A STEADY TEMPERATURE DISTRIBUTION FOR A LINE YORTEX

M. EmiN ErD0GAN

A steady temperaturce disiribution is considered for a vortex flow, Il is assumed that tempe-

rature distribution depends only on the distance from the vorlex axis. Supposing T=T; and

T-=Ty for the temperatures respectively at ¥=+,; and r=o0, the temperature distribution can be

expressed in terms of the exponential integrals 57 {—x). it is found that, under some conditions,
Te > Ty for Pr< 1 and Ty < Ty for Pr > 1,

1. Introduction. The vortex flows have been investigated by many authors, because of
vortical storms occuring in nature [']*, [?], of advanced space propulsion [®], [!] and of power
generation [*], [°] systems.

In spite of a large number of analytical and experimental investigations of vortices, ** there
still exists a great deal of uncertainty concerning this complex flow pattern, It is difficult to find
the exact solutions of the full NAviER-SToKES equation, except in some simple cases [*],
['1, [®]; so that approximate techniques have been used [*], ]'°], [''] to interpret experimental
results,

In the previous studies, the influence of temperature variations has been neglected. But
it may be important for some phenomena, such as vortical storms occuring in nature, For this,
in the present paper, we have investigated the temperature distribution for a vortex flow given
by RotT ['].

Supposing a temperature distribution in the form of T'= T () *** and taking into
consideration the dissipation, we solve the energy equation for the vortex flow mentioned
above. The solution has two arbitrary constants. One of them we have defined by means of
T=T, for r=r, and the other, of regularity, at r =0, The temperature distribution can
be given exactly in terms of exponential integrals Ei (—x) and T, which is the value of the
temperature at r—yr, .

For sink flows it is found that under some conditions, when Pr<Z 1, the temperature
at r = r, is higher than that which is at r— 0, and when Pr > 1, it is lower. For source
flows, the result is the opposite of that mentioned above, Vortical storms occuring in
nature correspond to the second case.

2. Basic equations. For an incompressible viscous fluid, the governing equations are [!?]:

. 1 .
2.1) v-Vv:—TVP—}—vvzv,

*  MNumbers in brackets refer to references at the end of the paper.
*%  Gee references in [!4].

k*k (p, 4, 2) ate cylindrical polar coordinates.
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(22) veoy=0,
(2.3) peyv-YT=a T+ &

The conventional notations are used in equations (2,1) - (2.3). The above equations are respecti-
vely the NAVIER-SToKEs equation, the continuity equation and the energy equation.

A common solution to (2.1) and (2.2), given by RotT [*] for the flow of a line vortex,
is of the following form:

a

_ re
Q.4 vy — — ar, I ZF':;_ (E —_ 27 ) N v, =2 az,

where a is a constant depending on flow parameter, such as the flow rate, and 2 7 I'w is the
circulation. Substituting (2.4) into (2,3) and supposing 7'= T'(v), we get:
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3. Selution. The general solution of equation (2.5) is:

i
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where 8 and C are integration consianis and
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It is possible to express the first and the third integrals in terms of exponential integrals
Ei(—x):*
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where @, fi, r, and D are not independent. Supposing T =T, for r —=r,, we find from
equation (3.2):

(3.3) +?e[Ef(—%:-?)—lz‘i(#%ff)]}»

The temperature at » =0 must be finite ; using this condition in equation (3.3) and
then equating to zero the coefficients of ali of the logarithmic terms, we get ; *

(3.4) p=2r 121“‘ .

Substituting (3.4} into (3.3), for the temperature distribution, we have the following form :

6o’ . Lo . 4
R N e G R e N

gv 12 47 o Y LR S A e
(3.5) —= { ¥ log 1‘1+2 [E:( 1’:) Ef(—vu)]}.

This is the required result for the temperature distribution.

4, Discussion. In order to find gquantitative or qualitative results, one must introduce
dimensionless quantities, For convenience, the following dimcnsionless quantities are infroduced:

IS ('v},_

4.1 £ = 7 f T = ['2 - T.
Since the radial flow rate is 2x (2, supposing @, =—2Q, wc find a=0@, [ r®;

using equation (4.1) and w =@, f »,2, from equation (3.3) we get :

,;wn:,._fi [E,-(__%? g)fEr'(—P—;):l—{(i%iogE +

Pe

where B is an arbitrary constant, Re=(, [» is the REynoLps number, Pr=ygecyv [« is
the modified PranNDTL number, Pe =— (Pr) (Re) is the PECLET number and 6= @, [ e -
For regularity at £ =—0, we find :

n
*FE{—)=9y-+logx+ 2 (—1® T~ where y—0,5772...... is Euler's constant [!4]

n—=l1
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Pe 66

@ B=d4we—p TR

Substituting (4.3) into (4.2) we get:
&2 Pe , Pe N &

’_"‘—[6}"&7+ 8::“’(1’1'—2)] [E‘(—T E)_E‘ 2)]_
4d {60 togtt o gy (B Re®) — Ei(— RO }
“4 TV Re BT Bar ez T ! ¢
The temperature distribution for large values of &, takes the following form :

' 42 Pe A Pe

“*“”*"[GE+W]E'(*T)_

Pe . a?
;) Et(wRe)—6EIOgE.

.3  8a (P

Thus, the temperature distribution has a logarithmic form for the large values of E. If
=1, for £E=0, from equation (4.2), we have:

42 Pe Pe R Pe
”"_”‘:[6E+ 8= (Pr—2) :l [""H"g - & (—T)]“
Pe ' ,
(4.6) —m fy+log Re— Ei (— Re)].

For many physical flows of interest, 8 < 10—%, therefore 8% { Re can be neglected. For
P
some liquids Pr>> 1, hence Pe > Re and log —2'; >0, and z,—=, >0; i e. the tempera-

ture on the axis is higher than that at r = »,. But this result is the opposite in the case of
Pr << 1. Note that this result is true for a sink flow, namely that the flow rate is negative; but
for the vortical storms occuring in nature, the flow rate is positive. Thus, we have to expect
an opposite result when Pr—0.7 (air) is supposed for vortical storms.
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GUMUSSUYU

IsTanBUL — TURKIYE

OZET

Bir girdap hareketi igin ‘zamana bagh olmiyan temperatilr dagilimu teikik edilmigtir, Tomperatilr
daglimmm yilmz girdap ekseninden olan uzaklia bagh oldugu kabul edilmistir, Temperatiir da-
gilimi, r=r, ve r=o daki temperatiirleri sirasiyle T=T ve T=T farzederek, Fi{-x) eksponensiel
integralleri cinsinden ifade edilebilmigtir, Baz1 sartlar altenda, Pr<1 igin T1$ Ty ve Pr>1 igin
T < Ty bulunmugtur.




