AUTOMORPHISM GROUP OF THE UNIT DISK |z| < 1

S. K. SINGH AND H. S. GOPALKRISHNA

A simple proof of the well-known theorem that the automorphism group of the unit disk in the complex plane consists of the linear transformations

$$e^{i\vartheta} \frac{z + z_0}{1 + z\bar{z}_0}$$

is given

1. In this short note we submit a concise and apparently new proof of the following well-known theorem;

The automorphism group of the unit disk $\mid z \mid < 1$ in the complex plane C consists of the linear transformations

(1)
$$w = f(z) = e^{i\vartheta} \frac{z + z_0}{1 + z\overline{z}_0}$$

where $0 \le \vartheta \le 2\pi$ and z_0 is any complex number such that $|z_0| < 1$.

- 2. Proof;
- I. Let f be any automorphism of the disk |z| < 1 and $f(0) = \alpha$: then $|\alpha| < 1$.

Consider the function

$$g(z) = \frac{f(z) - \alpha}{1 - \alpha f(z)} \text{ for } |z| < 1.$$

a) |g(z)| < 1 whenever |z| < 1.

Indeed, if |a| < 1 and |b| < 1, then

$$\left| \begin{array}{c} a-b \\ \hline 1-a\overline{b} \end{array} \right| < 1,$$

and since $|\alpha| < 1$ and |f(z)| < 1 for |z| < 1, the statement a) is proved.

b) g(z) is analytic in |z| < 1.

Since $|\alpha| < 1$, we have $|\bar{\alpha}| < 1$. Futhermore, if |z| < 1, |f(z)| < 1, so $|\bar{\alpha}f(z)| < 1$ whenever |z| < 1. Consequently, $1 - \bar{\alpha}f(z) \neq 0$ in |z| < 1, and this proves statement b.

c) g(z) is one-one in |z| < 1.

Suppose

$$g(z_1) = g(z_2)$$
, where $|z_1|^6 < 1$, $|z_2| < 1$.

Then

$$\frac{f(z_1) - \alpha}{1 - \overline{\alpha} f(z_1)} = \frac{f(z_2) - \alpha}{1 - \overline{\alpha} f(z_2)}$$

so

$$(1 - |\alpha|^2) |f(z_1) - f(z_2)| = 0.$$

Since $|\alpha| < 1$, this implies

$$f(z_1) = f(z_2)$$

but as f is one-one,

$$z_1=z_2$$
,

and thus statement c) is proved.

d) g(z) maps the disk |z| < 1 onto the disk |z| < 1.

Consider β such that $|\beta| < 1$. Then we will have $g(z) = \beta$

if

$$\frac{f(z) - \alpha}{1 - \bar{\alpha} f(z)} = \beta$$

i.e. if

$$f(z) = \frac{\alpha + \beta}{1 + \bar{\alpha}\beta} \cdot$$

However, since $|\alpha| < 1$ and $|\beta| < 1$, we have $\left| \frac{\alpha + \beta}{1 + \alpha \beta} \right| < 1$, so, since f maps the disk |z| < 1 onto the disk |z| < 1, there exists a z_0 such that

$$|z_0| < 1$$
 and $f(z_0) = \frac{\alpha + \beta}{1 + \bar{\alpha}\beta}$.

Obviously for this z_0 , $g(z_0) = \beta$, and this proves statement d).

The above results show that g(z) is an automorphism of the disk |z| < 1, such that g(0) = 0. Hence g must be a rotation, (see [1]), so

$$g(z) = \lambda z$$
, for $|z| < 1$ where $|\lambda| = 1$,

i. e.

$$\frac{f(z)-\alpha}{1-\bar{\alpha}\,f(z)}=\lambda\,z$$

or

$$f(z) = \frac{\lambda z + \alpha}{1 + \lambda \bar{\alpha} z} .$$

II. Conversely, if α and λ are any complex numbers such that $|\alpha| < I$ and $|\lambda| = 1$, then

$$f(z) = \frac{\lambda z + \alpha}{1 + \lambda \alpha z}$$

is an automorphism of the disk |z| < 1.

Obviously, f is one-one and analytic in |z| < 1. Futhermore, if |z| < I, then |f(z)| < 1, because

$$|f(z)| = \left| \frac{\lambda z + \alpha}{1 + \lambda \bar{\alpha} z} \right| < 1.$$

Finally f maps the disk |z| < 1 onto the disk |z| < 1: to prove this last statement consider β such that $|\beta| < 1$. Then $f(z) = \beta$ if

$$\frac{\lambda z + \alpha}{1 + \lambda \bar{\alpha} z} = \beta$$

i.e. if

$$z = \frac{\beta - x}{\lambda (i - \bar{x} \beta)}$$

and, since $|\alpha| < 1$, $|\beta| < 1$ and $|\lambda| = 1$,

$$\left|\frac{\beta-\alpha}{\lambda\left(1-\bar{\alpha}\,\beta\right)}\right| = \left|\frac{\beta-\alpha}{1-\bar{\alpha}\,\beta}\right| < 1.$$

Hence, if

$$z_0 = \frac{\beta - \alpha}{\lambda (1 - \overline{\alpha} \beta)},$$

then $|z_0| < 1$ and $f(z_0) = \beta$, as was to be shown.

f is therefore an automorphism of the disk |z| < 1.

III. We have thus proved that the automorphism group of the disk |z| < 1, consists of the linear transformations

$$w = f(z) = \frac{\lambda z + \alpha}{1 + \lambda \bar{\alpha} z}$$

where α and λ are any complex numbers such that $|\alpha| < 1$ and $|\lambda| = 1$.

Since α is arbitrary, provided it satisfies the condition $|\alpha| < 1$, we may rewrite it as $\alpha = \lambda z_0$, where z_0 is arbitrary but satisfies the condition $|z_0| < 1$. Then

$$w = f(z) = \frac{\lambda z + \alpha}{1 + \lambda \overline{x} z} = \frac{\lambda z + \lambda z_0}{1 + \lambda \overline{\lambda} z \overline{z}_0} = \lambda \frac{z + z_0}{1 + z \overline{z}_0} = e^{i\vartheta} \frac{z + z_0}{1 + z \overline{z}_0}$$

where $0 \le \theta \le 2\pi$ and this completes the proof.

BIBLIOGRAPHY

[1] H. CARTAN

: Elementary Theory of Analytic Functions of One or Several Complex Variables. Addison-Wesley Publishing Co., London (1963).

MATHEMATICS DEPARTMENT KARNATAK UNIVERSITY DHARWAR-3 (INDIA) (Manuscript received December 14, 1965)

ÖZET

Bu araştırmada, kompleks düzlemdeki birim daire içinin otomorfizmalar grubunun

$$e^{i\vartheta} \frac{z + z_0}{1 + z_{\bar{z}_0}}$$

şeklindeki dönüşümler tarafından doğurulduğuna dâir çok bilinen teoremin yeni bir ispatı verilmektedir.