ON THE ZEROS OF ENTIRE FUNCTIONS

Ont PraxASH JUNEJA

‘Fhe present paper takes into consideration an inequalily due to Boas [!], concerning
the number of zcros of an entire function and aims to give both this inequality and
same analogous relations derived here, a samewhat sharper form,

1. Let f(z) be an entire function of order ¢ and Jower order i. If f(2) has at lcast
one zero in | z | =< r, the exponent of convergence o (== p) of its zeros is given by

. log #n (r)
lim syp ——————=
1.1 r__)ip log r
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where s (r) denotes the number of zeros of f{(z) in]z]=r,
We call & the lower exponent of convergence, if

1 A
(1.2) lim inf le = 4.

oo IOg r

If the entire function f(z) has no zcro at the origin, fe., #(0) =40, let

R
(1.3) Ny = f +4 nr) dr.
0
It can be easily seen that

. osup logN(r) o
a4y Jm it " fogm 8

If

. sup N{(r) ¢
(4.5) ,12130 inf a(r)” d

then it is known ['] that
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1 1

(1.6) d £ — & 2,
o O

If 0<Cp=<< oo, let

amn lim WP N{ry M

r—oo inf re _m
. oosup alry L
(1.8) ,.lin;o inf @ =/

In the present paper wc sharpen (1.6} in a certain sense and obtain some relations involving .
the constants L, /, ¢, M, etc. We also derive relations between the exponents of convergence of
two or more entire functions All the constants involved arc assumed to be non-zero finite.

2, Theorem 1. [f the constants have the meaning as defined in section 1, we have

L
el’

, !
() ﬁédécé

G If 0<<im=M<co then 0< /=L < o and conversely.

Gy [F iy holds then

1 . K
- - ahil
9K<d C<Q

where x = K s that root of the equation eMlogx =xm— e M which lies in the
inferval {e, ) .

Proof. By (1.8), for any ¢ >0 and for all » > ry,= r, (),
@1 (—er<al(ry<(L+s)re,
But,

NE =N+ f X' ax)ydx,

o

or
Nl 4 ’ .
w0 — o (1} Fn (r)fx n{x} dx
1 f L4
<o(1)+;mf74x,
by (2.1). ’
—oqy L. 8

o 1 (r)
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So, on proceeding to limits, we get

\ N L
lim sup ) < =,
T w = el

In a similar manner, it can be shown that

Combining these results, we get (7),

() If ax>=1, L < <, then

g

N(ra"0)~0(1)+(f+ rj[ )n(r)t“dt

n@a''® log a

<om+@+ufﬂ4w+ -

[

alra''R) log a
e

~et 0S4
Hence, dividing by ar? and proceeding to limits, we get
(2.2) paM <= L+ Laloga,
2.3 pam< L4 laloga,
which hold also when L — oo, Similarly we get
2.4 caM=>=/!-1 Lloga,
(2.5) gam=>={(14 loga),

Suppose now o< m= M < . From (24) we get L <o, Further />0,
) L . . . .
For, if /=0 we get from (2.3) m <= va and since @ is arbitrary it follows that m =0.

Hence we have a contradiction and so < 0.
If 0 <722« oo then we have from (2.2) M < ~ and from (2.5) m > 0.

(i) Take a=exp{(L-— !)_,l'L }in (2.4). Then

Lé@Mexp(l——%)<gMe
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and hence from (2.3)

pam<pMe—+ la loga.

Consider now the equation

eMlogx=xm—ec M,

It has one and only one root in the interval (e, ~). Let it be K, then taking K —a,
we get

p(Km—Mey < {KlogK
or,

oMelog K< ! Klog K,
ie.,

peM L

] =
Ly o

and hence, by the above relation and (7} it follows that

‘1__<L (—K
e K T e

£ Lim WP NGO li .
g e

Lo pheinf n(—

Hence the result,

The inequalities (i) of theorem 1 and (1.6) can be further sharpened as is evident from the
following

Theorem 2.

{f the constants have the meaning as defined in Sec. 1. we have

1 17 L
P = [
(2.6) Q_C_Ql_l—f—logl]igi
I el/K 1
: Lt sge
@7 el e e
Proof. We have, for K> I,
r rit/e »
(2.3) NEK'y=0(1) -+ ./-x"‘ n(x)dy+ f nix)x'dx £
r ra E
(—e)re  alog K
> = e -
) - 2 £
by (2.1).
So,

, N({rK''9) I, (r K&yt . ..ny ., (rEV®R Jogp K .
AR TR A } b
m?»scgp a(rK'Ue) "o K EIT»Smup r(r K1) hﬁ;onf re ]Tlmmf n{r K18 oK
which gives
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C~ L+llogK
— eLK
1
Putting K =1, we get C = ,Q R
Further,
-Q N e
(2.9) N ki< & +9€) A ’EJ log X.

Or,

. N Eve L - K LI0NT
im sup ( )LZ— lim sup brK7%) ___log X

T SRy S TS SO

which gives

L4 (KlogK
P .~
c= pl K

Taking K = £L}{ in the right-hand side, wc get

L 1
Cé%[l#—]ogT]é?-% since | 4-logx=<x for x> I,

This proves (2.6).
Now, by (2.9), we get

- e r K UIe
lim inf YK Ly LECIOR | Jog K

oo AUEIR T Ko poe nirK'Q) o

i.e.,
dAi. l—I-KlogK_
e K
. L i
Putting K —1, this gives déF-
Again, by (2.8),
N{EK'e) n(rK'®) 2 f—= r2 log K
. BN - L RO
ACKTS R A N7 e e T e
50,
1 I log K
w =% L =~
d X I XL K_Q L+ .
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Taking K=exp{(L—N/[ L), we get
!

1
SUDEESEENFY § 7 AN
d*ege =7

since for

This proves (2.7).

Remark. Since (e¥ — e x) has a minimum at x — 1 and is always non-negative,
follows that if L 551 then () of theorem 1, becomes

! L
—_— P —_—
Lg<d—c< lo

Next we prove

Theorem 3. If the constants have the same meaning as before, then

(2.10} L+om=coM
2.11) eld-g M =Zcom
2.12) 1= 6 M.

Proof. We have, if 0 < p < oo,

re'fe

nir) <o f x—la(x)dx.

Adding p N{r) to both sides, we get

re'/?

ar)+eN@E =N+ f x 'u{x)dx
;
a(r) o N{)Lp N(retie),
Dividing throughout by r2and proceeding to limits, it gives

N(r)
“re

() .. N(re't)
hm sup —2~ —+ ¢ lim mf el

=l ¥ r—o0

= ep Hm sup
o0

whence (2.10) follows,
To prove (2.11) we note that

it
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re' /¢

ety y r{xyx'dx.

Again adding ¢ N (r) to both sides, we get
n(re’Q) +oN() =pN(elY,
Dividing throughout by r€ and proceeding to limits, we get

L nire'iey . NOY L N(re'ie)
A Temm TR e = ee I B e

which gives (2.11).
Further, by (1.7), for any « >0, r > r, =r, (g,

‘ —

S S
o e

(M + &) N S m—are

._|_

Also, for r >4,

T—2)re < n(r) < (L4202

and so for r > maxf{r,, )

Proceeding to limits,

Hence by (.6),

which gives (2.12).

3. In this section we derive relations between the exponents of convergence and the lower
exponents of convergence of two or more entire functions.

Fheorem 4. Let

i (l', fi)) n (,'9 .fg); i (") f)

denote respectively the wmumber of zeros of the entive functions

FuAz), fo (2). J12)

each having at least one zere in | z | <=r. Further, let §,, 8,, 8 denote the lower exponents
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of convergence and o, 6,, & the exponents of convergence of the zeros of [, (2), f,(2), f(2)
respectively. Then, if

(3.1 logun(r, f) ~log{ [a(r, fO1 [n(r, f)1P2}
(0 < P p2 = C\’))

Jor r-» o, we have,

(3.2) P pd, =00 =Zp o, +p,a,
while, if
(3.3) log it (r, /) ~ V{log La (r, £ 170} {Tog [# (r, £, 1P2}

Jor ¥ -» oo, then
(3.4) VPip: 3,8, <8 L0 < Vp pyo,0,.
Proof. Using (1.1) for f, (z), we have for & >0 and r > Fo =1y ==k, (8, £1)
3.5) logun(r f) < (o, -} ¢€) logr.
Similarly for the function f,(2), for ¢>0 and r >r,"=r, (s 1),
(3.6) log n (r, f,) << (6,1 ¢) logr .

Hence, multiplying the inequalities (3.5) and (3.6) by p, and p, respectively and adding,
we have, for sufficiently large r,

log {[n(r FR)TP L nr FOTPrY<<(p,a,+ pyo,F s logr.

Using (3.1) and dividing by log r, we have

log 1 (1, f)
log ¥

<{p o+ P 62'+ ),
Now proceeding to limits and using (1.1) for f(x), we get

o=p o - pyo,.
Similarly, using (1.2), it may be shown that

plal+p262éa‘

To proye (3.4), we multiply the inequalities (3.5) and (3.6) after multiplying them by p,
and p, respectively and get

log { i (r, FO e s Jog {a(r, P2 < (p o, + &) (py0, 4 ¢ (log r)?
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Now using (3.3) and proceeding to limits, we get
=<V p p.a, 0.
A similar procedure on using (1.2) and (3.3) viclds
Voip,d 8, < 6.
Hence the theorem.
Corollary 1 : If
e, o w(r fo), ey 1 r s 10, 1)

denote respectively the number of zeros of the entire functions

Sl £ v f 2L 1)

each having at least one zero m
[z] =,

and.
., 8,

i S B

m

denote the lower exponents of convergence and
By Gourny Gy y O
the exponents of convergence of the zeros of
5@, £a2) s, £ @), S(2)
respectively, then, if
(3.7) logndr, f} ~ fog{lar, Y17 [aln f) 1P [nln fr) Pm ),

O<p, <0 ; K=1,2,.., m),

we have
o A, 4 vt pm b, L =L p s a8y F P g
while if

3.8 logair, ) —{log [ n G fO TP log [ nlr, £2) 172 «or log In(r, frg) PP}t

then

(PL P2+ Pn 'j:“iz e Am)‘fmé ‘5605(}911% e Pm gy e P
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Corollary 2: If
S0, F (D, s fm (2 f2)

be entive functions of regular growth, having non-integral orders
Ql k) Q'l 3orer Qﬂl ¥ E
respectively and (3.7} holds then

Qép191+p292+"'+pm9m

while if (3.8) holds then

e=(p Py Pm 0.8y O™

Corollary 1 follows as an immediate generalization of theorem 4, while corollary 2 follows
as a direct consequence of corollary 1 and the fact that for entire functions of regular growth
and non-integral orders, the exponents of convergence of their zeros are equal to their orders').
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OZET

Bu yazida bir tam fonksiyonun sifirlari hakkinda Boas (1) tarafindan elde edilen bir
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daha kesin bir seki! verilmigtir,
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