ON THE DERIVATIVES OF AN INTEGRAL FUNCTION REPRESENTED BY
DIRICHLET SERIES

R. K. Srivastava(®

The object oi this paper is to examine the properties of the maximum

term of the dervivatives of an integral function represented by a DiricHier

geries in the whole plane, Some resulfs eoncerniug the max.iﬁ:lum modulus

and an expression for the derivative of the maximam Lerm have also
been obtained.

1. Consider the DiricurrT series

[a2a)
1.1 : Fls) = Z a, esha
n=t
where
Aoty Ay A >0, lim A, =, s=o+it
TG
and

. log n
lim sup -2 —==0.
n—>co R'TI

Let o, and ¢, be the abscissae of convergence and ahsolute convergence
of f(s) respectively. Liet f(s) represent an entire function with o, = ¢, = «.

Let
Mo, fy=L . b.[fleFit) ], a(s, f) =max.|o,|esln.
—vo< foo nz1
If » (o, f) denotes the values of », for which (s, f)=]e,|estn, we call il

the rank of the maximum term p(e, f). If there are more than one soch va-
lues of n, we consider as rank the greatest of them. The type and lower type
of (1.1) are defined as the superior and inferior limits respectively of

e~ 2% log M (o, f) a8 o > oo, where p (0<< g<Coc) is the linear order of

fls).

(*} Phe author wishes to thank Dr. 8, K. Bosz under whose supervision this note has
been written.
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Y. C. Yu [*] has proved that if the linear order of f(s) is finite and

lim sup lof " —o,
n~co n
then for large «a
(1.2) log M (s, f} ~ log (o, f).

Here we have obtained a few propertics of the maximum term of the de-
rivatives of an integral function represented by DiricHiET series in the whole
plane and certain relations with the maximum modulus, We have also deter-
mined @() (o, (™) in terms of wu(s, fi™) and Ay (a, f) where g} (o, f(™) is
the derivative of p (o, f(™), the maximum term -of (™ (s), the mtr derivative

of f(s). Throughout this paper we assume that

Iim sup 3
n-»co n

and

-4

f £oddy(t, fO) = o (a09),

o

for m=0,1, 2, ...

2. Theorem 1. /f

(o)

fls) =Y an eshn

=}

is an integral function of linear order {0 <p< =), igpe T and lower igpe t
(0=t = T = o), then

i e (L) )7

where ¢ + 0o through values outside a set of measure zero.

The proof depends on the following lemmas:

Lemma 1. Let
oo

fls)= )} an esir

n=1

be an integral function of linear order ¢ (0 < g <C o), type T and lower type I,
then
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. |0 _ T
@2) tim 2P (oo by p )= s

where ¢ > o through values outside a set of measure zero.
Proof. Y. C. Yvu[*] has shown that, if

lim sup B D<o

o0 n

Iog 4
A

2.3 ;
&) tog (o, f)=1log u (o, f)+f1v (¢ £) dt.

By

Integrating 1y (¢, 5y by parts, we get, from (2.3)

a
log p (o, fl=logp (s, f)+oly (s, fy— s dn (O'urf)—_ft ~dly g -
oy :

Hence

lim r:ll%) (a 278 Ay (q, f)) = };im i;}p (e"g" log p (9, f))

o000

(e—Qﬂ log M (o, f)) :tT,

. osup
—lim t
g-reo 10

previded o-» co through values ocutside a set of measure zero,

[
lim snp -I»-(-f =0 and fi cd g (e ) = 0 (e¥9).
n—oo n 45

Lemma 2. The iype and lower igpe of the derivative of an integral func-

tion are the same as that of the function.

Proof: In a previous paper[!] I have proved

coosupf o Mis, fO) e
b o {"_ log (M(o,wa)) i

where 2 is the linear lower order of f(s).

Thus, for o =>e,, we have
0 e @ (L —z) < e log M (o, f(™) -~ e~2¢ log Mo, P D)< ae2 (g1 5).

or,
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. osupf _ L qe ST
lim inp{e Q¢ log M (o, f(m))} =l1im intp {e*eﬂ log M (o, f(mff))} s

G0 f F->00
which proved the lemma since the linear order of f(™(s) is the same as

F=5 (s) and 0< p<C w0,

Proof of Theorem 1. R, 8, I.. Srivastava ‘] has obtained the following
result.

(2.4) ;tv(,,f)#";(aff))éz.,(mf(>4........,

From the above result it ean easily be shown that

a, fimyyym
vl H= {% = Ay (a. 5.

Therefore,
Sup - es g o SUP plo, fUm)Ny™
tim 5P (o ee biop) < lim SP oo o (B LD

lim f;lfp {o e 2% 1y (g, f('")} .

[ & Juel

Hence, on using Lemma 1 and Lemma 2, we get !

tim Mo e (ML) Y=

where a-» co through values outside a set of measure zero.

Corollary 1.
sup — # (o, f™) _T
tim oo (e )p =1

where o> « through values outside a set of measure zero.

Corollary 2. For almost all values of o >0,

=M gMQS (f — ) p (g, f)< plo, FM < o™ em QI (T+ &) u(o, f).

Corollary 3. If ¢t > 0, then

# o, f00)
Twle, )

as 0o,

Corollary 4. If ¢t >0, then the sequence
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#(o, f)y mla, fO), p(a, fO), ...

forms an increasing sequence for ¢ > g,.

Corollary 5. If 0<¢#< T < o, then

s (S5 7))

where a-» « through values outside a set of measure zero.

This follows from Corollary 2, on taking the logarithm on hoth sides,
dividing hy ¢ and then proceeding to limit.

Application. The integral function

(ee]

fs)=Y an e,

n=1

of linear order ¢ (0 << p < ) is of perfectly linear regular growth T >0, if
and only if,

{%}”MN o1 e T,

for large o, where ¢ > o through values outside a set of measure zero.

Let f(s} be of linear order ¢ and perfectly linear regular growth T, then

we have from (2.1)
s — (o, fUmpyLm _
e () T

or,

(2.5) {’%{%))}WN a1 et® T.

Again, if (2.5) holds, we have

1

1m { a9 (Ma, f('"))) f”'}: T

Gco gla, f)

and from (2.1}, f(s) is of perfectly linear regular growth T. Now,
(i) if the type of the function is one, then

for large o;
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(¢) if the type of the funection is zerou, then

i (0‘, f(m)) tym _ -
@8 SEn ) el

and if the function is of non-zero type, then s is replaced by O in (2.6).
3. Determination of p( (o, fU™).
We have, from Theorem %, for ¢ > o,

(t— )™ em@S (o, f)< o™ p(o, fM)< (T4 &)™ &2 (o, f),

where
0t =T oo,
Therefore,
o (o S09) = e (o, ) f(e— o) 9 (T o — (¢ - )
where

HE R

Hence, on using the result (2.3), we get

¢ <3
m 10g o-+10g & (our SO0+ [ute sty dt =m0+ log pons )+ [hu ey at
[ gy

+ log {(t — syt @ ((T+ == F)m)} ’

or
a
(3.1) f{lv (6 H™) ﬁlv(f.f)}df:'mgﬁﬁmlog““{" C,
dy
where

c=iog ft— o+ 0 (T 9 — (¢ )} -+ fog e, )= log oy S0,

0 < B (a) =<1,
Differentiating (3.1}, we get

b (@ D™ e =me — - (@),

T e

almost everywhere, where, ¢ (s} is bounded and tends to zero as o> co. From :

(2.8), after replacing f{s) by f0 (s) we, therefore get

WO (5, fO0) = p (o, f(m))l{}.,, @hHtme—"+tg (a)} ;

almost everywhere.
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Corollary 1%
(8.2) l}im {Av @ "N — Ay @ f)} =m g,

where ¢ > « through values outside a set of measure zero.

Corollary 2.

G—CO

(2.3) [im. {Iog Ly (o, £ — log 2y (q, f.)} =0,

where ¢ > ~ through values outside a set of measure zero.

Corollary 3.%* For almost all values of ¢ >0, 0.
(g, )< pM (e, FO < (o, fO) < irvernnnn, )

provided the lower order i of f(s) is greater than zero.

Using (2.8) for the funetions (™ (s) and f(™—" (), we have

[+]
(3.4) log (o f™) =10g p (04, S) -1+ [yry, 7m0 de.
. &y
']
(8.5) Log (o, £™—1) — log t (o, f(7—1) |- f Rty £70) dt.
4

Differentiating (3.4) and (8.5), we get

al" (g, F™) m
(3.6} W(,f“(w:lv(a.f( ).

20) (o, fm—1)

&0 o, [

:Av (a, f(m-—:))’

for almost all values of o >0, =0.

Therefore, on using the result of (8.3), we can deduce from (3.8) and (3.7)

#( (g, F07) p (s, FO0)
w0 (o, F0Y 7 (o, JOE—N)’

(3.8)

* This resuit haa also been obtained by [*1.

** fMhis resull has been obtained by [®] and also by [‘] with the conditions 4= 0 > 0
and

log &y (g, f(™ —log iy (g, " ')

lim =0, (m=1,2,..).

Gro0 a
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for large o. Now, R, P. Srivasrav [?] has obtained

- ()
lim mf{ —tlo '(M)}:l.
pteal M A NPT NS
Therefore, for large o.
1

H——(VU’-:{(E =9 (A8 =1, since 1 >0,
) wio, f)
‘ Similarly, for m =1, 2, ....., we can prove

(o, f)
 (a, f=0)

So from (3.8), we get

w0 (g, £ > p) (0, FO—0Y, for o> au =0, |

Putting m =1, 2, ..... , we get
M (o, fYy<<pM(a, FON)< p() (o, FA) < ..., .
4, Theorem 2. Let
fls) = Y, an evia
n==1

be an integral function of linear order p(0<<p<< ), tgpe T and lower type t.

Then, if o> ~ through values outside a set of measure zero and m=1, 2, ..... s,
, (m) ifm N M(ﬂ, f(m) i1/m

4, _ —go (M) = T lim sup { —qo (Wﬁm—) } )

@n  um supoemen (B S el R 7 Py

provided the linear lower order of f(s) is greater than zero.

w0 s s (L) i e (50

where ple, f and M (o,f(™) are ihe maximum term and least upper bound of

the mth derivative of f{s) respectivaly.

Proof of Theorem 2. S. N. SRIVASTAY ['] has obtained the following
inequality '

M{o, ftm—4y) log M (s, f0"—1)

(4.8) MAo, f0 = - s for o > o,.

Further, he has proved that the seguence
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Mo, ), Mo, f(V), M(s, fC), ...... , M (o, fN),

where o>0, and o,=max. (6,, Gy, +eeeus , 55, forms an inereasing sequ-
ence provided f(s) is an integral function of linear lower order 4, 1> 0.

From (4.8), we have, for o>0, where o, =max. (6,, 6,,...., Op)

@) Mﬂ}o(’of(f";)) . log M(s, f)-log M (s, ;;(:) ..... log M (s, fom—0)
and if 1>0

M (o, fm) og M(s, /Y™
{*3) i) > (e M)

Therefore, on taking limits of both the sides in {4.4) and (4.5) respectively,
we get '

{4.6) lim inf {o ¢—0s (%}d)x;m}ét
and

i —po M(G, f(m)) 1ym
{4.7) lln;»i‘;lp 6 e @ (—IM—(—;T) }E T, for 1>0.

Now, from (2.4), we have

ALY Z dy (g FPhy .

oY e
Therefore, writing the above inequality for p=1, 2, ..... , m and multiplying
together, we get
wlo, ftm)
S = Ay N Ay (g FU
”(o,f) -——\'(U.f ) 'V(Gfr)
or,
# (o, fim) }wm _ m
M(ﬂ, f) -—J‘?'V(U’ f( Y.

Hence on using Lemma 1 and Lemma 2, we get

supf . f e SO N\ T
(&8) tim P foees (W) =

where ¢+ oo through values outside a set of measure zero, The results (4.1)
and (4.2) follow from (4.6), (4.7) and (4.8).

5. Theorem 3. ILet

o0

fls) = E a, e5ht

n==1
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be an integral function of lineor order ¢ (0 < ¢ <C o) type T and lower type t, then

[
(5.1) lim inf {e—"’w {a> f)f Oy 1)) @t }_4 e T<=1jo¢
a—ro0
Gp

o~

a
= lim sup{e—“"w (a2 ) fet(r"""’"v G d’t} 3
gy

where 0> co through walues outside ¢ set af measure zero.

We flirst prove the following two Lemmas:

Lemma 3. If K {o) is a positive, real funection of ¢, continuous almost

everywhere in {o,, o} and
tt

lim sup (e*E“ log K(a)) —ua,

G=rC0
then .
—1 ¢
(5.2) lim inf {(K(o)) fK(t) et d’i}é Le=.
Groo . |
. %o
Proof : Let )
1]
(5.9) @(o):fK(f) e® dt.
o

The inequality (5.2) is obviously true if « =0. Hence we consider the case
a > 0. Suppose first « >0 and finite and suppose (5.2} does not hold.

Then, we have, for 6 =0 =125 (x} >4,
@ (o) > x K (0}, where x> 1fpx.
From (5.3) it follows that &' (o) exists and

¢’ (o) = K (0) e2%,

almost everywhere, Therefore,

; |
§ v gﬁ’ (d) . eqc
_—

@ (o) x

almost everywhere. Thus for large o

F 97 (1)
)

log @ (s) = Log & (0,) +

gy

dt << log @ (6,) + 1/ x (e9% — 200},

=
I
s
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Hence

log x +log K (o) < ?1,6 e@® 1o (1)
or,

lim sup (e"'Q“ log K(o)) =< Llox << a.

GO

which contradicts the hypothesis. Hence the Lemma is proved for 02 < .
If &« =0, then we take x to he arbitrary small.

Lemma 4. If K (o) satisfies the conditions of Lemma 3 and

lim inf (e—ﬂ" log K(g)) = f,

o0

then

OO

lim snp { (K(a))_1 f K (1) e@t dt}él,/g?.

This can easily he proved if we adopt the method of proof of Lemma 8,

Proof of Theorem 3. If we take K ({s)=e™ (5.7} in the above two Lem-
ma#s and combine the inequalities thus obtained, we get the required result. .
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OZET

Bu aragtixmanin gayesi btitdn dizlemde bir Dirrcmrer seri agilimi ile gis-
terilen bir tam fonksiyonun makslmum teriminin tirevierinin bazi dzellik-
lerini incelemektir. Maksimum modiil ve maksimum terimin t#trevinin bir

ifadesi de ayrica elde edilmig bulunmaktadir.




