SPHERICAL AND CIRCULAR VISCOELASTIC INCLUSIONS

R. D, Buarcava anp C, B, SHARMA

Motivated by Avsmey's analysis for solving problems in linear viscoclastieity,
Ler has introduced a coneept of an associated eclastic problem to which a
viseoelastic problem reduces after removal of iifs time dependence by
application of Larrace transform. Using this coneept the problems of spherical
and elreutar vyiscoelastie inelusions have been solved. The resulis of the

purely elastic case can he deduced as a particular case of lhe above.

1. Introdaction. Inclusion problems were initially studied by J. FrenkEL, N. F. Mott and
R. N. Naparro. Later on J. D. EsueLBy applied the concept of peint force. Jaswown and
BuarGava coupled it with complex variable techniques to obtain explicit solutions for some
two-dimensional problems. These have been used by BHARGava and KapUr and BHargava
and SHarRMA to obtain the solution of some more problems. BHARGAvVA gave a still simpler
approach using the so-called theorem of minimum complementary energy. This theorem
states: «The displacement which satisfies the differential equations of equilibrivm, as well
as the conditions at the boundary surface, yields a smaller value for the potential energy of
deformation than any other displacement which satisfies the same conditions at the boundary
surface».

The method . consists in taking an arbitrary position of equilibrium for the inclusion and
the matrix. The sum of energies in both matrix and inclusion is found out and is minimized
with respect to the parameters of equilibrium position to obtain the correct position of equilib-
rium, stresses and the clastic field. BuarGava and RapHAKRISHNA applied these concepts. As
indicated by BE. H, Lee [*] there is a close analogy between viscoelastic and elastic problems.
This analogy has been made use of in solving the viscoelastic problems for spherical and cir-
cular inclusions,

2, Visco-elastic Elastic Analogy.

In the case of a MaxWELL material the stress strain relation is given by
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where 5;; and e;; arc deviatoric stress and strain components, g is the shear modulus and %
is the coefficient of viscosity, whercas a dot signifies differentiation with respect to time.
We can very easily obtain the correspondence principle. In elastic the solution replace the
dependent variables and the boundary conditions by their Laprace transforms and the elastic
moduli by the corresponding s-varying moduli. Inversion of the expression so obtained for
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the transform of dependent wvariables gives the viscoslastic solutions. for these variables.
By making use of equilibrium equations and boundary conditions, we can see by comparing
with the elastic case, that corresponding expressions for LAMEs constants 2 and g are

psfls-+-(fe)]  and  [As - (K21 /s +Q /)]
where v — 5/p is called the relaxation time, and s is the LAriace transform parameter,

3. Spherical Inclusion.

Suppose we have a sphere of radius g undergoing spontaneous dimensional changes to a
concentric sphere of radius a(l -4~ &) in the absence of a matrix. On symmetry considerations
the equilibrium shape of the inclusion would be a sphere of radius a (1} ¢), 0224,
Let A and p* be Lame's constants of the sphere and A, p those of the matrix. The radial,
hoop and shear strains in the inclusion are (Superscript » refers to viscoeiastic case)

(2) . By =Ejy— — (0 — &), E}; =0

The stress components are therefore

(3) PYy =Pla =3k (32

where &’ is the bulk modulus of the inclusion (It appears at first sight that
Ply and Pis

are independent of the time factor, It is however not so, as & would come out to be a func-
tion of time). The total strain energy in the inclusion is

@ Wy =
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With respect to the matrix, the internal boundary has undergone a radial displacement
equal to a¢. From elementary elasticity theory, the radial, hoop and shear strains are
(denoted by small letters)

]
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and corresponding stresses are therefore given by
v a
Pyy = — 4pe ? -t T
v at v
(6) Pay = 2 s ? e U7 Pys — 0,

where T == ¢/ denotes relaxation time,
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The strain energy in the matrix is

(€] WP =6 pe? % wate T,
Total energy is

®) W= Wy Wy = [ kGt e 7|

By the principle of minimum complementary energy the above expression should be minimum.
Putting ? W ¥fde = 0, we find that
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It is obvious that _rlIJ_?'__ = 0.
d g2
The stresses, strains and energy efc. may be obtained by giving the value of ¢ in
appropriate expressions. '

It may be seen that the boundary stresses are

Py vy . _1ZpkTdeTUT
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where () denofes the value at the equilibrium interface.

4, Circular Inclusion.

We shall take up the case of circular cylindrical inclusion under conditions of plane sirain

. . . 24
whercfrom we can get to generalized plane stress case simply by replacing 4 by T “fféﬂ .
The . circle of radius @ undergoing deformations goes to a concentric circle of radius
a{l - 8) in case of sorrounding material is absent. But the presence of matrix checks the
free motion of inclusion and restricts it to a circle of radius a (1 + &) where 0 << # < 4.

Here the radial displacement is

Uy =-— (@ — &)y

whence the radial, hoop and shear strains are
(10) Ely — Efy=—(8—2), Efj =0

If A7, p’ be the LaME’s constants and 3" be the coefficient of viscosity, we have
after some simplification, for the stresses in the inclusion
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an Ply = Py — —2 (K + U +p —k)e tI™")
and the strain energy is

(12) W' =2k (4 p — k) e VY (5 —e) mal .

With respect to the matrix since its boundary has undergone the displacement as,
its radial hoop and shear strains are therefore,

att als
(13) ey :7(?), o =" Hp=
Then stresses obviously are,
a‘e
= e 2 — € HT
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(14) Php =g e, pYy =0
and the matrix strain energy is
v a a2
(135) W, = 2us’ aq® e /%,

The total strain energy in the matrix and inclusion is
v v v
(16) W =W, - W, =2 [{k" LW + g’ — &) e /T } (5—8)® + ps? 647 | na’.

The appropriate valune of & is that for which the above expression is minimum, Putting
oW
de

= 0, we get

{4+ @ £ —k) e v}

a7n £ = (G o k) etV - pe %)

Substituting the above value of ¢ we can get the stresses, strains and strain energy.
The boundary stresses in case of circular inclusion may be seen to be

P'\'(&) — pV(b) — -2 { ik + (1: + “" . kr) et } HG_HT 5 )
v w [+ ¢ — &) e Y - peti™)
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P'I’ﬁ' - p?(ﬂ) =0,
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The pure elastic case may be deduced from the above case by making the relaxation time
approach infinity. The above case reduces to that of Buargava ['].
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OZET

Avrrev'in lineer viskoelasfisite problemlerinin ¢8ztimleri hakiindaki aaa-
lizinden hareket eden Lee, viskoeldstik probleme bagh elastik problem
kavramima oOrtaya atmighir: LapLace dntigim8  kullanilmak  suretiyle
zamana baglithfin kaldirlmas: halinde viskoelfstik problem ona bagh eldstik
probleme irea olunur. Bu kavram kullantmak suretiyle kfiresel ve dairesel
viskocldsiik <inelusion» problemleri cédztilmtigitir, Elisiik hal igin benzer
problemlerin ¢Bzilmleri yukardakilerin dzel hakleridir.

{ Matiuseript received May 11, 1965)




