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I n this p a y e r , a method is g i v e n for the solution of the problem of a 

strip composed of two different materials i n plane elastostatics, by using 

the a n a l y t i c continuation t e c h n i q u e - The problom is r e d u c e d , to a diffe-

rontial-dif ferenco equation, and its solut ion is found by using fbo F O U R I E R 

i n i o g r a l method. 

The problem of a strip composed of only one material was solved by V . T. BUCHWALD [ ' ] 
by using an analytic continuation method. In the problem for two different materials consi­
dered here, besides the analytic continuation method, another idea given in a previous paper 
['"'] is also used. 

1. Introduction, The strip problems are usually solved by using two different methods. 
One of them is the FOURIER integral method, and the other is the eigenfunction expansion 
method. In the classic work by FILON (1902), the FOURIER integral method is used. Later on, 
many authors following FILON, including H A W L A N D (1929), GREEN (1939) , HOPKINS (1950) 
and SNEDDON (1951) have obtained FOURIER integral solutions of the infinite strip problems. 
The eigenfunction expansion method has been used by SMITH (1952), KOITER (1954), FRIEDMAN 
(1956) and MORLEY (1963). 

We know that, in an isotropic, homogeneous medium, the stress components of the two-
dimensional theory of elasticity rxx, rgg, rxg in cartesian, and r„„ , rSA, r,,s in the 
curvilinear coordinates are given by the formulae: 

( 1 . 1 ) tf - rxx + rgg = 2 ( 0 ' (z) + iY (z) }, 

(1 .2) F - vxx - rgg + It = - 2 { r U" (z) + 9' (z)} f 

(1.3) = r B„ + r „ = 0 , 

(1-4) F' = r m — rss + 2 / rns = F, 

where the functions Q (z) and ip (z) are analytic in the region occupied by the material, except 
for isolated singularities which correspond to any point loads. « is the angle between the 
normal and the real axis. The bars indicate complex conjugate functions and variables in the 
usual way. The. notation is based on that of GREEN-ZERNA (-). The complex displacement 
D — u + iv is given by 

3 3 
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(1.5) 2/tD — kQ (z) — z iY (z) — ¥ (*) 

where fi is LAME'S constant, and k — 3 — 4 0, 0 being POISSON'S ratio. From (1.1) and 
(1.2) we get, 

(1.6) 0 (z, z) = r s s — / rXJf = Q' (z) + LY (2) + z U" (z) + (z). 

2. The infinite strip. Assume that there are two mediums, one of which occupies the region 
A, and the other the region B. 

The region A is ( Q \ , — co ^ x ^ -\- <») . 

The region B is (—1 ̂ y^ 0 , — ^ x ̂  - f co) . 

The region Sis (— 1 ^ ^ ̂  + 1 , — ^ A- ̂  + 00) . 

In the region A , the state of elasticity may be expressed in terms of two arbitrary functions 
of the complex variable z, Qt (z) and J / J , (z) and two elastic constants pl, . 

In the region B, the state may be expressed by two arbitrary functions Qs (z) and y 2 (z) 
and two elastic constant k9. But the functions ^ ( z ) , V-\(z)> i3 a (z) and ^ 2 ( 2 ) are 
analytic in the region 5 occupied by the materials from y = — 1 to 7 = 1 > except for 
isolated singularities which correspond to any point loads. In this paper, we consider the simple 
case ft, = p$ = fi. 

Denote the strip 1 < y < 3 by P and the strip — 3 < y < — 1 by Q. 

A. An analytic continuation from region A to region P. 
We follow the same steps as in [ ' ] : In the region A, the condition on the boundary 

(y = 1) is 

(2.1) , (y = l ) 

where / ( * ) is a prescribed function, and the stresses relation from (1.6) is 

(2.2) if L (2, z) = r ? t f — / rxg = (z) + U[ (z) + z flj (z) + (z) .. 

The function (z) may be continued analytically into the region P by the definition 

(2.3) Q' (z) = — z Q" (z — 20 — [Y (z—2i)~W' (z—2i) (for z in P). 

Because ^ ( z ) , (z) are analytic in the region S, the functions fYi (z—2/), "P' (2—20 are 
analytic for z in P, and the function Q' (z) as defined in (2.3) is analytic in P. Thus taking 

the complex conjugate of (2.3), and replacing z by z-—2/ , we obtain, for z in S 

(2.4) - y ' (z) = ^ (z — 2/) Q* (z) — iY (z) — D' (z — 20¬
1 1 1 lp 

Since Q' (z) is analytic for z in P, by reflexion in y = 1, i i ' (z — 2/) is analytic in 5*, 
l p l p 

and, therefore, 1// (z) as defined in (2.4) is analytic for z in 5. Substituting the complex con­
jugate of (2.4) in (2.2), we get 
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(2.5) $L(z, z) = £i\ (z) — Q' (z + 2 0 + <z—z—20 D1' (z), 

for z in 5. Thus, for z = x -|- / , we find, using (2.1), that 

(2.6) a' (X + o - A ; a- + o =/•(*). 
1 l p 

-B. An analytic continuation from region B to region Q. 

Here also we follow the same steps as in [ ']. Similarly in the region B the condition 
on the boundary (y = 1) is 

(2-7) «p, - ff (.v) , ( j ; = — 1 ) 

where ^(x) is a prescribed function, and the stresses relation from (1.6) is 

(2 .8 ) Or, z) = r g a - i r x y = Q'% (z) + i i ; (z) + z (5) + f'z (z) . 

The function Qt (z) may be continued analytically into the region Q by 

(2.9) & (z) = - z if% {z + 2 0 - iY% (z + 2 0 - ( 2 + 2 0 . 

Thus, for z in 5", 

(2 .10) W (z) = - (z + 2 0 Q\ 0 0 — fi'a (z) - iY (z 4 - 2/) . 

2 2 2 2 Q 

Taking the complex conjugate of (2.10), and substituting in (2.8), we have 

( 2 . 1 1 ) # 9 (z, 5 ) = fl' (z) — fl'Q Gs — 2 0 + (z — z + 2 0 (z) 

for z in 5. Hence for z = x~i, we find, using the (2.7) that 

(2 .12) Q' (x - 0 — Q' (x — 0 ^ i W -
2 2 Q 

C. An analytic continuation from region A to region B, 

We first recall some physical principles : 

a. On the common boundary of the two different materials, the normal and the 
shearing stresses are the same: 

(2 .13) ( r o n + i rns)A = ( r B n + i rns)B . 

b. On the same boundary the displacements are the same : 

(2.14) DA == DB . 

In our problem the common boundary of the regions A and B is the real axis. The derivative 
of (1.5) is 
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(2.15) 2 n D' = k Ù' (z) - il' (z) — - D" (z) - ~ — ï" (z) ~ • 

Along the real axis we have 

(2 .16) z — x , ~ - = \ , « = • - — and F' = — F. 

The derivative of the displacement along the real axis from (2.15) and (2.16) is 

(2 .17) IpD' — k Q' CO — L~Y (x) ~ x Li" (x) — W' (x) . 

The sum (tf' + i " + 4 / i i ) ' ) from (1.1), (1.2), (1.3), (1.4) and (2.17) along the real axis is 

(2 .18) />' + F' - f 4fi D' = 2 (k + 1 ) Q' (x), 

or 

(2 .19) 2 (r„„ + / r n s ) + 4 i * i>' = 2 (ft + 1 ) i i ' (*) . 

From (2.13), (2.14), (2.18) and til=fii — [i, along the real axis wc have 

(2 .20) 2 (kt ~'r 1 ) fl; W = 2 (/ca 4 " 1 ) tf; W -

By the use of an analytic continuation, (2.20) gives 

( 2 . 2 1 ) (z) = (7.0, (z), 

where 

k, -h 1 

From (1.5) in the region A and B we have 

(2 .22) 2 p D t = k, (z) - z / } ; (z) - V', (z) 

(2 .23) 2 D , ^ /c, £3B (z) — z i j ; (z) - 'J ' a (z) . 

From the condition (2.14), along the real axis, the relations (2.22) and (2.23) must coincide, The 
equations (2.22) and (2.23) give 

(2 .24) ¥, (z) = </', (z) + (k2 q — k,) U, (z) + ( 1 - q) z [}[ (z) . 

Thus taking the complex conjugate of (2.24), we obtain, 

(2 .25) y>t (z) = y , (z) f c Qr ( 5 ) + c Ï L2\ (z) 

where 
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. q ~• /C[ = 1 — q — C . 

(2.2.1) and (2.25) are the expressions of an analytic continuation between the region 
A and the region B. 

D. Exact forms of the differential-difference equation. 
The derivative of (2.25) is 

(2.26) v i (z) = Vh li[ (z) + c ^ il[ {z) + cz Q" ( Z ) . 

Subtituting the values of (2.4) and (2.10) into the equation (2.26) we have 

(2.27) - (z - 1 - 2/) ul (z) - Q, (z) - Q'2Q ( Z + 20 = 

= — <z — 2/) Q[ (Z) - fh (z) — f}'lp (z - 2/) + 

dz dz r I! 
- f c — i j , ( 5 ) + C — ^ (z) + t- z fl, (z) . 

For z = x from (2.16) we obtain 

(2.28) — 2/ (q - f 1) ¿2* (.r) - f (A—2/) — u£ (.v •+ 2/) — c ii[ (X) = 0 . 

Taking the complex conjugate of (2.28), we have 

(2.29) 2/ (q + 1) & CO + fl'p <* 4- 2/) - f / l Q ( j c — 2/) - c fl,' CO = 0 . 

This is our differential-difference equation. 

E. Solution. 
Equations (2.6), (2.12) and (2.29) are sufficient to determine Q, (z). The solution may be 

expressed as the sum of a complementary function and a particular integral. To obtain the 
latter, Li[ (z) is expressed as the FOURIER integral 

(2.30) <I> (0 e-ist di . 

—<rjo 

Let &p (f), <I>Q(.0> F(t) and G (t) be the FOURIER transforms of Q)p (z), QiQ (z), fif} and 

g CO, respectively ; taking the transform of (2.6), we have 

(2.31) • #(*) — <P P(0 = e - ' F{t), 

where 

2nF(t) = J / ( . O et** dx. 
— C O 

Similarly, from (2.12) we obtain 
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(2.32) q0(.t) — $Q(t)=etG(t). 

Finally, transforming (2.29), we have 

(2.33) 2 {q + 1) t <3 ( — 0 — c i> (/) + &p (t) — e~2t &Q (t) =•- 0 . 

Eliminating <pp and from (2.31), (2.32) and (2.33), we have 

(2.34) (e ai — q e~*t — c ) # (/) - f 2 (q + 1) t $ (— t) = 2 H(J), 

where 

el F{t) — e't Git) ^ 2 Bit) ')-

Replacing / by — t into (2.34), talcing the complex conjugate of (2.34) and ebminating <P(—t), 
we obtain 

{ te-*t — q e 2 ' — c) (e*t—q ~ c) + 4 (? + l ) 2 / * } # (?) = 

(2.35) 2 — 9 c*« — c) # (0 — 4 ( 9 + 1) / H ( — /) 2). 

This expression for (£ (f) when substituted in (2.30), gives a particular integral for Q't (z). 
To obtain the complementary function, we suppose that / ( x ) and g ix) are idendically 

zero. We may drop the subscripts P and Q, then Q'x (z) becomes continuous across y= + 1 , 
Our three equations (2.6), (2.12) and (2.29) reduce to the one simple homogeneous equation, 

(2.36) 21 (q + 1) fl* (x) + Q[ (x + 2i) — q Q[ ix — 2i) — c Q[ ix) = 0. 

By the use of an analytic continuation (2.36) gives 

(2.37) 2i (q + 1) ti[ (z) + Q[ (z + 2/) — q Q[ (z — 20 — c Q[ (z) = 0. 

Assume that Q[ (r) = 0 (e c ' x ') for large j x \, where c is a positive constant. Thus 
Q[ (2) has no FOURIER transform but we may define 

L ) T a k i n g kL = fe2 w e h a v e 

s/, 2i * (0 -f 2f <P (_ i) ~ H (t). 

w h i c h is i n a c c o r d a n c e w i t h V . T . BUCHWALD'S result [ ' ] . 

2 ) T a k i n g £1 = ka we h a v e 1 

{ s/, 2 2i — 4 f a } 0 it) = s/, 2i / / (f) + 2i ( - t). 

w h i c h ia also i n a c c o r d a n c e w i t h V . T . QUCHWALD'S result [ ' ] . 
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2it + (0 J Q[ (z) e i z t dz, 

0 
(2.38) 

so that 

(2.39) 

o 

2 « * „ (o = y (z) e'^i dz, 

i c +co — i c + oo 

^ (z) = y 0+ (0 e - i - i rf/ + y <Z>_ (0 e - i - i <ft . 

Substitution of (2.39) in (2.37) gives 

ic + oo 

(2.40) y { 2 (q + 1) / # + (— t) + (e 2 i — q e~'!t — c) * + (0 } c - ' « <ft + 
ic C O 

—/e+co + y ( 2 ( 9 + 1) i l _ ( - /) + - 9 e - ' i - e) ( i ) } e " ' 4 ' (// ^ 0. 

— ÎC—co 

I n accordance with TITCHMAESH [*•], the necessary and sufficient conditions for (2.40) are 

(2.41) 2 (q + 1) / ( - 0 + {e*t - q e-*t _ c ) <p+ (,) = _ 2 « K (/), 
2 ( 9 + 1) f <P_ (— /) + (e 2 i - ? e"2* — c) 0_ (*) = 2x R (r), 

where « R (/) is any analytic function in the strip R, — c < Z (t) < c. Taking the conjugate 
of (2.41), and eliminating <j>+ (—f)» # _ ( — i ) 

2 ( 9 c * f _ e - ' i + c ) * R (/) + 4 (v+1) flî (—0 
(2.42) — 0>+ (0 = + (0 = • — (e2* — g e-2* — c) (e~2*—? e2'—c)—4 ( g + l ) ^ 2 ' 

These expressions for £»+ (0 and (r), when substituted in (2.39), give the comlementary 
function, 

2(q e't—tr't + C ) * f i (0 + 4 {q + 1) f* ( - t) 

(2.43) fl; (Z) = ci> , , e - f * rf/. 
(e2* — q e~*-t — c) (e~2* — ? e** — c) —4 ( g + l ) 2 r 9 

The complete general solution is obtained as the sum of the particular integral, given by (2.35) 
and (2.30) and the complementary function given by (2.43). 



40 î . GÜRGÖZE 

R E F E R E N C E S 

[ ' ] B U C H W A L D . V . T , : Eigenfunctions of plane el/istostatics I . T h e atrip, P r o c e e d i n g s 

of the B o y a l Society , ser ies A 2 7 7 , 1 3 7 0 , p. 3 8 5 ( 1 9 6 4 ) . 

[ 2 ] G R E E N , A . E . & Z E R N A , W . : T h e o r e i i c a l e l a s t i c i t y , O X F O R D U N I V E R S I T Y PRESS ( 1 9 5 4 ) . 

P ] SNEDDON . I . N . : F o u r i e r tansforms, N E W V O R K , M C G R A W H I L L ( 1 9 5 1 ) . 

[ 4 ] T I T C H M A K S H , E . G . ; F o u r i e r i r a n s f o r m s , OXFORD U N I V E R S I T Y PRESS. 

[ u j GiincOzE, IHSAN : T h e solution of the i n c l u s i o n p r o b l e m in the p l a n e e l a a -

i o s i a i i c s , by the use of a n a n a l y t i c c o n t i n u a t i o n . 

Doctorate thesis, T E C H N I C A L U N I V E R S I T Y or ISTANBUL ( 1 9 5 8 ) . 

ISTANBUL T E K N I K ÜNÎVERSİTESİ (Manuscript received April 7, 4. 1965) 
M A K I N A F A KÜLTESI 
M E K A N İ K KÜRSÜSÜ 
ISTANBUL — T Ü R K I Y E 

Ö Z E T 

Hu yazıda, farklı i k i m a l z e m e d e n müteşekkil çubuk (strip) problemi için, 

a n a l i t i k devanı tekniği kullanılarak bir çözüm metodu v e r i l d i . B u metodla 

dif ferensial - differens d e n k l e m l e r e gidi lmekte, F O U R I E R intégral metodu 

kullanılarak çözttm elde e d i l m e k l e d i r . 


