ON NETWORKS OF MINIMUM CONSTRUCTION COST*

H, YixseL

In the present paper two similar procedures are given to delermine the

conaection network of minimum construction cost when the set of termi-

nald is speecified. It i3 assumed that terminals are connected by straight

links and the amount of fiow between any pair of terminals 18 known.

The bullding cost per unit longth for a link is supposed to be the sum

of a charge that is proportional to the total flow earried by this link and
a constant fixed charge.

1. Introduction. The paper is concerned with finding the optimal con-
nection network when the set of terminals is specified. Terminals are to bhe
connected by straight links and the amount of flow hetween any pair of ter-
minalsg is given. The bhuilding cost per unit length for a connection link is
assunmed to be the sum of a charge that is proportional to the total flow car-
ried by this link and a constant fixed charge. If, in particular, the building
cost consisted of the fixed charge only, the present problem would reduce to
finding the shortest connection network which has already been treated by
R. G, Prim [']**. On the other hand, if the fixed charge was zero, the opti-
mal connection network would be the complete network which contains all
the possible links. Two similar procedures are given to find the solution to
the general problem. The first procedure is described in detail; it consists of
constructing a sequence of optimal networks starting from the shortest tree.
The basic idea in the second procedure is the same as in the first, but it is
the complete network that is chosen as the first element of the sequence, The
first procedure is equally applicable to the problem of modifying a previously
existing connection network when the amounts of flow Dbelween terminals
increase in time at a constant ratio. )

The practicality of these procedures depends on the ratic of the propor-
tional charge per unit flow and the fixed charge. If the fixed charge prevailed,

* The author is indebted to Professor W. Pracin who kindly suggestod this problem.
.

Numbers in sguare brackels refer to the Bibliography at the end of the paper.
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2 H. YUKSEL

the first proéedure could lead to the opiimal network required at a rela-
tively small number of sieps. The second procedure is preferable if the fixed
charge is small compared io the proportional charge per unit flow.

2. Formulation of the problem. The building cost per unit length of a
connection link is assumed io be represenied by the diagram of Fig. 1, which
is characterized by iwo constants « and g, For a given . connection network,
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the total building cost is then given by the following sum exiended over all
conneciion links

C=3L(x-+BQ), (1

where L is the lengih of a generic link and Q the total flow carried by this
link. It is obvious that in a given network the flow between any two termi-
nals must follow the shortest path available. In the feollowing, this principle
will be called the shortest path principle. Thus, for a given network and
specified amounis of flow between each pair of terminals, ithe cost defined
by Equation (1) is uniquely determined.

Ii will he convenieni for the subsequeni analysis to ireat briefly the

two exireme cases of either ¢ =—=0 or f=0. For «—=0, the optimal network is

the one that is obtained by direcily connecting every pair“of terminals between
which there is a non-zero flow. If the flow assoeiated with every pair of
terminals is non-zero, the opiimal solution is the complete network that con-
faing ail possible links between terminals.

For =0, ihe opiimal neiwork is the shoriest topological tree [!]. It is
interesting to observe that the shoriest iree remains the opiimal mnetwork,
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whatever the values of « and §, if the flow between any two terminals that
are not directly connected in the shortest tree is specified to be zero.,

In general, the optimal solution of the problem formulated above is an
ordinary ‘connection network, i. e. neither a shortest tree nor the complete
network, lying between these two extreme solutions., Two procedures similar
to each other will he presented in the next section each one of which enable
one to obtain the optimal network or networks in a straightforward step-by-
step manner starting from either one or the other extreme solution.

8. Construction of the optimal network (first procedure). This procedure
consists of construeting a sequence of networks in such & way thatl each
network is optimal for a certain range of values of 2 and the totality of
these ranges forms & closed interval on the § axis including §=0 and g = g%,
B* being the actual value of . The first element of this scquence will be
chosen as the suitable shortest tree optimal for g§=40. The subsequent ele-
ments of the sequence will be constructed one after another as § increases
continuously starting from zero. The final network which is optimal for the
range including g% is, of course, the required optimal network. In this first
procedure, o will be kepl constant.

Before describing the procedure, it is econvenient to introduce a few con-?
cepts which will be used in the following. Consider a number of links that
could be inserted into a given network N. If the flow carried by any one of
these links when it is inserted individually in & is the same as the flow
carried by thig link when all congidered links are inserted simultaneously,
these links will bo called indepedently insertable. In the shortest tree of
Fig. 2, the links (1,3), (3,8), and (5,7) are independently insertable, According
to Lemma 1 established in Appendix,. the simultaneous insertion of such links
becomes economical for a value of # which lies between the smallest and the
largest of the # values associated with the individual insertions  of these
links.

If the flow carried by each one of a numher of links when it is inser-
ted individually is lessened when they are inserted simultaneously, these
links will he called interdependent for insertion. In the shortest tree of Fig. 2,
the links (1,8) and (1,6), for instance, are inter-dependent for insertion. Ac-
cording to Lemma 2, the simultaneous insertion of such links becomes eco-
nomical for-a value of § which cannot be smaller than the smallest of the g
values assoeiated with the individual insertion of these links, but can exceed
the largest of them.

If the flow carried by each one of a n'ur'a_bel_f"of links when it is inser-

ted individually becomes larger when lhey are-inserted simultaneously, these
links will be called jointly insertable., In the shortest tree of Fig. 2, the links
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(1.8) and (1.6) are jointly insertable. According to Lemma 38, the simultancous
insertion of such links hecomes economical for a value of § which cannot
excced the largest of the g values associated with the individual ingertions
of these links, but can he less than the smallest of them. : ’

From the three Lemmas established in Appendix, we can immediately
deduce the following results. SBuppose that a link available for insertion is
not involved in any combination of jointly insertable links. We can then
restrict ourselves to testing only the individual insertion of sueh a link
aceording to Lemma 1 and 2. Otherwise, the joint inscrtions of this link in
all possible combinations must be tested in addition to its individual inser-
tion according to Lemma 8. Since the omission process is the reverse process
to the insertion one, the preccding results must be reversed as far as omis-
sion is conecerncd. Namely, the joint omissions of a link in all possible com-
binations mugt he tested in addition to its individual omission according to
Lemma 2 if this link is involved in combinations of links inter-dependent for
re-insertion. Otherwisc, we can restrict ourselves (o testing its individual
omjssion. Links inter-dependent for re-insertion will he called jointly omit-
table.

As remarked in the previous section, for =0 the optimal network is
any one of the shortest trecs (lthere may exist more than one shorlest tree).
For sufficiently small values of £, the shortest tree with the smallest sum
X L ¢ obviously remains the optimal network. The total cost of building for

this network is cxpresscd as
CO = 3L + §3 L QO (2}

where the superseripts (1) reéfer to the first clement of the scquence, Sinec «
is kept comstant, C{V is secn to be a linearly increasing funection of g for
this network. 1t is reasonable to expect that as § increases the modification
of the shortest trec hecomes nceeessary by inserting a new link or links and
perhaps emitting a link or links. The insertion of new links introduces new
shortest paths available for certain flows and therefore diminishes the flow-
dependent part of the cost g ¥ L) () in Equation (2), although it augments
the fixed charge « X L(. The probable omission of some links after the in-
gertion process has been completed diminigshes the fixed charge o 3 LY,
whereas it augments the flow-dependent part of the cost. The 8 value for
-which the insertion of the link (p, ¢), for instance, first hecomes economical

is computed by an equation of the form

Bog Dy Pmn Qumn — « Lpg == 0 (3)

m,n

where i,,, > 0 is the difference hetween the lengths of the paths which the
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flow Qmn follows before and after the inscrtion of this link, L, is the length
of the link {(p, ¢), and the sum is extended over all the flows thal have chan-
ged their paths.

To obtain the second element of the sequence of optimal networks an
insertion process firat is applied to the shortest tree and the resulting net-
work is modified by an omission process, if necessary, The insertion process

.is earried out by means of two sets of § values. The first set {ﬁg)} is com-
puted in such a way that for each element of it the individual insertion of
the corresponding link in the shortest tree would first become economical.

Each clement of the sceond set of # values {ﬂ(}z)} (k=1,2,..., m) is associ-
ated with the simultaneous insertion of a number of jointly insertable links.

The insertion process is ecarried out according to the following prineciples :

1. The joint set {ﬁ(}j’ » #3} has only one element smaller than all ot-
hers. The corresponding link or group of links has then to he inserted.

2. The joint set {ﬁ(f} » #¥} has several equal elements that are smaller
than all others. The corresponding links andfor groups of links have all to
he inserted, provided that they are independently insertable.

3. If the set {ﬁﬁ) s ,6(112)} attains its minimum for more than one element

associated with links andfor groups of. links inter-dependent for insertion,
the link andjor group of links whose insertions result in the smallest sum

=L Q must be inserted. In the evenl thal the set {,ﬁ'g}) , ff(p} attains- its mi-
nimum for several groups of links such that the elements of each group are
inter-dependent for insertion andfor for a number of groups of jointly inser-
table links such that certain ecombinations of these groups are inter-depen-
dent for insertion, the process is applied to each group of links andfor to
each combination -of groups of jointly insertable links. In Fig. 2, the links
(1,4), (1,b), and (1,6) on one hand, and the links (8,4), (3,7), and (2,7) on
the other hand constitute two such groups of links.

4. It may happen that the two preceding cases have to be combined. In
PFig. 2, for example, if the insertions of the independently insertable links
(1,3) and (4,8) and the links (1,4) and (2,6) that are inter-dependent for inser-
tipn first become economical, among the links (1,4) and (2,6) the one whose
insertion results in the smallest sum X L @ must be inserted in addition tg
inserting the links (1,3) and (4,8).

Now, the question arises whether or not it would be economical to take
out some links after the insertion process has been complcted. This could he
the case because the insertion of new links is bound to diminish the amo-
unts of flow along certain links, although the fixed echarges (« L) associated
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with these links remain constant. Of course, the condition of connectedness
must be respected in the omission process, The links which have to be omit-
ted -can be determined in a similar way. Consider the set {Ef_’s)} whose gene-
ric element B&? is computed for the re-ingertion of the link (r,s) in the new
network as if this link were not involved in it. In addition to the individual
omissions of the links available, the joint omissions of the links that are

inter-dependent for re-insertion must be considered. Because the re-insertions

of such links might become economical for a value of § which exceeds the g
values associated with the individual re-insertions of these links. Denote
by {#} the set of these § values. Of course, only the omissions of the
links along which amounts of flow have been diminished after the insertion
process must be tested. If the condition

max {ﬁfj’) s {?(11)} < min { ,BS,) s ﬂ(}z)} (4)

1s fulfilled, no link need he omitted, In this case, the shortest tree used for
getting started ceases being optimal for = §,, where g, is given by

fo=min { gD #G5 > (i = j) (5)

and the network obtained by the insertion process becomes optimal for va-
lues of g slightly exceeding 4, .

Now, suppose that the condition (4) is violated by some elements of the
set {Bs.l_.,) , B(‘n} + In this case, the insertion of new links must be supple-
mented by the omission of some links previously existing to obtain the sub-
sequent optimal network, The omission process will be carried out as follows:

1. The links andfor groups of links with ﬁf_is) andfor ﬁ(}) violating the
condition (4) have all to he omitted, provided that they are independently

-omittable.

2. Among the links andjor groups of links inter-dependent for omission
with 31 andjor # violating the condition (4), the ones whose omissions
first become economical must be omitted, 1f there exist several groups of
inter.dependent links available for omission, each group cannot be handled,
in general, separately as in the insertion proecess. On the contrary, the link
andfor the group of links whose omissions first become economical have to

be omitted.

3. It might happen thal the two preceding cases have to he combined.

It is evident from the three Lemmas established in Appendix and the
procedure itself that the network obtained in this way will be the optimal
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network as scon as the preceding one ceases to be optimal. In this case, §,
is no longer equal to min ﬁg.)s but is obtained by equaling the total costs
associated with these two networks.

Applying the insertion process and the omission process, if necessary,
guceessively, the subsequent elements of the sequence of optimal nelworks
can easily be obtained. The i-th element of this sequence is optimal for the
values of f satisfying f;., < <8;. Suppose thal we have g, , < f*¥=<§,.
The n-th element of the sequence is.then the optimal network required.

Geometrically, the point with coordinates g and Copt. in the {8, C)-plane
moves on the polygenal contour 4,4, A4,... in Fig. 3 as f inereases, where
Copt. i5 the cost associated with the network optimal for the appropriate
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value of . The vertices of this contour correspond to the § values for which
two sueccessive elements of the sequence of optimal networks have equal costs,
In Fig. 3, ouly the cost diagrams of optimal networks have been drawn.

In the procedure deseribed above, it might not be necessary to construct
all the elements of the sequence of optimal networks to obiain the network
optinial for p=pg*. In fact, consider the k-lh network optimal for fp..,<p=g, . If
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max {ﬁ ff:) ; ﬁ(;‘)} = min {ﬁ(fj) , ﬁ(;'j?} N : (6)

no link need be omitted from the network obtained by inserting a new link
or links in the k-th one. This new network (the (k-|-1)-th one in this case)
will, therefore, be the successive optimal network until it becomes econo-
mical to modify it. In this case, we merely have to continue the procedure.
Now, suppose that-the condition (6} is not fulfilled, but, instead, we have

max { F®» BB} < min { plirD iy -

where the superscript (k- !) refers to the mnetwork obtained from the k-th
network by performing the necessary inscrtion process ({ > 1). Since the
{k 4 1)-th network is optimal for § values satisfying

max { B BP} < 8 < min {p7H0 > 100} ®)

according to the Theorem in Appendix, the procedure can be continued by
applying a new insertion proeess to the (k- I)-th network without applying
the necessary omission proeess to it. Here, / is the number of the optimal
networks by-passed. It should he noted that the necessary omission process
must be carried- out if the conditions (6) and (7) are not fulfilled simulta-
ueously.

In the beginning of this section, we had left undecided which shortest
tree must be taken in getting started if there exist more than one shortest
tree having equal sums s L Q smaller than the analogous sums associated
with all other shortest trees. It is obvious from the procedure that the one
which first ceases being optimal must be taken. '

Another ambiguity similar to the ome deseribed in the last paragraph
arises in the insertion process if the set {#;;, fi} attains iis minimum for
more than one element assoeiated with inter-dependent links the insertions
"~ of which result in equal sums > LQ smaller than all the analogous sums
corresponding to the insertions of other inter-dependent links. The insertion
of each one of such links gives a differcnt network, but the costs for these
‘networks are represented by the same line in (4, C)-plane (see Fig. 8). Among
these networks, the one which first ceases being optimal must be chosen as
the subsequent optimal network if no link need be omitted from any one of
. these networks, Otherwise, omission process must be applied to each onc of
these networks and the resulting networks must be compared. The one whose
cost first becomes equal to the cost of the preceding network must be chosen
as the subsequent optimal network.

In applying the procedure, it may happen that there exist more than one
shortest path-aveilable for a flow. In this case, any one of the shortest-paths
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‘available can be used to carry the flow considered until one of them is first
shortened by inserting a new link. The ambiguity is then removed. It should
he noted that in computing the values of § associated with the insertions of
new links in'these shortest paths each new link must be supposed to carry
the flow considered in addition to others. If the insertions of several new
links-in these shortest paths first become economieal for the same value of
B8, the longest link must be inserted.

Second procedure. In this procedure, the complete network optimal for
=0 is taken for getting started instead of the shortest tree in-the first
procedure, and « is increased starting from zero until it reaches ¥, the ac-
tual value of &, whereas g is kept constant throughout. A sequence of opki-
mal networks is eonstructed in the same way as hefore to obiain the network
optimal for « —a*, If the total costs of the elements of this sequence are
plotted against «, a figure similar to Fig. 8 is obtained. It is evident that
the role played by the successive insertion processes applied in the first pro-
cedure is played by the successive omission processes applied in the sccond
procedure, ind vice-versa.

Remark. In the problem treated ahove, it was "assnmed that the rate of
flow associated with any pair of terminals did not depend on time. Now,
suppose that rates of flow depend on time as follows:

Q= QY, (i j) (9)

where f{¢) is a monotonically increasing function of time and Qg}}) are cons-
tants. The resulting problem ean be treated along the same lines as hefore
substituting y = f(t), where f(r) s a given funetion. As f(t) increases, the
previously constructed optimal network has to be modified by inserting new
links. Of course, it would not he economical to omit any link previously
construeted. In particular, the optimal network at any given time can he
 obtained by inserting the links economical for the given value of f(¢#) in the
~optimal network corresponding to f(t)=1.

4. Numerical example. Consider the set of the five terminals of Fig. 5
located on a distance-true map. The distances and the amounts of flow
hetween these terminals are given hy the two matrices of Fig. 6. Assuming
without loss of generality that « =1, we propose te find the network optimal
for g% = 4f7 applying the first procedure. In this -example, there is only one
shortest tree which is drawn in full line in Pig. 5. To obtain the successive
optimal networks, we compute the first set of g values:

51
1)y _
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HBince there are no links jointly insertahle in this shortest tree, only the g
values agsociated with the individual insertions of the links have Dbeen com-
puted. The smallest clement of this first sel is ﬁgls) . The link (3,5) must

Fig. &

then he inserted. Now, the individual omissions of the links (3,4) and {4,5)
from the resulting network must he tested on one hand, the insertions of all
the links available for insertion in the resulting network must be tested on
the other hand. The re-insertions of the links (3,4) and (4,5) become economi-
cal for

W=s. =L (11
1__ tiv]2]3]a]s 1|2 (3|als
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2 || 12{ 3 (34| |2 | os| 1 |8
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On the other hand, we have

] 11
=g M=% M=y @=s =5 @

Since max ﬁ{l)-ﬂm{_ min ,6’(2) (’{? , it ig not necessary to take out thelink
{4,8) for continuing the procedure according to the Theorem in Appendix.
Instead, the link (1,8) must be inserted. In reality, the second element of the
sequence of optimal networks is the network obtained from the shortest tree
by inserting the Jink (8,5) and omitting the link (4,5) simultaneously. Howe-
ver, this network has been bhy-passed to shorten the procedure. Now, we
easily compute for the reinsertions of the links (1,2) and {(2,3)

10 120
2(3) __
=17 R =128 (13)
on one hand, and for the insertions of ‘ghe available links
;33 e 8 . . 34
fu=70 Fe=g  fu=1 =g o o (9

on the other hand. Since max Bf.i):ﬂ%) > min ﬁ;j: ,B;E, the theorem previ-
ously mentioned does not apply. The link (1,2) must therefore be omitted,
We compute for the resulting network

ay 10 8 =

8 17 11
Fia = 37 ,3(3) ° ﬂ{3) =15, ‘B(S} . ﬂg.'i) s

15 =3 ! 24 a2 51

3

2 (15)
where g is the value of § for which the simultaneous insertion of the links
-{1,2) and (2,5) becomes economical, Thus, the links (1,2) and (2,5) must be
inserted simultaneously, Now, the individual omisgions of the links (1,3),
{2,3), (3,6) and the simultaneous omission of the links (1,8) and (2,3) must he
checked., We compute '

5 =5 =g (16)

9
ﬁ]s) — 14 B — 1 128

14’ A =
where B?HS the # value for which the simultaneous re-insertion of the links
(1,3) and (2,3) becomes economical. Since A = g* > g3, the link (2,8) must
be omitted. To check, we compute for the resulting network

33 0 '
M=% Mg =g A=t @

Sinee these values are larger than g*=4/7, no link need’ be inserted. Thus,
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the network obtained by omitting the link (2,8) is the required optimal network
{see Fig. 7}.

© Fig. 7

' APPENDIX

The three Lemmas and the Theorem to which reference has been made

in Section 8 will he established here.

Lemma 1. The simultaneous insertion of a number of indepedently in-
seriable links in a network N cannot precede the individual insertion of the
link whose insertion first becomes economical, or, succeed the individual in-
sertion of the link whose insertion last hecomes economical.

Proof. For the moment, let us take two links (p, ¢} and (r, s). The 2
values for the individual insertions and the simultaneous insertion of these
links are computed from the following equations (see Equation 8 in Section 3)

I'S"pq 2 lkl Qpi—= qu =0, A Brs 2 J'rmuA an)— & Lyg=0
k1 m,n
and

Poge s [ 2t Qutt ), hnn Qo | = (Lpg o+ Lra) =0,

B, n,n

Suppose f,,< Brs - It can 1'eadily be verified that Brg <-Bpgirs < Brs 'Similal‘ly,
the value Bpgeres tz for which the simultaneous insertion of the links (p, g),
(r, s} and (¢, z) becomes economical lies hetween Bz and By, ., etc.

Lemma 2. The simultaneous insertion of a number of links inter-depen-
dent for insertion cannot precede the individual insertion of the link whose
insertion first hecomes economical, but can succeed the individual insertion
of the link whose insertion last becomes economical
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Lemma 3. The simultaneous insertion of a number of jointly insertable
links eannot succeed the individual insertion of the link whose insertion Iast
becomes economical, but can precede the individual insertion of the link
whose insertion first becomes economical.

These two Lemmas are proved in the same manner as in Lemma 1.

Theorem. Let {ﬁU, Bg ) be the set of g values associated with the indi-

vidual insertions of all the links available for insertion and the simultaneous
insertions of the jointly insertable links in a given network N. Similarly, let
{Brs» Bt} be the set of g values associated with the individual omissions of
the existing links and the simultaneous omissions of the jointly omittable
links from N. If

B e=max (B, Br} < B =min{f;;, fr),

then the“network N is optimal for g values satisfying g = g.=< g*.

Proof. Denote by N+ ¢ and N —& the two networks obtained from N by
inserting either the link ¢ or the jointly insertable links ¢ in &, and omit-
ting either the link & or the jointly omittable links & from N. If b and ¢ are
independently insertable in N — b, the insertion of ¢ in ¥ —5b becomes eco-
nomical for the same value of # as in . The cost for the network N —b&+¢
in this case.is represented by thke line labelled 1 in Fig. 4. The costs for this
network are represented by the lines 2 and 3 respectively according to whet-
her 4 and ¢ are inter-dependent for insertion or jointly insertable in N — 3.
It is seen from Fig. 4 that in either case the cost line for N —b-4c¢ cannot
lie helow the cost line for N in the interval (#, f.). Now, suppose that
f" =Py and p* =, . Since the cost line for N —b,—~ +++ — b, -intersects the
cost line for N at a value of § smaller than g; according to Lemma 2, and
since the cost line for N-+e -+ - e, intersects “the cost line for N at a
value of g larger than g, according to Lemma 3, the cost line for the network
N—by—+er by —+ec, + -+ +ec, cannot lie below the cost line for N in the
interval (#, 7). This proves the theorem,
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OZET

Bu makalede terminaller climlesi wverildigi takdirde inga masrafi minimum .

olan irtibat gebekesinin tdyini iein benzer iki metod wverilmektedir, Ter-

minallerin dogrusal irtibat halkalari ile baglandifi ve herhangi iki termi-

nal arasindaki akim miktarinin biiindigi kabul edilmektedir, Bir irtibat

halkasinin birim uzunlugu i¢in inga masrafininh bu halkanin tagpidigy alkim

ile orantili bir masraf ile sabit . bir masrafin toplamina egit oldufu farze-
dilmektedir.




