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A steady temperature distribution is considered for a vortex flow. It is assumed that tempe­
rature distribution depends only on the distance from the vortex axis. Supposing T=Tt and 
T—TQ for the temperatures respectively ai r = rt and r=o, the temperature distribution can tie 
expressed in terms of the exponential integrals Ei (—x). it is found that, under some conditions, 

TL > T,> for Pr < 1 and Ti < T„ for Pr > 1. 

1. Introduction. The vortex flows have been investigated by many authors, because o f 
vortical storms occuring i n nature [ ' ] *, [ s ] , o f advanced space propulsion [ 3 J, [ ' ] and o f power 
generation [ " ] , ["] systems. 

I n spite o f a large number o f analytical and experimental investigations o f vortices, ** there 
sti l l exists a great deal o f uncertainty concerning this complex flow pattern. I t is difficult to find 
the exact solutions o f the full N A V I E R - S T O K E S equation, except in some simple cases [ 2 ] , 
[ T ] , [ s ] ; so that approximate techniques have been used [°], ] ' ° ] , [ " ] to interpret experimental 
results. 

I n the previous studies, the influence o f temperature variations has been neglected. But 
i t may be important for some phenomena, such as vortical storms occuring i n nature. Fo r this, 
i n the present paper, we have investigated the temperature distribution for a vortex flow given 
by R O T T [ 7 ] . 

Supposing a temperature distr ibution in the form of T = T ( / •)*** and taking in to 
consideration the dissipation, we solve the energy equation for the vortex flow mentioned 
above. The solution has two arbitrary constants. One o f them we have defined by means o f 
T— T-i for r — rL and the other, o f regularity, at 0 . The temperature distr ibution can 
be given exactly i n terms o f exponential integrals Ei (—x) and Tt which is the value o f the 
temperature at r — i\ . 

For sink flows i t is found that under some conditions, when Pr< 1, the temperature 
at r = i\ is higher than that which is at r — 0, and when Pr > 1, i t is lower. Fo r source 
flows, the result is the opposite o f that mentioned above. Vor t ica l storms occuring i n 
nature correspond to the second case. 

2. Basic equations. Fo r an incompressible viscous fluid, the governing equations are 

(2.1) v - V v — ^ - V p + v V v , 

* Numbers in brackets refer to references at the end of the paper. 

** See references in ['-*•]. 

*** (r, ft , 2) are cylindrical polar coordinates. 
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(2.2) V • v — 0 , 

(2.3) QCV v • V T = .-; V s r + i . 

The conventional notations are used i n equations (2.1) - (2.3). The above equations are respecti­
vely the N A V T E R - S T O K E S equation, the continuity equation and the energy equation. 

A common solution to (2.1) and (2.2), given by R O T T [ j ] for the flow of a line vortex, 
is o f the fol lowing f o r m : 

(2.4) v r = — ar, « o = - y ^ y - — ' " ^ , V s ^ 2 a z , 

where a is a constant depending on flow parameter, such as the flow rate, and 2 -T A » is the 
circulation. Substituting (2.4) into (2,3) and supposing T= T ( r ) , we get: 

4£ 
with 

(2.6) 

where 

3. Solution. The general solution o f equation (2.5) is : 

a 
• r-i 

wlierc B and C are integration constants and 

•=(-£f)"/Hf-7)]-
I t is possible to express the first and the th i rd integrals i n terms o f exponential integrals 
Ei (— x) : * 

— dt, 0 < x < co . 
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r - 4 K - T ' ) - * ' ( - ï - 0 ] - ï { ^ + 
( 3 . 2 , + i [ £ i ( _ f r . ) _ £ i ( _ 4 ( , . ) ] } + fl> 

where «, /Î, r , and Z> are not independent. Supposing T—Tl for i* = J- x , we find from 
equation ( 3 . 2 ) : 

+ T [ - ' ( - ~ - ' ) - - ' ( - y - ) ] } -

The temperature at c — 0 must be finite ; using this condit ion i n equation ( 3 . 3 ) and 
then equating to zero the coefficients o f a l i o f the logarithmic terms, we get ; * 

( 3 . 4 ) B = ?L + 

Substituting ( 3 . 4 ) in to (3 .3 ) , for the temperature distr ibution, we have the following form : 

-¥{¥.«•»*+* H--H-''(-i'•)]}• 
This is the required result for the temperature distr ibution. 

4. Discussion. I n order to find quantitative or qualitative results, one must introduce 
dimensionless quantities. For convenience, the fol lowing dimcnsionless quantities are introduced: 

( 4 . 1 ) * = - f t T -

Since the radial flow rate is 2nQ, supposing Q t ~ — 2Q, wc find a = Q, / i\2 ; 
using equation ( 4 . 1 ) and « = ( ? , / rx

a- , from equation ( 3 . 3 ) we get : 

* - . = ^ [ - ' ( - ^ 0 - b ' ( - T ) ] - { « £ - * + 
( 4 . 2 , - • " 

where B is an arbitrary constant, Re — Q^lv is the R E Y N O L D S number, Pr — Qc^vf:: is 
the modified P R A N D T L number, Pe — (Pr) (Re) is the P E C L E T number and 8 = (2, / Too -
For regularity at % — 0 , we f ind : 

( — l ) n - where 7-0,5772 is Eulcr's constant . 
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Pe 6 5H 

( 4 3 ) B _ 4 a , ( p / > _ 2 ) • 

Substituting (4.3) in to (4.2) we ge t : 

(4.4) - { 6 £ leg 1 + 8 j , g _ 2 ) I B ( - * I ) - H ( - * • ) J 

The temperature distr ibution for large values o f \ , takes the fol lowing f o r m : 

[6iv+ ] £ ' ( H r ) ~ 

Thus, the temperature distr ibution has a logarithmic fo rm for the large values o f %. I f 
x = va for % = 0, f rom equation (4.2), we have : 

T " - T ' ^ [ 6 ^ + 8 ^ - 2 ) ] [r + * w ^ — E l 

(4.6) — 8 « ' (Pr—2) E y + l 0 g fi£"£i ( ~ R e ) ] -

(4.5) 

For many physical flows o f interest, 8- < 1 0 ~ 4 , therefore ^ j Re can be neglected. Fo r 
Pi-

some liquids Pr > 1, hence Pe > Re and log - y > 0. and T o— % i > 0 ; i . e. the tempera­
ture on the axis is higher than that at r = Bu t this result is the opposite i n the case o f 
Pr < 1. Note that this result is true for a sink flow, namely that the flow rate is negative; bu t 
for the vort ical storms occuring i n nature, the f l o w rate is positive. Thus, we have to expect 
an opposite result when Pi* = 0.7 (air) is supposed for vort ical storms. 
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G Ü M Ü Ş S Ü Y Ü 

İ S T A N B U L — T Ü R K I Y E 

Ö Z E T 

Bİr girdap hareketi için zamana bağlı olmıyan temperatür dağılımı tetkik edilmiştir. Tcmperatür 
dağılımının yılmz girdap ekseninden olan uzaklığa bağlı olduğu kabul edilmiştir. Temperatür da­
ğılımı, r=rı ve r=o daki temperatürleri sırasiyle T=T, ve T=Ta farzederek, Ei(-x) eksponensiel 
integralleri cinsinden ifade edilebilmiştir. Bazı şartlar altında, P r < l için Tı>Tıt ve P r > l için 

7*ı < TQ bulunmuştur. 


