A NOTE ON ENTIRE FUNCTIONS

S.K. SINGH AND V. SREENIVASULU

A property of an entire function, stated in the following theorem, is proved.

With the usual notations for an entire function f(z), we prove the following theorem:

Theorem 1. For an entire function $f(z) = \sum_{n=0}^{\infty} a_n z^n$

$$\lim_{r\to\infty} M_{\delta}(r,f)/M(r,f)=0,$$

if

$$R_n = |a_{n-1}/a_n|$$

is a strictly increasing function of n, and

$$L(f) = \limsup_{n \to \infty} |a_n^2 / a_{n-1} a_{n+1}| = 1,$$

where

$$M_{\delta}\left(r,f\right)=\left(rac{1}{2\pi}\int\limits_{0}^{2\pi}\mid f(re^{i\vartheta})\mid^{\delta}d\vartheta\right)^{1/\delta},\;(0<\delta<\infty).$$

Proof. Since R_n is a strictly increasing function of n, $f(z) = p(z) + A \varphi_1(z)$, where A is a constant, p(z) is a polynominal, and

$$\varphi_1(z) = \sum_{n=1}^{\infty} z^n e^{i\phi_n} / R_1 R_2 \dots R_n.$$

So,

$$M(r,f) \sim M(r, \varphi_1),$$

and

(1.1)
$$M_{\delta}(r,f) \sim M(r,\varphi_1).$$

72

Let

$$\varphi(z) = \sum_{n=1}^{\infty} z^n / R_1 R_2 ... R_n.$$

For

$$R_n \leq r < R_{n+1}, \ n = r \ (r, \varphi),$$

and

$$\mu(r, \varphi) = r^n / R_1 R_2 \ldots R_n.$$

Also,

$$M_2(r, \varphi) = \left(\sum_{n=1}^{\infty} r^{2n} / (R_1 R_2 \dots R_n)^2\right)^{1/2}.$$

Hence,

$$\begin{split} M_{2}\left(r,\varphi\right)/M\left(r,\varphi\right) &= \left[1 + \left\{ \left(r^{2}/R_{n}^{2}\right) + \left(R_{n-1}^{2}/r^{2}\right) \right\} \\ &+ \left\{ \left(r^{4}/R_{n+1}^{2} R_{n+2}^{2}\right) + \left(R_{n-1}^{2} R_{n-2}^{2}/r^{4}\right) \right\} + \cdots \right]^{1/2}/r^{2} \end{split}$$

$$[1+(r/R_{n+1})+(R_{n-1}/r)+\{(r^2/R_{n+1},R_{n+2})+(R_{n-1},R_{n-2}/r^2)\}+\cdots],$$

for

$$R_n \leq r < R_{n+1}.$$

From the hypothesis we have $R_n \sim R_{n+1}$.

Hence,

(1.2)
$$\lim_{r\to\infty} M_2(r,\varphi)/M(r,\varphi)=0.$$

Let

$$f_1(z) = \sum_{n=1}^{\infty} z^n / (R_1 R_2 \dots R_n)^2.$$

Then we have

$$[M_2(r, \varphi_1)]^2 = M_2(r^2, f_1),$$

and

$$[M(r, \varphi_1)]^2 \geq M(r^2, f_1).$$

Hence,

(1.3)
$$M_{2}(r, \varphi_{1}) / M(r, \varphi_{1}) \leq [M_{2}(r^{2}, f_{1}) / M(r^{2}, f_{1})]^{1/2}.$$

From (1.2), and (1.3) we have

(1.4)
$$\lim_{r\to\infty} M_2(r,\varphi_1)/M(r,\varphi_2)=0.$$

Let

$$G_1(z) = \sum_{n=0}^{\infty} b_n z^n,$$

and

$$G_{z}(z) = \sum_{n=0}^{\infty} C_{n} z^{n}$$

be two entire functions, and let $G(z) = G_1(z) G_2(z)$.

Then

$$G(z) = \sum_{n=0}^{\infty} d_n z^n,$$

where

$$d_n = b_0 C_n + b_1 C_{n-1} + b_0 C_{n-2} + \cdots + b_n C_n$$

So

$$\mu(r,G) \leq |b_0| |C_n| r^n + |b_1| r |C_{n-1}| r^{n-1} + \dots + |b_n| r^n |C_0|$$

$$= \sum_{\gamma=0}^n |b_\gamma| r^{\gamma} |C_{n-\gamma}| r^{n-\gamma}$$

$$\leq \left(\sum_{\gamma=0}^n |b_\gamma|^2 r^{2\gamma}\right)^{1/2} \left(\sum_{\gamma=0}^n |C_\gamma|^2 r^{2\gamma}\right)^{1/2}$$

$$< M_2(r, G_1), M_2(r, G_2).$$

i.e.

(1.5)
$$\mu(r, G) < M_2(r, G_1) M_2(r, G_2)$$

Case 1. Suppose $\delta \geq 2$ is an even integer.

Let

$$\psi(z) = [\varphi_1(z)]^{\delta/2}$$

So

(1.6)
$$M_{2}(r, \psi) = \left(\frac{1}{2\pi} \int_{0}^{2\pi} |\varphi_{1}(r e^{i\vartheta})|^{\delta} d\vartheta\right)^{1/2} = [M_{\delta}(r, \varphi_{1})]^{\delta/2}.$$

Now, using (1.5) and (1.6)

$$\begin{split} \mu\left(r,\;\psi\right)/M\left(r,\;\psi\right) &= \mu\left(r,\;\psi\right)/\left[M\left(r,\;\varphi_{1}\right)\right]\delta^{/2} \\ &< M_{2}\left(r,\;\varphi_{1}\right).\;\;M_{2}\left(r,\;\varphi_{1}(\delta^{/2})^{-1}\right)/\left[M\left(r,\;\varphi_{1}\right)\right]\delta^{/2} \\ &= M_{2}\left(r,\;\varphi_{1}\right)\left[\;M_{\delta-2}\left(r,\;\varphi_{1}\right)\right]\left(\delta^{/2}\right)^{-1}/\left[M\left(r,\;\varphi_{1}\right)\right]\delta^{/2} \,. \end{split}$$

So

$$\mu(r, \psi) / M(r, \psi) < M_2(r, \varphi_1) / M(r, \varphi_1),$$

since

$$M_{\delta}(r, \varphi_1) \leq M(r, \varphi_1)$$

for δ satisfying

$$0 < \delta < \infty$$
.

Hence from (1.4) we have,

$$\lim_{r \to \infty} \mu(r, \psi) / M(r, \psi) = 0$$

Let $L(\psi) > 1$. Then from a known result of S. M. Shah [1], we have

$$\lim_{r\to\infty}\sup \mu(r, \psi) / M(r, \psi) > 0.$$

This contradicts (1.7). So $L(\psi) = 1$.

Hence, applying (1.4) to $\psi(z)$, and using (1.6) we have

(1.8)
$$\lim_{r\to\infty} M_{\delta}(r,\varphi_1) / M(r,\varphi_1) = 0.$$

From (1.1), and (1.8) we then have

(1.9)
$$\lim_{r\to\infty} M_{\delta}(r,f) / M(r,f) = 0.$$

Case 2. Suppose $\delta < 2$.

The result follows easily from (1.9), since $M_{\delta}(r, f)$ is an increasing function of δ .

Case 3. Suppose $\delta > 2$ is not an even integer,

We select an even integer $\delta_1 > \delta$, so that (1.9) gives

$$\lim_{r\to\infty} M_{\delta}(r,f) / M(r,f) \leq \lim_{r\to\infty} M_{\delta_1}(r,f) / M(r,f) = 0.$$

Hence the theorem is proved completely.

REFERENCE

[1] S. M. Shau : The behaviour of entire functions and a conjecture of P. Erdös, Amer. Math. Monthly, 68, (1961).

S. K. SINGH AND V. SREENIVASULU

(Manuscript received December 14, 1965)

MATHEMATICS DEPARTMENT KARNATAK UNIVERSITY

DHARWAR - INDIA

ÖZET

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

tam fonksiyonu için, δ sayısı $0<\delta<\infty$ şartını sağlamak üzere

$$M_{\delta}(r,f) = \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\vartheta})|^{\delta} d\vartheta\right)^{1/\delta}$$

vaz ediliyor.

$$R_n = |a_{n-1}/a_n|$$

n'nin kesin olarak artan bir fonksiyonu ve

$$L(f) = \limsup_{n \to \infty} |a_n^2 / a_{n-1} a_{n+1}| = 1$$

ise,

$$\lim_{r\to\infty} M_{\delta}(r,f) / M(r,f) = 0$$

olduğu ispat edilmektedir.