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The use of the process of ó-diffcrcntation ( R U N D [ 4 ] t), pp. 55) leads to the use of 
XJUPIN'S indicatrix in finding out 1he principal directions of a congruence of curves. 
The principal directions are indeterminate by using this process as has been shown 
by R U N D [ 4 J and E L I O P O U L O S [']. The use of the process of ¿1-dÍII'erentiation which 
we have introduced in this paper requires the use of the osculating-indicatrix corres
ponding to a direction x'' in finding out the principal directions of a congruence of 
curves. This method gives a linear eigenvalue problem for the determination of 
a congruence of curves arid thus the number of principal directions ate determined. 

1. Introduction. 

The metric function of our FINSLER space F „ refered to local coordinates x1' (/, / = 1 , 2 , . . . , n) 
is denoted by F (x, x ' ) , it being assumed that this function satisfies the conditions usually 
imposed on a FINSLER me'ric j 1 ] . Let Fm be a FINSLER subspace with local coordinates 

(«, {t = 1, 2 , m ) . The metric tensors ga$ («, «') and gtj (x, x") of Fm and F„ are 
connected by the relation 

(1-1) g9p "') =8tj(x, x') B-a B'& 

where 

(1.2) B ' ^ w and „'« = ^ . 

There exists two sets of (n-in) normals in a FINSLER subspace; one n j ^ 2 independent of 
xri and the other n * ^ depending on x ' f . The vectors wj^ satisfy the relations : 

(1-3) B{ = gU (x, « . » ) 4u) B'a = 0, 

(1-4) "((OJ = Si J ix, »(,0 ) n^j = 1,' 

(1.5) 8il (x, rt(T>) H| R ) n(v) = a i t v ) . 

1) Numhers in the square brackets refer to the references at the end of the paper. 
2) (i. v, r, .... vary from tn-t-l to n. 
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There exists (ti-rn) symmetric tensors independent of the direction x ' \ These are given by the 
relation 

(1.6) r o o a p — ( * > »w K. % • 

The covariant derivative 1^ of with respect to i/P is given by [ ' ] 

(1.7) /ip = £ s t v ) aP «(v) + tP«B 
v 

where 

i 
and 

(1.9) ¿¿0 «(v)f — ^ 5(v ) a ptf ( tT) = i3(v)aP • 
v 

The covariant derivative of the unit normal /1(d) is given by 

O . i o ) = s s + 2 ' i S "<*> 

where 

(1.11) Ĵop — — j-S flGOoP — r5 f i ; * (*. "(to) 5« «(P) 

and 

(1.12) nin); e «(v)7 — ^ v g p afcw) . 

2. /(-differentiation. 

Let there be a vector-field X1 and a curve C: x* = x'(s) in FH. Then the ^-differential 
of X' in the direction of x'1 is given by 

(2.1) = * ' ; * ( * , x ' ) * * 

where 

(2.2) k (x, * ' ) = | ^ + P l I (X, X ' ) JfA * ' * 

is the partial cS-differentiaI-[4] of the vector X{ with respect to the metric of Fn and 

dxi 
x ' ' = — 

ds 
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is the unit tangent vector to the curve C. The differentia! ( 2 . 1 ) is in the particular direction 
x'1 and may be called the process of directional differentiation. 

The process of ^-differentiation may further be generalised. Let there be a unit vector-
field %' (S) which determines a congruence of curves such that one curve of the congruence1) 
passes through each point of F„ . The un ;t vector-field |* at any point is tangential to the 
curve of the congruence through that point. Then the covariant differential of the vector-field 
X* in the direction of | f at a point P of Fn is given by 

(2 .3 ) ^ *')lk 

where X'-, k (X ' s t n e partial ^-differential as usual and %' (S) is the unit tangent to 
the curve (x{ = xi (S)) of the congruence at P. The process of differentiation given by (2 .3) 
may be called the A-differentiation [ 3 ] of the vector X' in the direction at P in Fn. 

AX' 
The expression —— may be called the generalised covariant differential in the sense that 

i f the unit tangent vector to C and the unit vector-field | ' coincide, we get the 5-diffcrential[4]. 
In the following seciions, by using the A-differentiation, we shali define the generalised 

curvatures of a congruence of curves in the FINSLER subspace. 

3. Generalised Absolute Curvature of a Congruence of Curves. 

Let be the contravariant component of a unit vector in the direction of a curve 
of the congruence such that one curve of the congruence passes through each point of Pm. 
The congruence is of general nature. Hence the vectors with components 2(,T> may be expres
sed as a linear combination of the tangents Ba, and the normals by the relation 

( 3 - D Xi) = il)K^2C<^"U 
v 

where the tangential and normal components and C(u.v) of the congruence are respec
tively given by 

(3 .2 ) ( / J , W « p = StJ (-V, «( , i>) AQJ 

and 

(3 .3 ) C(f*t)=gij(x, n)X\,j) //(v) . 

The covariant differential of ( 3 . 1 ) with respect to up is given by 

(3 .4 ) * in) ; r? = F 0 0 ; ß K + '&> '«ß X C ( i*v) ; ß n W + 2 C (nv) "(v); p 
V V 

Using the equations (1 .7) and (1.10), the equation (3.4) reduces to the form 

I) The curve C is not necessarily a curve of the congruence. 
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(3.5) ; p &i * ' ) = <,)p K + I ] % v ) S " M + * U ' 
v 

where 

(3.6) <4) ; P + 21 C<^> ^"tOft 

and 

(3.7) *(Uv) p = c(nv) ; 0 + '(¡0 ^(v)«p + E ^ ( f ) ^ S n • 
V 

The A - differentialL' of the congruence A ^ relative to the direction |< is 

(3-8) ^ ^ ; , t ' = Ko * W »'(v) +#&> < ) l B 

V 

where Ç'J and -y,* are given by (3.6) and (3.7). 

AX' 
Definition (3.1). The components - may be cailed the components of the generalised 

A i 

absolute curvature' vector of the congruence A ^ and the scalar j , ^ ) given by 

(3.9) ^ ^ ^ ( ^ A V " ' ^ f A > ' ( l l ) 

is called the generalised absolute curvature of the congruence A ^ relative to the direction 

V along C. ' 

I f x'1 and I ' coincide, the generalised absolute curvature vector reduces to 

ds 

In the case of Riemannian space, it wiil reduce to 

{ : * - 2 c ( , v ) fi(„>i Bi+21 ( c M . p+C) % «P+ 
V V 

1) When a parallel displacement is taken along the element of support and e' is taken at ali 
points of the curve C, it reduces to C A R T A N ' S the covariant differential [4J. 
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which is the absolute curvature vector of the congruence X'^ defined by MISHRA and SHRI 
KRISHNA 

4. Generalised Normal Curvature ') of a Congruence of Curves. 

Definition (4.1) The scalar xK^^n defined by 

(4.1) \K{^) n(xL,x',I) ^ f « ( V ) f - J ^ j 

where 

(4.2) V | ' = i < t f ( « i = 

may be called the generalised normal curvature of the congruence X'^ in the direction of |*. 

Theorem (4.3) : The generalised normal curvature and its square arc respectively given by 

(4.3) i K{liv) n (x, x', t)— ~ J] «<nv) P C(VT) IP 

and 

(4.4) ^ ' w x ^ ' . r W r t r f f - O I - i C 

where 

(4-5) q»(n, a p ( « » u 0 = ^ ( ^ j f i v M P ^ i v i ) ) ( ^ w ( m n a ( v * l ) • 

Proof. Applying the condition (4.1) in (3.8) and using the equations (1.3), (1.5) and (1.8), 
we get (4.3). With the help of (4.3) and (4.5), we get (4.4). 

Definition (4.2) A direction I * in Fm for which the generalised normal curvature vanishes, 
is called the generalised asymptotic ditection of the congruence X'^ 

Definition (4.3) A curve C whose direction at each point of it is asymptotic, is called the 
generalised asymptotic line of the congruence 

Theorem (4.2) The generalised asymptotic line of the congruence is given by 

(4.6) W o P ^ l P ^ O . 

Proof. Using the definitions (4.2) and (4.3) and the relation (4.4). we get (4.6). 

Theorem (4.3) When the congruence X'^ has no components along the normals and 

the tangential components of the congruence X'^ coincide with the unit vector-field | a 

tine generalised normal curvature and its square are given by 

1) R U N D has defined the normal curvature of the hypersurfacc by the relation 

Sx'* ,-<i»f 
. j * ><l——• = — X 
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and 

'4.8) î i K ' o o n i . H , « ' , ! ) = £ 
f a p r w i m s n T " 

Proof. By the conditions given in the theorem, the tangential and normal components 
/ ^ j and C ( [ j v j respectively reduce to 

(4.9) ^ = r 

and 

(4.10) C ( I W , = 0 . 

Using (4.9) and (4.10) in (4.3) and (4.4), the results (4.7) and (4.8) follow. 

I t is obvious that i f x'' and %{ coincide, the generalised normal curvature of the cong
ruence given by (4.7) reduces to the normal curvature of the FINSLER subspacc with respect to 
the curve C defined by ELIOPOULUS [']• 

In a similar manner, the equation of the generalised asymptotic line of the congruence 
reduces to the asymptotic line of the congruence Aj^ with respect to the curve C. 

Definition (4.4) With respect to the normal n'^ at P of Fn and corresponding to x'{, a di
rection for which the generalised normal curvature %Ks(y.yn .of the congruence assumes an 
extreme value, is called a generalised principal direction of the congruence X'^ 

Theorem (4.4) The generalised principal directions of the congruence l'^ are given by 

(4.11) ( x * ' < * T > « * a P — 9 » < Y > a P ) l f o = 0 (* = i A . . . , / « ) . 

Proof. To find the extreme values of AA' S( V)« for the principal directions, we have to 
seek the solutions of the equation 

(4-12) - y | Y - [ ^ 2 ( v ) ^ a P i n P - 9 ' ( v ) a P n P ] = 0 -

Simplifying (4.12), we have 

(4.13) (\K\y) ngafi (u, u') — <P (v) op (" , " ' ) |P = 0 . 

There are m linear equations in £ 1 , £ j 3 , . . . , %m not all these components being zero. 

Thus with respect to each normal n1^ and corresponding to any fixed direction u'a of the 

subspace, there exists m roots of the equation 

(4.14) IIO (V) ng „p (u, u') - <p (u,uf) | = 0 
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These roots will be called the generalised principal normal curvatures of the congruence 
corresponding to x'<\ We thereby obtain m generalised principal directions given by 

(4.15) (xK2 ( V Y ) ng a p — <p ( v ) „p) IP ( v) = 0 (v = 1,2 , . . . , fit) 

Theorem (4.5) A t a point P of the subspace. with respect to the normal «Jvj, and cor
responding to an arbitrary fixed direction it"1, any two of the generalised principal directi
ons are orthogonal and satisfy the relation 

(4.16) V(v)oP(«»w'Jl t ,i¥)5P<») = 0 

Proof. Let the equations (4.13) have simple roots and let £*v) and \ ^ be an> two of 
the m generalised principal directions ^ a of the congruence, we can write 

(4.17) (}>K> ( v ? ) ng 8p — y (v) 0 p H o (,.) = 0 

(4.18) (?. ^ (v 6) » i op — V (v) o P ) l a (S) = 0 

multiplying (4.17) by ï ; ^ and (4.18) by 1^ and subtracting we obtain 

(4-19) * « P ( « . " ' ) ^ ) ^ , = 0 

which gives the condition of orthogonality. Also we have the equation (4.16). 
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Ö Z E T 

Bİr eğri kongrüansının esas doğrullularmın belirtilmesi problemi, "ö-türev" usulürıiin 
( R U N D [41, s, 5 5 ) kullanılması halinde D U P I N göstergesinin kullanıl masmı icabettirir. Bu 
usulün esas doğrultuları belirfemiycceği gerek R U N D t 1! gerek ELIOTOCILOS ['1 tarafından 
gösterilmiştir. Bu yazıda tanımlanan "A-türev" bir eğri kongrüansının esas doğrultula
rının bulunması için bir x'' doğrultusunda üskülâlör göstergelerin kullanılmasını ge
rektirmektedir. Bu yoldan hareket edildiğinde bir eğri kongrüansının esas doğrultulan 

için bir lineer eigen-değer problemine varılır ve esas doğrultuların sayısı elde edilir. 


