THE PROBLEM OF THE STRIP COMPOSED OF TWO DIFFERENT
MATERIALS IN PLANE ELASTOSTATICS
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In this paper, a method is given for the solution of the problem of a
strip composed of two different materials in plane elastostatics, by using
the analytic continuation technique. The problom is reduced, to a diffe-
rontia]-differenco cquation, and its solution iz found by using tho Fouricr

infogral method.

The problem of a strip composed of only one material was solved by V, T, BucHwaLD [']
by using an analytic continuation method. In the problem for two different materials consi-
dered here, besides the analytic continuation method, another idea given in a previous paper
[7] is also used.

1. Introduction. The strip problems are usually solved by using two different methods.
One of them is the Fourier integral method, and the other is the cigenfunction expansion
method. In the classic work by FiLon (1902), the Fourier integral method is used. Later on,
many authors following Firow, including HAWLAND (1929), Green (1939), Horxins (1950)
and Sneppon (1951} have obtained FouRriEr integral solutions of the infinite strip problems.
The eigenfunction expansion method has been used by Smrra (1952), Kosrer (1954), FRIEDMAN
{1956) and MoRrLEY (1963).

We know that, in an isotropic, homogeneous medium, the stress components of the two-
dimensional theory of elasticity r,,, Fygs Pxy 0 cartesian, and r,, rsy, Fas in the
curvilinear coordinates are given by the formulae:

(L1 B =1+ ryy =2{2 @+ @),

(1.2) F=re—ryy +2ry=—200" @+ 7 @),
(1.3) B g =,

(1.4) F =y 1y 2ty = e O F,

where the functions (z) and vy (2} are analytic in the region occupied by the material, except
for isolated singularitics which correspond to any point loads. « is the angle between the
normal and the real axis. The bars indicate complex conjugate functions and variables in the
usual way. The. notation is based on that of GreeN-Zerna (®). The complex displacement
D=u-|iv is given by
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(1.5) 2uD=kQ@@)—zIi @) — T3

where p is LamE’s constant, and k=3 — 40, 0 being Poisson’s ratio. From (1.1) and
(1.2) we get,

(1.6) B2, D =ryy — ity = 2@+ Q@) 42 F @)+ T (3.

2. The infinite sirip. Assume that there are two mediums, one of which occupies the region
A, and the other the region B,

The region A is ( 0=y=1, —co=x=-1 ),
The region B is (—1ZLy<0, — o Zx L4 @),
The region § is (~1=y<L+41, —co L x < - o).

In the region A, the state of elasticity may be expressed in terms of two arbitrary functions
of the complex variable z, Q, (z) and v, (2) and two elastic constants g,, &,.

In the region B, the state may be expressed by two arbitrary functions £2, (2) and v, (2}
and two elastic constant ., k,. But the functions Q,(2), v,(2), £2,(z) and v, (z) are
analytic in the region S occupied by the materials from y—-—1 to y =+ 1, except for
isolated singularities which correspond to any point loads, In this paper, we consider the simple

Case py = by — K.
Denote the strip 1 <2 » << 3 by P and the sirip —3 <<y << — 1 by Q.

A. An analytic continuation from region A4 to region P.
We follow the same steps as in [']: In the region A, the condition on the boundary
r=10Dis

(2.1) B=flx , =D
where f(x) is a- prescribed function, and the siresses relation from (1.6) is

.2 B3 2) =Ty =Ty = Q@D+ @+ 20" @+ T ().

The function €] (z) may be continued analytically into the region P by the definition

.3 Q - (D)= —zQ7(z —20) — & (z—20)— ']'7’1 (z—2 (for z in P).

1
Because £ (2), v/ (2) are analytic in the region §, the functions .Q; (z—28), ¥’ (z—2i) are
analytic for z in P, and the function .Q;P (z) as defined in (2.3) is analytic in 2. Thus taking

the complex conjugate of (2.3), and replacing z by z— 2/, we obtain, for z in §
2.4 oy =—(—20) @20 (2) — 2 (2) — Q’l (z— 2.
P

Since (¥ (2) is analytic for z in P, by retlexion in y =1, Q’l (z— 2 is analytic in S,
P P

and, therefore, ¥ (z) as defined in (2.4) is analytic for z in §. Substituting the complex con-
jugate of (2.4) in (2.2), we get
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(2.5) by (z, z) = L2, (5) — _Q’IP G+ 20+ (z—=z-20) .Q’i &),
for z in 8. Thus, for z= x -+ i, we find, using (2.1}, that
(2.6) Q (x40 —,Q;P (x4 i) =f(x).
B. An analytic continuation from region B to region Q.
Here also we follow the same steps as in [']. Similarly in the region B the condition
on the boundary (y =1) is
2.7 dy=g() , =—1
where g (x) is a prescribed function, and the stresses relation from (1.6) is
(2.8) By (2, 2) =ryy—irey =2, )+ 2D+ 20" @+ T, 3.
The function £, (z) may be continued analytically into the region ¢ by
(2.9) EQ‘;Q (z; = —z .Q'; (z 42— ST?; (z+20) — ‘]‘_’; (z -+ 2i).
Thus, for z in .S,
(2.10) 1;1; H=—0E+2) Q'; @O— 0, () — Q;Q (z + 2.
Taking the complex conjugate of (2.10), and substituting in (2.8), we have
(2.11) &, (2, 7)) = .Q; (z) — !J;Q E—2) +(z—z 4 2i) S_Jf: (z)
for z in §. Hence for z—=x — i, we find, using the (2.7) that

(2.12) @ (x —i) — Q;Q (x —~)=gx).

C. An analytic continuation from region 4 to region B.
We first recall some physical principles :

a. On the common boundary of the two different materials, the normal and the
shearing stresses are the same :

(2.13) Unn + itng)g = pn+ itnglg -
b. On the same boundary the displacements are the same :
(2.14) D,=Dg .

In our problem the common boundary of the regions A4 and B is the real axis. The derivative
of (1.5) is : :
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(2.15) 2D — k@) — @@ — = (@) S g 92
dz dz
Along the real axis we have
(2.16) se=x . 921 =T and FP——F,
iz 2

The derivative of the displacement along the real axis from (2.15) and (2.16) is
Q.17 2D =k @) — T () — x D7 () — T ().

The sum (¢ + F"+4p D) from (1.1), (1.2}, (1.3), (1.4) and (2.17) along the real axis is

(2.18) B L F A D=2 (k1) 0 ),
Qr
(2.19) 20 Firgg 4D =20+ 1) Q2 (x).

From (2.13), (2.14), (2.18) and jpr, = g, = g, along the real axis wc have
(2.20) 200,+1) !2’1 (x) =20+ 1 D; {x).

By the use of an analytic confinuation, (2.20) gives

(2.21) 2,0 =q02,=,
where
k1
Tk + 1

From (1.5) in the region 4 and B we have
(2.22) 2p D=k, ()= @—F. (@
(2.23) 2D, ==k, 2, (D) — 242, (2) — W, (2) .

From the condition (2.14), along the real axis, the relations (2.22) and (2.23) must coincide, The
equations (2.22) and (2.23) give

(2.24) @ =¥ (@t tq—k) 2@+ (1—q)z a2 @.
Thus taking the complex conjugate of (2.24), we obtain,

(2.25) P @D = D+, @) +cz ] (2

where
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kygq—k =1—qg=c.

(2.21) and (2.25) are the expressions of an analytic continuation between the region
A and the region B.

D, Exact forms of the differential-difference equation,
The derivative of (2.25) is

, P dz ., dz ¥

(2.26) Yo (D =vi(Dte g 0h (z) 4 ¢ 2 4@ +cz 8 (2).
Subtituting the values of (2.4) and (2.10) into the equation (2.26) we have
@27 — (2 0 @ — 2 — 2, G2 =

=— (=20 W () — 0 () — O, (z— 2+

dz _., dz i

te W@ te, 6 @tezol ).

For z = x from {2.16} we obtain

(2.28) 2+ DY (DA B, (20— Q) (v 20 — e ) () =0.

Q
Taking the complex conjugate of (2.28), we have

(2.29) 2i(g+ D G+, (e 42— &) r—20) - e Q] () =0,

Q
This is our differential-difference equation.

I, Solution.

Equations (2.6), (2.12) and (2.29) are sufficient to determine O (z}. The solution may be
expressed as the sum of a complementary function and a particular integral. To obtain the

latter, !).' (z) is expressed as the Fourier integral

+oo
2.30) d@=[ o0

Let q')P (r), rpQ(r), F(t) and G (¢) be the Fourigr transforms of Q,P (z), Q‘IQ (z), F{1y and

£ (x), respectively ; taking the transform of (2.6), we have
(2.31) : D) — Pp () — et F1),

where

+ oo
an(r):f J(x) eixt dx |

—C0

Simifarly, from (2.12) we obtain
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(2.32) g — Do) = et G(O).

Finally, transforming (2.29), we have
(2.33) g+ Did(—nD—ecd@+ed, ) —e "B, (O=0.
Eliminating ¢ » and @ Q from (2.31), (2.32) and (2.33), we have

@39 (ge ™ —a N+ 2 +D (D=2 H({),

where

e F(—e G =2H(@® Y.

Replacing ¢t by —-¢ into (2.34), taking the complex conj_ugate of (2.34) and eliminating @ (—),
we obtain

{le—qet—)(et—qe t—c) 4+ D} @) =
(2.35) 2 —gct—) H({)—dlg+ 1Dt H(—n .
This expression for & (¢) when substituted in (2,30), gives a particular integral for ,Q]’ ).
To obtain the complementary function, we suppose that f(x) and g (x) are idendically

zero, We may drop the subscripts P and Q, then ,Ql’ (z) becomes continuous across y— 1.
Our thrée equations (2.6), (2.12) and (2.29) reduce to the one simple homogeneous equation,

(2.36) 2i(g + 12} (x)+ .Q]’ (x4+2))—gq .Q]’ (x —2)—¢ .Ql’ (x)=0,
By the use of an analytic continuation (2.36) gives
.37 o 2i(g+1) .Q{’ @D+ +2)—q 0 c—2))—c Q] (2)=0.

Assume that ,Q]' (£) =0 (° B |) for large | x |, where cis a positive constant, Thus
7 (2) has no FoURIER transform but we may define

1Y Taking ;= k, we have

shat P o2t D)= (),

which is in accordanee with V¥, T, Bucawaro's result ['l.
?)  Taking k= k, we have

[eh® 26 ae®) () =sh 2t 226} 4 2t F{— 2},

which i3 alse in accordance with V, T, Bucmwann's resubt ['l,
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27 dy (1) = f Q) 2) et dz,
0
(2.38)
)]
2ad_ ()= j‘ 2 (2) ei=t dz,
s0 that
ie-too —icteoo
(2.39) @ (D= f By (1) e et dr | j‘ B () e~iet qdr |
ig—co —ig—oo
Substitution of (2.39) in (2.37) gives
ic+oo
(2.40) f 2+ D14 (D F(—ge™ 0 da (D) i3t di+
ie—oo
—tetoo
+ f (2 D8 (—ODF (Pt —get—ad () et di=0.
—ie—oo

.

In accordance with TircHMARSE [*], the necessary and sufficient conditions for (2.40) are
241 2T Dt Pp (=D F(Et—g et — ) Py (H=—2=p (1),
2@+ DG OF @t g )b ()= 2 O,

where x g () is any analytic function in the strip R, — ¢ <C Z (#) < ¢, Taking the conjugate
of (2.41), and eliminating &4 (— &), F_(—1)

2(gc*t— et tc) xp () +-4(g+1) tr (1)
— e (=4 d_ (1) =— P T Y TR T YA | U

(2.42)

These expressions for &. (#) and &— (#), when substituted in (2,39), give the comlementary
function,

(2.43)

3 e Pt gt

o 2gett—e Mt ug O+ 4+ D, (—0
G0 =§ g e G

The complete general solution is obtained as the sum of the particular integral, given by (2.35)
and ¢2.30) and the complementary function given by (2.43),
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Makina FakiLrest

Merkanix Kirsiisi

IsranpuL — Torkive

OZET

Hu yazida, farkli iki maizemeden mlitesekkil gubuk (strip) problemi igin,

analitik devam teknifi kullanilarak bir ¢&zilm metodu verildi. Bu metodla

differensial - differens denklemlere gidilmekte, Fourmzr Integral metodun
kullanilarak ¢ézlim elde edilmekledir. .




