ON FRENET’S FORMULAE AND CURVATURES
IN A GENERALISED RIEMANN SPACE

A, C. SuamMiHOKE (¥)

Abstract, Wearnernonn ['] had obtained Frewer’s formulae in an r-dimen-
sional Riemann space which were later extended to generalised Rimmanw
space [’} by Saxesa and Ram Bemari. In  this paper another form of
¥rexer's formulae for a generalised Rixmann space has been obtained. The
equivalence of the two forms has also bheen established. Lrvy[*] had
expressed the derivative of the angle between two consecutive binormals
of a eurve lying in a Rirmann space with respect to the arc length in
terms of the curvatures. This result has also been extended to genera-

lised RinmaNN Spaces.

1. FrEnET’s formulae

Let F, denote an n-dimensional generalised RiEMaNN gpace endowed with a
local coordinate gystem xi (f =1, ..., n). To each point P (x?) of F, is associated a
non-gymmetric tensor gij(x) called the metric tensor. EiseNHART [*] has obtained

an affine connection A#; given by

. 1 agp 7 g :
) o= (1 22,

ng being the 60njL1gate tengor of the symmetric part of the metric fensor gije in
what follows bar and hook will be nsed to demote the symmetric and skew-sym-
metric parts of a quantity: thns

1
gii = (gi; g0

and.
g =gy —gph

Mostly, the notations of EBSENnART [*] will be followed.

(=) The Author wishes to thank Professor Ram Benawt for confirmation of the results
of this paper and Dr. P, B. BuarracHarya for encouragement and inspiration during this

work.
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We now consider a curve C: xf=ux(s) referred to its are length s as the
parameter, lying in a generalised Rigmann space F,, so that its unit tangent vec-
tor is given by

(1.2) ¢

—dx

ds
We define a aystem of n vectors ti(,) as followa:

, , . D ,
(1.8) Sigp=1t!, Eipm= Ds (Eip—0)

D{Ds denoting the intrinsic derivative{®] in the direction of C. To ortogonalize
these vectors we define a set of n vecfors as follows:

1,1 ... (1, p—1)  Eiy
2,1y ... (2, p—1) Eiy
(1.4) Wy =E, ey e e e e e e e
\/DP—L Dp .
(n")l 1) ----- (D7 Pii) Ei(r")
where
(1) 1) (11 P)
(1.5) Dy=1, D,= TR O RRIOR

(7,1 ... (pp)

We shall now show that the set of » vectors defined by (1.4) satisfies the
relation

(1.6) W) N =gy ) 7 () = o)

where d(pg) is the nsnal KRONECKER tensor.

it is easy to mee that & -w(m =10 for ¢ << p and since n(y is expressible
ag a linear combination of £(p, ..., & it follows that

) * Uy =0 for g<p
go that the set of vectors (1.4) satisfies (1.8) for ¢==p. Also

(1,1 ... (1, p—1) 1 n .. ¢,

M - N —_— — 1, =1
@ N6 =P =1

L R R R} 4 8 a4 4 s s a

(P—']-: 1) . (p—1, p—1) (7 1) rre (p, p)

in view of (1.5).
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Henee equation (1.6) is aatisfied and any vector of the space must be expres-
gible as a linear combination of the n vectors (1.4). Therefore we put

Dl % .
(1.7 : %:ECW) 7 ()

g=l
where C(pg) 18 to be determined. From (1.4) and (1.7), we obtain
(1.8) Cipgy =10 for g >p 1.

Algo differentiating (1.6} infrinsically, we obtain

Doy . D@ _
1y (73 @ i £52) 0.

Now making use of (1.7), we obtain

(1.9 Cipay + Cgpy = 0.
From (1.8) and (1.9), we have

(1.8a) Cpny=0 for ¢g<p—1.
Putting p==¢ in (1.9),

(1.10) Cppy =0,

In view of (1.8), (1.8a), (1.9) and (1.10}, (1.7) simplifies to

Dy _

(1.11) Ds

— Clp— ey Mitp—1) + Clp ot ) Tip ) *

We define the p th curvature of the curve C by
(1.12) K,=Cipp+pn with K,=K,=0.
From (1.11) and (1.12), we obfain

Dylpy

(1.13) e

— Kp—i 1 p—0y T K 1ip+ 00

We eall (1.18) FRENETs formulge. We shall now show that

& —YDr_i Dpsy
P Dp

From (1.8) and (1.13}, we have

IR R O Rt
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Dy
(1.14) Ky =g, 5(?’)73 (e 1)

Now, differentiating (1.4) intrinsically, we obtain

D i) D( 1 :
D_ —— 1
e \/ i pDS \/Dpff_Dp)ﬁ ()
iz, 1) v (1, p—1) By
3, 1) v {20p—1) By
1
+ V5, .5, i
— 1+ o (pp-l) B
(1,1y ... (2,p—1 0] (1,1) ... (1,p—2) (1, p) Ei
2,1y ... (3,p—1) Ei(,) 2,1y ... (2,p—2)(2,p) Ei
+ ' +
(1} oo (pilp=1) &l 1) .. (pp—2 e p) S
1,1y .. (A,p—1) By |
(2,1} .. (2,p—1) i
+ -

{(m1y . (p,p—1) Ept+y|_

Multiplying both sides by 2 #(p+,) and making use of the fact that

o p+p=0 for g¢=1,..,p,

we obtain
1,1) veer {1, p—1)
K,= €15 Swv 1 pan
(p—1,1) ... (p—1,p—1)
(,1n e {1, 0) 1, p+1)
1 1 e e e e e e e
{1.15} —

ptL, 1y ... (ptLpd (pF1, ptD

Droy . p,,, = \/DPB Dpt1

D \/DP—l D}J+1 n
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SaxenNa and Benari[?] obtained FrEng®’s formulae in the form

Dl . . — . .
(1.16) —%f’—) = — Kp—1 1) + K w0+ Ay Gy &/
where

- Anipy 4
(]'17) ) KP_g?.iT” (p+1)

AlAs denoting the intrinsic derivative with respect to the CHRISTOTFEL sym-
bols formed by means of g;;.

We shall now establish the equivalence between (1.13) and (1.16). From (1.12}
and (1.17), we obfain

(1.18) K, =K, + Mg jn o tnipsy,

Apgj denoting the skew -symmetric part of Apg;. In view of (1.18) the condi-
tion for the equivalence of (1.13) and (1.16) is given by

(1.19) Angj i) [ gH — a0 ) — 1t 1001 =0,

9 being the conjugate tensor of g¢p: We obtain |

(1.20) =¥ v 7',
q

{1.16) mmay also be written as

A i '} i . s .
_'Z_S_):—Kpfl"i“(pﬂ)+Kp’1’(p+1)
so that
Axi ,
(1.21) U.—";sﬁ)-e;r(q):o except for g=p—1 and g=p--1-

Also from (1.13), we have

Dyt .
(1.21a) gl_j%mﬂi(q)=g tor g=¥=p—1, ¢Fp+1.

Subtracting (1.21) from (1.21a), we obtain
(1.22) Angj w' g k=0 tor gFp—1, gFp+1l.
From (1.20) and (1.22), we obtain

Ay ") 1 g = e oMoy #F [0 1 -0 T ey 4y ]




14 A, C, SHAMIHOKE

which shows that equation (1.19) is satisfied, Hence the two forms of FrEneT’g
formulae, oiz. {1.18) and (1.16) are equivalent.

2. Curvatures

Congider a curve C: xi= xi (s} referred to its arc length as a parameter, We
shall denote by #%igpy and 7%y respectively the components of the r orthogenati-
sed vectors at two neighbouring points P and P* of €. Let wi) be the compo-
nents of the vector at P* obtained from the corresponding vector #ip) at P by
parallel displagement. gifr g*‘ij will be uded to denote the components of the sym-
metrie part of the metric tensor at P and P* respectively. The angle ¢ #, between
7 and iy is given by

(2.1) co8 30, == g%, 0 iny wig)

By TAYLOR's expansion, we have

d g% d® g%
(2.2) g"‘fj:g,.ﬁr( _J) ) F%(—j) (8s)> + +=-
YT 8y . ). - ]
(2.3) 7y = (p)+( i (")) (35) + o (£ (p’) (3s)" + -
(2.4) F"(p):?i"(phL(dﬁ (”’) 3s) + - (“’ ; (”)) (d5)* +- -

From FRENET's formulae (1.18), we have

d n*t y v s
(2.5) A (LS iy — AT

ds

where P-i== P*{ ¢k and * ig used to indicate the value of the quantity at P*,
The unstarred quantities will represent the values of the same quantity at P.

Since Ei(p) is obtained from #%i(z) by parallel transport, we have

(2.6) a ’;"” A gy
5

Also (D g,-j,’Ds) =0[*] gives us

(2-7) — :g (h + g fIJ h: .

Diffel‘entiziting (2.5), (2.6) and (2.7) with respect to s and making use of the
same equations, we obtain

et e T T T T
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d® i) dK % 0 i s dK*p
L0 = (st stk Yty o (1520

h— A*ih K*p) 7]*1!(;?-{-1)

1A%, 4 :
(2.8) ‘ds" o)+ Kooy Ky 1740 0) + K% Ky 1 (p1ea)

o (Ks.ezp_l + KMP) 7]'“.(]))

d® ni d A¥E, — i sk —
(2.9} - ;sg”)=— TJ iy + A% ARR L nk(p
gy d 40, d

@10 =g g B 4 (A %) ARy A%

>
where
(2.11) A= &y A*” .

From (2.1), (2.2), {2.8) and (2.4) we obtain

F

7 & d :
dn*tey | dri gy
cos 6, =1~ [gg ( T P 4 d(p ) "(p) + ( 7y 97 (py | (ds)
0
d i [dnic i & ¥ ) Upy iyt ,
(2.12) +[gff(ﬁTs(L) (Tzsﬂ Tl + 58 g
] a0 ]

dg*y d 1t — d° g%,
H o) o duim i 1t Eyy ; sy L
+( 4 ).\ ds + ds )0 7+ o | dat 0?7 ) 1 (py | () +

Substituting the values of the various quantities from equations (2.5} to
(2.10)} in (2.12) and making use of the orthogonality relations (1.6}, we obtain

cosdﬂp:l _%(K"’p—1+Kgp) (5s)ﬂ+ .

which may be written as

1 — cos?dd, (d Pp

T =(K’»_, + K*,) + terms containing powers of (Js}.
(59, 3s ) :

Taking limits as ds -~ 0, we obtain

19,
(2.13) (‘d:) =K%+ K,

1f €y denotes the p th radius of curvature, then

1
K,

g0 that (2.13)} assumes the form




16 A, C, SHAMIHOKE

dﬁp)? 1 1
2.14 (ﬂ S BT
(2.14) ) =&t

The same result was established by LeEvy [*] for a RiEmMANN gpace. Our defi-
nition of g, coincides with that of LEvy when g;; =0 50 that the corregsponding

result for a RIEMANN space follows from (2.14) asﬁa particular case,
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OZET

a-boyutlu Rmmany uzaylar: igin Wearusesory ['] tarafindan elde edilen
Frener formilllerinin tesmil edllmig gekli umumilegtirilmis Riemann uzayla-
rina Saxesa ve Ram Beuani (%) tarafindan tesmil edilmis bulunmakladir.
Bu araghirmada ise umumilegtirilmig bir Riemaww uzayl igin Feewer formill-
lerinin diger bir sekli elde edilmig, ve bunun yukarda zikredilen sekille
intibal ettikini de gisterilmistir. Muteakip iki hinormal arasindaki aginin
tlirevinin, ait olduklari efrinin yay uzunlugu ve egrilikleri ecinsinden
Riemasy uzaylarinda muteber olan ve Levy I'] tarafindan verilen bir ifade-

leri de umumilegtiriimig Reiemany uzaylarina teymil edllmig bulunmaktadir.




