
ON NETWORKS OF MINIMUM CONSTRUCTION COST* 

H . Y Ü K S E L 

In the present paper two s i m i l a r procedures are g i v e n to determine the 
conaect ion network of minimum construct ion cost w h e n the set of termí
nala is speci f ied . I t is assumed that terminals are connected by straight 
l i n k s a n d the amount of flow between any p a i r of termínala is k n o w n . 
T h e bui lding coat per unit length for a l i n k i s supposed to be the sum 
of a charge that is proportional to the total flow c a r r i e d by this l i n k and 

a constant f i x e d charge . 

1. Introduction. The paper is concerned with, f i n d i n g the op t imal con
nect ion n e t w o r k when the set of t e rmina ls is specified. Terminals are to be 
connected by s t r a i g h t l i n k s and the amount of f l o w between any pair of ter 
mina l s is g iven. The b u i l d i n g cost per u n i t l ength for a connection l i n k is 
assumed to be the sum of a charge t h a t is propor t i ona l to the t o t a l f l o w car-
vied by t h i s l i n k and a constant f i xed charge. I f , i n p a r t i c u l a r , the b u i l d i n g 
cost consisted of the f i xed charge on ly , the present problem w o u l d reduce to 
f i n d i n g the shortest connection n e t w o r k w h i c h has already been treated by 
R , G. P R I M [ ' ] ** . On the other hand , i f the f i x e d charge was zero, the o p t i 
m a l connection n e t w o r k w o u l d be the complete ne twork w h i c h contains a l l 
the possible l i n k s . Two s i m i l a r procedures are given to f i n d the solut ion to 
t h e general problem. The f i r s t procedure is described in deLai l ; i t consists of 
c onstruc t ing a sequence of op t imal networks s t a r t i n g f r o m the shortest tree. 
The basic idea i n the second procedure is the same as i n the f i r s t , bu t i t is 
t h e complete n e t w o r k t h a t is chosen as the f i r s t element of the sequence. The 
f i r s t procedure is equal ly applicable to the problem of mod i f y ing a previously 
ex i s t ing connection n e t w o r k when the amounts of f l o w between termina ls 
increase i n t ime at a constant r a t i o . 

The p r a c t i c a l i t y of these procedures depends on the ra t i o of the propor
t i o n a l charge per u n i t f l o w and the f i x e d charge. I f the f i xed charge prevai led, 

* T h e author is indebted to Professor W . PRAGÉR who k i n d l y suggested this problem. 
** Numbers i n square brackets refer to the Bib l iography at the end of the p a p B r . 
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the f i r s t procedure could lead to the opt imal n e t w o r k required at a r e la 
t i v e l y s m a l l number of steps. The second procedure is preferable i f the f ixed 
charge is smal l compared to the propor t i ona l charge per u n i t f l o w . 

2. Formulation of the problem. The b u i l d i n g cost per u n i t l e n g t h of a 
connection l i n k is assumed to be represented by the diagram of F i g . 1, w h i c h 
is characterized by t w o constants a and /S. For a given connection n e t w o r k , 

the t o t a l b u i l d i n g cost is then given by the f o l l o w i n g sum extended over a l l 
connection l i n k s 

C = 2 l ( « + i Q ) , (1> 

where L i s the l e n g t h of a generic l i n k and Q the t o t a l f l o w carr ied by t h i s 
l i n k . I t is obvious t h a t i n a given n e t w o r k the f l o w between any two t e r m i 
nals must f o l l o w the shortest path avai lable . I n the f o l l o w i n g , t h i s pr inc ip le 
w i l l be cal led the shortest path pr inc ip l e . Thus , f o r a g iven n e t w o r k and 
specified amounts of f l o w between each pair of t e r m i n a l s , the cost defined 
by Equat ion (1) is u n i q u e l y determined. 

I t w i l l he convenient f or the subsequent analysis to t reat b r i e f l y the 
t w o extreme cases of e i ther a = 0 or — 0. For a = 0, the o p t i m a l n e t w o r k is 
the one t h a t is obtained by d i re c t l y connecting every pair"o f t e rmina l s between 
w h i c h there is a non-zero f l o w . I f the f l o w associated w i t h every pair o f 
t e rmina l s is non-zero, the op t imal so lut ion is the complete n e t w o r k t h a t con
ta ins a i l possible l i n k s between t e r m i n a l s . 

For j? = 0, the o p t i m a l n e t w o r k is the shortest topological tree I t i s 
i n t e r e s t i n g to observe t h a t the shortest tree remains the o p t i m a l n e t w o r k , 
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whatever the values of « and ft, i f the f l ow between any two t e rmina l s t h a t 
are not d i re c t l y connected i n the shortest tree is specified to be zero. 

I n general , the o p t i m a l s o l u t i o n of the problem f o rmula ted above is an 
o r d i n a r y connection n e t w o r k , i . e. neither a shortest tree nor the complete 
n e t w o r k , l y i n g between these t w o extreme so lut ions . Two procedures s i m i l a r 
t o each other w i l l he presented i n the next section each one of w h i c h enable 
one to obtain the o p t i m a l net-work or networks i n a s t r a i g h t f o r w a r d step-by-
step manner s t a r t i n g f r o m either one or the other extreme so lu t i on . 

3. Construction of the roptimal network (first procedure). T h i s procedure 
consists of c ons t ruc t ing a sequence of networks i n such a way t h a t each 
n e t w o r k is o p t i m a l f o r a certain range of values of ft and the t o t a l i t y of 
these ranges forms a closed i n t e r v a l on the ft axis i n c l u d i n g ft — 0 and ft = ft™, 
ft* being the ac tua l value of ft. The f i r s t element of t h i s sequence w i l l be 
chosen as the suitable shortest tree opt imal f or ft — 0. The subsequent ele
ments of the sequence w i l l be constructed one after another as ft increases 
cont inuous ly s t a r t i n g f r o m zero. The f i n a l n e t w o r k w h i c h is op t imal f o r the 
range i n c l u d i n g /?* i s , of course, the required opt imal n e t w o r k . I n t h i s f i r s t 
procedure, a w i l l be kept constant . 

Before descr ibing the procedure, i t is convenient to introduce a few con-"! 
cepts w h i c h w i l l be used i n the f o l l o w i n g . Consider a number of l i n k s t h a t 
c ou ld be inserted i n t o a given n e t w o r k N> I f the f l o w carr ied by any one of 
these l i n k s when i t is inserted i n d i v i d u a l l y i n TV is the same as the f l o w 
car r i ed by this l i n k when a l l considered l i n k s are inserted s imul taneous ly , 
these l i n k s w i l l bo cal led indepedently insertable . I n the shortest tree of 
F i g . 2, the l i n k s (1,3), (3,8), and (5,7) are independently insertab le . According 
to Lemma 1 established i n Appendix , the simultaneous inser t ion of such l i n k s 
becomes economical f o r a value of ft w h i c h lies between the smallest and the 
largest of the ft values associated w i t h the i n d i v i d u a l insert ions of these 
l i n k s . 

I f the f l o w carr ied by each one of a number of l i n k s when i t is inser
ted i n d i v i d u a l l y is lessened when they are inserted s imultaneous ly , these 
l i n k s w i l l he cal led interdependent f o r i n s e r t i o n . I n the shortest tree of F ig , 2, 
the l i n k s (1,5) and (1,6), f o r instance, are inter-dependent for i n s e r t i o n . Ac
c o r d i n g to Lemma 2, the s imultaneous i n s e r t i o n of such l i n k s becomes eco
nomica l f o r a value of ft w h i c h cannot be smal ler t h a n the smallest of the ft 
values associated w i t h the i n d i v i d u a l inser t i on of these l i n k s , bu t can exceed 
t h e largest of them. 

I f the f l o w carr ied by each one. of a. number of l i n k s when i t is inser
ted i n d i v i d u a l l y becomes larger when they ure inserLed s imul taneous ly , these 
l i n k s w i l l be cal led j o i n t l y insertab le . I n the shortest tree of F ig . 2, the l i n k s 
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(1.3) and (1.6) are j o i n t l y insertable . According to Lemma 3, the simultaneous-
i n s e r t i o n of s u c h ' l i n k s becomes economical f o r a value of ft w h i c h cannot 
exceed the largest of the ft values associated w i t h the i n d i v i d u a l insert ions 
of these l i n k s , bu t can be less t h a n the smallest of them. 

From the three Lemmas established i n Appendix , we can immediate ly 
deduce the f o l l o w i n g resul ts . Suppose t h a t a l i n k avai lable f or inser t i on i s 
not invo lved i n any combination of j o i n t l y insertable l inks ' . We can t h e n 
res tr i c t ourselves to tes t ing on ly the i n d i v i d u a l i n s e r t i o n of such, a l i n k 
according to Lemma 1 and 2. Otherwise, the j o i n t insert ions of th i s l i n k i n 
a l l possible combinations must be tested i n addi t ion to i ts i n d i v i d u a l inser 
t i o n according to Lemma 3. Since the omission process is the reverse process 
to the i n s e r t i o n one, the preceding results must be reversed as f a r as omis
sion is concerned. Namely, the j o i n t omissions of a l i n k i n a l l possible com
binat ions must be tested i n add i t i on to i t s i n d i v i d u a l omission according to 
Lemma 2 i f t h i s l i n k is invo lved i n combinations of l i n k s inter-dependent f or 
re - inser t ion . Otherwise, we can res tr i c t ourselves to test ing i t s i n d i v i d u a l 
omiss ion. L i n k s inter-dependent f or re - inser t i on w i l l be cal led j o i n t l y omit -
table . 

As remarked i n the previous section, for ft — 0 the opt imal ne twork is 
any one of the shortest trees (there may exist more t h a n one shortest t ree ) . 
For s u f f i c i e n t l y smal l values of ft, the shortest tree w i t h the smallest sum 
2LQ obvious ly remains the op t imal n e t w o r k . The t o t a l cost of b u i l d i n g f o r 
t h i s n e t w o r k is expressed as 

where the superscripts (1) refer to the f i r s t element of the sequence. Since a 
is kept constant , C O is seen to be a l i n e a r l y increasing f u n c t i o n of ft f o r 
t h i s n e t w o r k . I t is reasonable to expect t h a t as ft increases the mod i f i ca t i on 
of the shortest tree becomes necessary by i n s e r t i n g a new l i n k or l i n k s and 
perhaps o m i t t i n g a l i n k or l i n k s . The inser t ion of new l i n k s introduces new 
shortest paths avai lable f or cer ta in f l ows and therefore diminishes the f l o w -
dependent part of the cost ft 2 LV) Q(l) i n Equat ion (2), a l though i t augments 
the f ixed charge « 2 / , ( ' ) . The probable omission of some l i n k s after the i n 
ser t i on process has been completed, diminishes the f i x e d charge a _££('>,. 
whereas i t augments the f low-dependent par t of the cost. The ft value f o r 
w h i c h the inser t i on of the l i n k (p, q), for instance, f i r s t becomes economical 
is computed by an equation of the f o r m 

where kmn > 0 is the dif ference between the lengths of the paths w h i c h t h e 

CO = a 2 Z<'> + ft 2 £<*> Q O (2> 

<3> 
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f l o w Qm„ f o l l ows before and af ter the i n s e r t i o n of th i s l i n k , L p q is the length 
of the l i n k (p, q), and the sum is extended over a l l the f l ows t h a t have chan
ged the i r paths . 

To obta in the second element of the sequence of o p t i m a l networks a n 
i n s e r t i o n process f i r s t is applied to the shortest tree and the r e s u l t i n g net 
w o r k is modi f ied by an omission process, i f necessary. The insert ion process 

. is carr ied out by means of two sets of ft values. The f i r s t set {ftfj} is com
puted i n such a way t h a t f o r each element of i t the i n d i v i d u a l i n s e r t i o n of 
the corresponding l i n k i n the shortest tree w o u l d f i r s t become economical. 

Each element of the second set of ft values {fi^} (k = lt 2, ... , m ) is associ
ated w i t h the s imultaneous inser t ion of a number of j o i n t l y insertable l i n k s . 

The inser t i on process is carr ied out according to the f o l l o w i n g principles : 

1 . The j o i n t set {ft^jj, ft^} has on ly one element smaller t h a n a l l o t 
hers. The corresponding l i n k or group of l i n k s has then to be inserted. 

2. The j o i n t set ^ ft^jj , ft^} has several equal elements t h a t are smal ler 
t h a n a l l o thers . The corresponding l i n k s and/or groups of l i n k s nave a l l to 
he inserted, provided t h a t they are independently insertable . 

3. I f the set ^ ft*-*) > ft^ ^ a t ta ins i ts m i n i m u m for more t h a n one element 
associated w i t h l i n k s and/or groups of„ l i n k s inter-dependent f o r i n s e r t i o n , 
the l i n k and/or group of l i n k s whose insert ions resu l t i n the smallest sum 

2 L Q must be inserted . I n the event t h a t the set ^ ftf^ •> ft^fy a t ta ins i t s m i 
n i m u m for several groups of l i n k s such t h a t the elements of each group are 
inter-dependent f or inser t i on and/or for a number of groups of j o i n t l y inser
table l i n k s such t h a t cer ta in combinations of these groups are inter-depen
dent f or i n s e r t i o n , the process is applied to each group of l i n k s and/or to 
each combinat ion • of groups of j o i n t l y insertable l i n k s . I n F i g . 2, the l i n k s 
(1,4), (1,5), and (1,6) on one hand , and the l i n k s (3, 4), (3, 7), and (2, 7) on 
the other hand const i tute two such groups of l i n k s . 

4. I t may happen t h a t the two preceding cases have to be combined. I n 
F ig . 2, f o r example, i f the insert ions of the independently insertable l i n k s 
(1,3) and (4,8) and the l i n k s (1,4) and (2,6) t h a t are inter-dependent f or inser 
t i o n f i r s t become economical , among the l i n k s (1,4) and (2,6) the one whose 
i n s e r t i o n resu l ts i n the smallest sum 2 L Q must be inserted i n addi t ion to. 
i n s e r t i n g the l i n k s (1,3) and (4,8). 

Now, the question arises whether or not i t w o u l d be economical to take 
out some l i n k s a f ter the inser t i on process has been completed. T h i s could he 
the case because the i n s e r t i o n of new l i n k s is bound to d i m i n i s h the amo
unts of f l o w a long cer ta in l i n k s , a l t h o u g h the f i xed charges ( « / , ) associated 
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w i t h these l i n k s remain constant. Of course, the condi t ion of connectedness 
m u s t be respected i n the omission process. The l i n k s whi ch have to be omit 
ted-can be determined i n a s i m i l a r way . Consider the set {P^s} ^hose gene
r i c element ft^ is computed for the re - inser t ion of the l i n k (r, s) i n the new 
n e t w o r k as i f th i s l i n k were not invo lved i n i t . I n add i t i on to the i n d i v i d u a l 
omissions of the l i n k s avai lable , the j o i n t omissions of the l i n k s that are 
inter-dependent f or re - inser t i on must be considered. Because the re- insert ions 
o f such l i n k s m i g h t become economical f o r a value of ft w h i c h exceeds the ft 
values associated w i t h the i n d i v i d u a l re- insert ions of these l i n k s . Denote 
by {ftP}- the set of these ft values. Of course, on ly the omissions of the 

l i n k s along w h i c h amounts of f l o w have been d imin ished af ter the inser t i on 
process must be tested. I f the condit ion 

max { $™ - ftf } ^ m i n { /?<}> , /J<*> } (4) 

Is f u l f i l l e d , no l i n k need he omitted . I n th i s case, the shortest tree used for 
ge t t ing started ceases being opt imal f or ft = ftit where ftt is given by 

ft^min (5) 

and the n e t w o r k obtained by the inser t ion .process becomes opt imal f or va
lues of ft s l i g h t l y exceeding / J , . 

Now, suppose t h a t the condi t ion (4) is v io lated by some elements of the 
set ^ ftW ' p(p ^ • I n t h i s case, the i n s e r t i o n of new l i n k s must be supple
mented by the omission of some l i n k s prev ious ly ex is t ing to obta in the sub
sequent o p t i m a l n e t w o r k . The omission process w i l l be carr ied out as f o l l ows : 

1. The l i n k s and/or groups of l i n k s w i t h ft^ and/or p^P v i o l a t i n g the 
c o n d i t i o n (4) have a l l to he omit ted , provided t h a t they are independently 
o m i t t a b l e . 

2. A m o n g the l i n k s and/or groups of l i n k s inter-dependent for omission 
w i t h jjW and/or ft^P v i o l a t i n g the condit ion (4), the ones whose omissions 
f i r s t become economical must be omitted . I f there exist several groups of 
inter .dependent l i n k s avai lable for omission, each group cannot be handled, 
i n general , separately as i n the inser t i on process. On the c o n t r a r y , the l i n k 
and/or the group of l i n k s whose omissions f i r s t become economical have to 
be omi t ted . 

3. I t m i g h t happen t h a t the two preceding cases have to he combined. 
I t is evident f r o m the three Lemmas established i n Appendix and the 

procedure i t s e l f t h a t the n e t w o r k obtained i n t h i s way w i l l be the op t imal 
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n e t w o r k as soon as the preceding one ceases to be op t ima l . I n th i s case, p 1 

is no longer equal to m i n p^? > bu t is obtained by equating the t o t a l costs 
associated w i t h these two n e t w o r k s . 

A p p l y i n g the. . i n s e r t i o n process and the omission process, i f necessary, 
successively, the subsequent elements of the sequence of op t imal networks 
can easily be obtained. The f - t h element of t h i s sequence is op t imal f o r the 
values of £ s a t i s f y i n g ^ p ^ ftf. Suppose t h a t we have pa_1^fi*^pn. 

The H-th element of the sequence i s . then the op t imal n e t w o r k requ ired . 

Geometr ical ly , the po int w i t h coordinates p and Copt, i n the {/?, C)-plane 
moves on the po lygonal contour A0AtAt... i n F i g . 3 as /? increases, where 
Copt, is the cost associated w i t h the n e t w o r k opt imal f or the appropriate 

F i g . 3 • F i g . 4 

value of p. The vertices of th i s contour correspond to the p values for w h i c h 
two successive elements of the sequence of o p t i m a l networks have equal costs. 
I n F i g . 3, on ly the cost diagrams of op t imal networks have been d r a w n . 

I n the procedure described above, i t m i g h t not be necessary to construct 
a l l the elements of the sequence of o p t i m a l networks to obta in the n e t w o r k 
o p t i m a l f or P=p* . I n fac t , consider the jfe-th n e t w o r k opt imal f or pk—i^péiPk • I f 
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mas {ft W , ft^ } ^ m i u { ft<~f] > } , (6) 

no ] i n k need be omitted f r o m the n e t w o r k obtained by inser t ing a new l i n k 
or l i n k s i n the jfc-th one. T h i s new network (the ( f c - f - l ) - t h one i n t h i s case) 
w i l l , therefore , be the successive opt imal n e t w o r k u n t i l i t becomes econo
m i c a l to m o d i f y i t . I n th i s case, we merely have to continue the procedure. 
Now, suppose t h a t the condi t ion (6) is not f u l f i l l e d , b u t , instead, we have 

max { , ?W } 4 m m { > '>} (7) 

where the superscript (k + l) refers to the n e t w o r k obtained f r o m the k-tb 
n e t w o r k by p e r f o r m i n g the necessary inser t i on process (/ > 1). Since the 
(k + 0 - t h n e t w o r k is o p t i m a l f or ft values sa t i s f y ing 

max { , fi® } ^ ft ^ m i n { /*<*+'> > } (8) 

according to the Theorem i n Appendix , the procedure can be cont inued by 
a p p l y i n g a new inser t i on process to the {k~\-l)-th n e t w o r k w i t h o u t apply ing 
t h e necessary omission process to i t . Here, I is the number of the op t imal 
ne tworks by-passed. I t should he noted t h a t the necessary omission process 
must be carr ied out i f the condit ions (6) and (7) are not f u l f i l l e d s i m u l t a -
ueously . 

I n the beg inning of th i s section, we had l e f t undecided w h i c h shortest 
t ree must be t a k e n i n ge t t ing s tarted i f there exist more than one shortest 
tree h a v i n g equal sums 2LQ smaller t h a n the analogous sums associated 
w i t h a l l other shortest trees. I t is obvious f r o m the procedure t h a t the one 
w h i c h f i r s t ceases being o p t i m a l must be t a k e n . 

Another a m b i g u i t y s i m i l a r to the one described i n the last paragraph 
arises i n the inser t i on process i f the set { f i i . , ftk} attains i ts m i n i m u m for 
more t h a n one element associated w i t h inter-dependent l i n k s the. insert ions 
of w h i c h r e s u l t i n equal sums X L Q smaller t h a n a l l the analogous sums 
corresponding to the insert ions of other inter-dependent l i n k s . The i n s e r t i o n 
o f each one of such l i n k s gives a d i f f e rent n e t w o r k , bu t the costs f or these 
networks are represented by the same l ine i n {ft, C)-plane (see F ig . 3). Among 
these ne tworks , the one w h i c h f i r s t ceases being opt imal must be chosen as 
t h e subsequent op t imal ne twork i f no l i n k need be omit ted f r o m any one of 
these ne tworks . Otherwise, omission process must be applied to each one of 
these networks and the r e s u l t i n g networks must be compared. The one whose 
cost f i r s t becomes equal to the cost of the preceding ne twork must be chosen 
as the subsequent op t imal n e t w o r k . 

I n app ly ing the procedure, i t may happen t h a t there exist more t h a n one 
shortest path Ava i lab l e for a f l o w . I n this case, any one of the shortest paths 
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ava i lab le can be used to c a r r y the f l o w considered u n t i l one of them is f i r s t 
shortened by i n s e r t i n g a new l i n k . The ambigu i ty is then removed. I t should 
h e noted that i n c omput ing the values of ft associated w i t h the insert ions of 
new l i n k s i n these shortest paths each new l i n k must be supposed to c a r r y 
the f l o w considered i n add i t i on to others. I f the insert ions of several new 
l i n k s i n these shortest paths f i r s t become economical f o r the same value of 
ft, the longest l i n k must be inserted. 

Second procedure. I n th i s procedure, the complete network opt imal for 
« — 0 is taken for g e t t i n g s tarted instead of the shortest tree i n the f i r s t 
^procedure, and a is increased s t a r t i n g f r o m zero u n t i l I t reaches a*, the ac
t u a l value of a, whereas ft is kept constant t h r o u g h o u t . A sequence of o p t i 
m a l ne tworks is constructed i n the same way as before to obtain the n e t w o r k 
•optimal for « = I f the t o t a l costs of the elements of this sequence are 
p l o t t e d against a, a f i g u r e s i m i l a r to F i g . 3 is obtained. I t is evident t h a t 
the ro le played by the successive inser t i on processes applied i n the f i r s t pro 
cedure is played by the successive omission processes applied i n the second 
procedure, and vice-versa. 

Remark. I n the problem treated above, i t was rassnmed t h a t the rate of 
f l o w associated w i t h any pair of terminals d id not depend on t ime . Now, 
suppose that rates of f l o w depend on t ime as f o l l ows : 

Qij = f(t)Q?/> d + j) (9) 

where f{t) is a monoton i ca l ly increas ing f u n c t i o n of time and are cons
t a n t s . The r e s u l t i n g problem can be treated along the same l ines as before 
s u b s t i t u t i n g y = ftf(t), where f(t) is a given f u n c t i o n . As f(t) increases, the 
prev ious ly constructed o p t i m a l n e t w o r k has to be modi f ied by i n s e r t i n g new 
l i n k s . Of course, i t w o u l d not be economical to omit any l i n k prev ious ly 
constructed . I n p a r t i c u l a r , the op t imal n e t w o r k at any given t ime can be 
obtained by i n s e r t i n g the l i n k s economical f o r the given value of f(t) i n the 
'Optimal n e t w o r k corresponding to / ( f ) = 1. 

4. Numerical example. Consider the set of the f i v e t e rmina l s of F i g . 5 
located on a distance-true map. The distances and the amounts of f l o w 
between these termina ls are g iven by the t w o matrices of F i g . 6. Assuming 
w i t h o u t loss of genera l i ty t h a t » = 1, we propose to f i n d the n e t w o r k opt imal 
f o r jf?* = 4/7 app ly ing the f i r s t procedure. I n t h i s exa.mple, there is on ly one 
shortest tree w h i c h is d r a w n i n f u l l l i n e i n F ig . 5. To obta in the successive 
o p t i m a l n e t w o r k s , we compute the f i r s t set of ft values : 

^ — 21 P u — 1 5 P l 5 — 3 9 p3* — H ' p2b —121' ^ ~ 42 ^ ' 



10 H . Y Ü K S E L 

Since there are no l i n k s j o i n t l y insertahle i n t h i s shortest tree, on ly the (f 
values associated w i t h the i n d i v i d u a l insert ions of the l i n k s have been com
puted. The smallest element of th i s f i r s t set is fti^ • The l i n k (3,5) must 

Fig . 5 

then he inserted . Now, the i n d i v i d u a l omissions of the l i n k s (3,4) and (4,5) 
f r o m the r e s u l t i n g n e t w o r k must he tested on one hand , the insert ions of a l l 
the l i n k s avai lable f or inser t i on i n the r e s u l t i n g network must be tested on 
the other hand . The re- insert ions of the l i n k s (3,4) and (4,5) become economi
cal f o r 

I 2 3 4 5 1 2 3 4 5 

1 1 1.5 3.3 4 1 1 4 2 3 

2 1 1.2 3 3.4 2 1 0.5 1 8 

3 1.5 1.2 2 3 3 4 0.5 5 7 

4 3.3 3 2 2.4 4 2 1 5 6 

5 4 3.4 3 2.4 5 3 8 7 6 

Dislance Matrix Flow Matrix 

Fig . 6 
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On the other hand , we have 

PL3 — 21 I'î4 PlS — 9 ' ^24 " d> /"as — 4 4 V ' 

Since max ^ = ^ < m i n — i t is not necessary to take out the l i n k 
•(4,5) f o r c o n t i n u i n g the procedure according to the Theorem i n Appendix . 
Instead , the l i n k (1,3) must he inserted. I n r e a l i t y , the second element of the 
sequence of o p t i m a l networks is the ne twork obtained f r o m the shortest tree 
by i n s e r t i n g the l i n k (3,5) and o m i t t i n g the l i n k (4,5) s imultaneously . Howe
ver , t h i s n e t w o r k has been by-passed to shorten the procedure. Now, we 
easi ly compute f or the re insert ions of the l i n k s (1,2) and (2,3) 

Pl2 - 1 7 ' hs ~ 1 2 3 5 K ' 

on one band , and f o r the insert ions of the avai lable l i n k s 

o n the other hand . Since max j?J.̂  = ^ > m i n p'tj = p ^ 5 , the theorem prev i 
ously mentioned does not apply . The l i n k (1,2) must therefore be omit ted . 
We compute f o r the r e s u l t i n g n e t w o r k 

Pn — 1 7 ' ^ 4 — T Pis — T ' 2 4 ' ^ 2 5 " 3 2 P l " ~ 2 1 U J 

where is the value of p f o r w h i c h the s imultaneous inser t ion of the l i n k s 
{1,2) and (2,5) becomes economical. Thus , the l i n k s (1,2) and (2,5) must be 
inserted s imul taneous ly . Now, the i n d i v i d u a l omissions of the l i n k s (1,3), 
(2,3), (3,5) and the s imultaneous omission of the l i n k s (1,3) and (2,3) must be 
checked. We compute 

P i s — Ï 4 ' 13 ' ^ 3 5 - 4 9 ' P I ~ 1 2 8 ' ( i b ) 

where j?J 3 ) 'is the ^ value f o r w h i c h the s imultaneous re - insert ion of the l i n k s 
(1,3) and (2,3) becomes economical. Since > p* > p ^ , the l i n k (2,3) must 
be omi t ted . To check, we compute for the r e s u l t i n g n e t w o r k 

Since these values are larger t h a n /î* = 4 / 7 , no l i n k need' be inserted. Thus , 
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APPENDIX 

The three Lemmas and the Theorem to w h i c h reference has been made 
i n Section 3 w i l l he established here. 

Lemma 1. The s imultaneous inser t i on of a number of indepedently i n -
sertable l i n k s i n a n e t w o r k N cannot precede the i n d i v i d u a l i n s e r t i o n of the 
l i n k whose i n s e r t i o n f i r s t becomes economical, or , succeed the i n d i v i d u a l i n 
sert ion of the l i n k whose inser t i on las t becomes economical.,, 

Proof. For the moment, let us f a k e two l i n k s (p, q) and (r , s ) . The ft 
values f or the i n d i v i d u a l insert ions and the simultaneous inser t i on of these 
l i n k s are computed f r o m the f o l l o w i n g equations (sec Equat ion 3 i n Section 3) 

k,l m,n 
and 

hi' « [ Q k l

 + Z *"» Q-» ] - * ( i W + £ » > = 0. 
k,l m,n 

Suppose ftPq< fiTS - I t can read i ly be ver i f i ed that ftp^ < ftpq-, r s < ftrs.. S i m i l a r l y , 
the value ftpq,Tt,t<t f o r w h i c h the simultaneous inser t i on of the l i n k s (p, q), 
( r , s) and (f, z) becomes economical lies between ftte and Ppe/tTS, etc. 

Lemma 2. The simultaneous i n s e r t i o n of a number of l i n k s inter-depen
dent f o r i n s e r t i o n cannot precede the i n d i v i d u a l i n s e r t i o n of the l i n k whose 
i n s e r t i o n f i r s t becomes economical, bu t can succeed the i n d i v i d u a l inser t i on 
of the l i n k whose insert ion last becomes economical. 
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Lemma 3. The s imultaneous inser t i on of a number of j o i n t l y insertable 
l i n k s cannot succeed the i n d i v i d u a l inser t ion of the l i n k whose inser t i on las t 
becomes economical, bu t can precede the i n d i v i d u a l inser t ion of the l i n k 
whose i n s e r t i o n f i r s t becomes economical. 

These two Lemmas are proved i n the same manner as i n Lemma 1. 

Theorem. Let {ft Sj, ftk) be the set of ft values associated w i t h the i n d i 
v i d u a l insert ions of a l l the l i n k s avai lable f or inser t ion and the s imultaneous 
insert ions of the j o i n t l y insertable l i n k s i n a given ne twork N. S i m i l a r l y , l e t 
{ftTS , fti) be the set of ft values associated w i t h the i n d i v i d u a l omissions of 
t h e ex is t ing l i n k s and the s imultaneous omissions of the j o i n t l y omit tab le 
l i n k s f r o m N. I f 

0 ' = max ( £V, , & } i i / i ' ' = m i n { / ? t 7 , ftk} , 

then the ne twork N is op t imal f o r ft values sa t i s fy ing ft' ^ ft ^ ft". 

Proof. Denote by W + c and AT — 6 the two networks obtained f r o m N by 
i n s e r t i n g either the l i n k c or the j o i n t l y insertable l i n k s c i n N, and o m i t 
t i n g either the l i n k b or the j o i n t l y omittable l i n k s b f r o m N. I f b and c are 
independently insertable i n N—b, the inser t i on of c i n A 7 — b becomes eco
nomical f o r the same value of ft as i n N- The cost f or the n e t w o r k N~b + c 
i n this case-is represented by the l ine label led 1 i n F i g . 4. The costs f or th i s 
ne twork are represented by the l ines 2 and 3 respectively according to whet 
her A and c are inter-depcndent f o r inser t ion or j o i n t l y insertable i n N— b. 
I t i s seen f r o m F i g . 4 t h a t i n either case the cost l i n e f or N—b-{-c cannot 
l i e helow the cost l i n e f or JV i n the i n t e r v a l ( f o , ft€). Now, suppose t h a t 
ft' =. fth and ft" — fte . Since the cost l ine f or N — bi— ••' ~bm intersects the 
cost l i n e f o r /V at a va lue of ft smaller t h a n ft/, according to Lemma 2, and 
since the cost l i n e f o r N-\-ct-\- ••• + c n intersects ^the cost l i n e f or A7 at a 
value of ft larger t h a n fte according to Lemma 3, the cost l i n e f or the ne twork 

_ bl — • • • — bm + ct + • • • + c„ cannot l i e below the cost l i n e f or N i n the 
i n t e r v a l (fi'> ft"). Th is proves the theorem. 
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ÖZET 

B u m a k a l e d e terminal ler cümlesi verildiği takdirde inşa masrafı m i n i m u m 
olan i r t ibat şebekesinin tâyini için benzer i k i metod v e r i l m e k t e d i r . T e r 
m i n a l l e r i n doğrusal irt ibat halkaları i le bağlandığı ve h e r h a n g i i k i t e r m i 
n a l arasındaki akım miktarının bilindiği k a b u l e d i l m e k t e d i r . B i r irt ibat 
halkasının bir im uzunluğu için inga masrafının bu halkanın taşıdığı akım 
i l e orantılı bir masraf i le sabit bir masrafın toplamına eşit olduğu farze-

di lmektedir . 


