

may or may not tend to oo ; in this article we consider only the latter possi-
bility. Consequently define:

log M(r)
an I —m =

We prove:

Theorem 3. We shall have:
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M(r)éiélémM(r)

Him —
nir e i r+oo AP

r—oo

Proof: In the course of the proof we shall use the following result :

(12) Tim 908 n(r) e,

e P A

and this can easily be proved by suitably choesing R such that ¢ (R) — g (r)
-+ (K) and making use of (4) and (11). First we show that

(13) lim ——+&

Suppose on the contrary that (13) is false, then given A < ¢ and for all r > #,
(14) n(r)= A M)

Hence

A [ 0O M) dp (220 (e 1O M) 1 [ 100 M) dy (2)

re T

where A < 5 < p. Therefore

(15) (A —n) frnwx)M(x)dq, (x) >O(1)+%n(r) —1P 0.

Fo

But from (12) n(r) > e ?(} for a sequence of arbitrarily large values of r
and where o< 5" < p. But (4 —#) is a negative quantity and the integral in
(18) is a positive quantity, since

e NP Mx) ¢ (x).
Therefore (15) gives a contradiction ; hence (13) must be true. Similarly, we
can show that

Tm M)/ n(r)= 24",

r—»0ca

and the result is proved.

e
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OZET

Bu yamda Konveks fonksiyonlarin bawm é4zelikleri incelenmekie wve bulunan

formillier bu eegit fonksiyonlar tarafindan gergeklenen birkag esgiksizligin

olde edilmeginde kullanrimaktadir.




