THE GENERALISED CURVATURES OF A CONGRUENCE OF CURVES
IN THE SUBSPACE OF A FINSLER SPACE

K. B. LaL anp C. M PRASAD

The use of the process of d-differentation (Rounnftl 1), pp, 55) leads to the wse of
Duem's indicatrix in finding out the principal directions of a congruence of curves.
The principal directions are indelerminate by using this process as has been shown
by Runp (Y] and Enorouros [!1. The use of the process of A-dillerentiation which
we have introduced in this paper reguires the use of the osculating-indicatrix corres-
ponding to a direction x* in finding out the principal dircctions of a congruence of
curves, This method gives a linear eigenvalue problem for the determination of
a congruence of curves and thus the number of principal directions are determined,

1. 1Introduction.

The metric function of our FINsLER space F, refered to local coordinates xt (7, /=1, 2, ... , n)
is denoted by F(x, x), it being assumed that this function satisfies the conditions usually
imposed on a FinsLEr metric [*]. Let Fm be a FINsLER subspace with local coordinates
2%(x, #=1,2,.,m). The metric tensors gep(w, «’) and g;j(x, x") of F, and F, are

connected - by the relation

(1.1} Baf (u, 0') =g4j (x, ) B, B,
where

(i o d®

. (1.2) B“’-“ax“ and W=

There exists two sets of (n-mj' normals in a FiNsLER subspacs; one ”Eu) 2 independent
x"i and the other n*}u) debcnding on x'f, The vectors n{ 2 satisfy the relations :

(1.3) ntuy By = gij (% mw) ny B, =0,
£1.4) Comgy ey = g (% mw ) gy =1
(1.5 &7 (x5, n(zy) My nly = acen.

1) Numhers in the square brackets refer to the references at the. end of the paper.
2) g ¥, ¥ ... vary from m+-1 to m
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There exists {#-#:) symmetric tensors independent of the divection xi’. These are given by the
relation

(1.6) Yab = & (% ngw B, B,

The covariant derivative I'. of 5% with respect to 4B is given by [']
‘ ap o

(1.7 Lo = Beo up i+ Wi

¥
where
1.8 Wap nivy; =0
and
(1.9 ‘ Lag-Ayy; = E Bvyap d(zv) = 2(v)ab -

v

The covariant derivative of the unit normal "Eu) is given by
(1.10) rlwis = Ay Bs+ 3 783 alo
X
where
k i i
(1.11) ACye = — 70y LwaB— Y0 £ii & (%, 714) By Bu i)
© and

(1.12) e movs =Y v, e

X
2. -differentiation.

Let there be a vector-field X7 and a curve C: xi= xi(s) in F,. Then the dJ-differential
of Xt in the direction of x’I is given by

axi . )
D Pl Xig(x, x") x'k
where
22 Xigh (x, ) = o5 4 Pl G, ) X0 R
( Sk

is the partial d-differential-[*] of the veclor X with respect to the metric of F, and

.. dxi
x'i=—=_"
ds
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is the unit tangent vector to the curve €. The differentiat (2.1) is in-the particular direction
x’f and may be called the process of directional differentiation.

The process of d-differentiation may further be generalised. Let there be a unit vector-
field £ (5) which determinies a congruence of curves such that one curve of the congruence")
passes through cach point of F,. The unit vector-ficld E¥at any point is tangentiai to the
curve of the congruence through thar point. Then the covariant differential of the vectorfield
Xi in the direction of & at a point' P of F, is given by

AXE ,
2 — ¥i, "y ek
23) s Xkl x)E
where X, (x, x7) is the partial é-differential as usual and %f(§)is the unit tangent to
the curve (xf == x!(5)) of the congruence at P. The process of differentiation given by {2.3}
may be called the A-differentiation [*] of the vector X'¢ in the direction &f at P in F,.
i

The cxpression T/},S'_ may be calied the generalised covariant differential in the scnse that

if the unit tangent vector to € and the unit vector-field g coincide, we get the d-differential[*].

In the following scciions, by using the A-differentiation, we shali define the generalised
curvaturcs of a congruence of curves in the FinsLEr subspace.

3. Generalised Absolutc Curvaturc of a Congruence of Curves.

Let léu) be the contravariant component of a unit vector in the direction of a curve
of the congruence such that one curve of the congruence passes through cach point of P,,.

The congruence js of general nature, Hence the vectors with components lz,‘) may be expres-

sed as a linear combination of the fangents Bt and the normals nfu) by the relation
(3.1 A =10y By 2 Ciuv) )
v

where the tangential and normal components f(jm] and Cuy) of the congruence are respec-
tively given by

(3.2) ‘ 16 YwIaB = 82 (v ma)) Ky B
and
(3.3) Clav) =g (x, 1) G i -

The covariant differential of (3,1) with rcspect to #B is given by
- i Y. 1 i o g i i
13.4) Horss =010 Bat1a Tha 2 Comip i+ 2 Coan 61; e
. ¥ v

Using the equations (1.7) and {1.10), the equation (3.4) reduccs to the form

[} The cuzve C Is nat necessarily a curve of the congruence.

priGRnRnannnoananA
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s _ﬁ 3 { i

3.5 l(u) iB (xux )_q?u)ﬁ B;t -+ 2 Pl B "Ev) + r(0:.1) Wog

v i
where i
(3.6) q?u) 8 :f?,]) B + Z C(u“) A?‘.z)ﬂ

A

\

and !
3.7 0= Ciun 1 5 T 1 B T Z Clam O -

The A -differential V) of the congruénce }“éu) relative to the direction ¢ is

(u) L g i i 3 i B
T5 o se B = Bl Vs Moy HGy Wi )Y

¥

(3.8)

where ¢’s and o5 are given by (3.6} and (3.7).
i

}'(u)

A8

absolute curvature vector of the congruence léu) and the scalar lK(u-) given by

Definition (3.1}, The components may be called the components of the generalised

1Al AM
2 def _.. _; (1] ()
13.9) }K)igu(x’))(_lS )(AS )

is called the generalised absolute curvature of the congruence }“éu) relative to the direction
Ef along C. -

If x't and & coincide, the generalised absolute curvature vector reduces to

My ., i e Nup ;
35\ e Ba+Ev(u\’) oo 6o Waa JHP

In the case of Riemannian space, it will reduce to

Al

(u)
{ @ (OVEN Z C W Q(‘J) ﬁyg“T')B + E ( {uv); g+ fffo ‘Q(v) op +

7 i ’
+ Z Clund ) ;e ”(-:)j) ”’cv)}“ 8
- .

1) When a parallcl dispfacement is taken aleng the element of support and g"' is taken at ali
points of the curve C, il reduces to CARTAN’s the covariant differential [41.
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which is the absolute curvature vector of the congruence lég} defined by Misara and SHRI

Krisuna [2].
4. Generalised Normal Curvature ') of a Congruence of Curves.

Definition (4.1} The scalar ) K(uyin defined by

, oy def /-"ff) 1
“.n K () H{x, X7, B2 if(v);—/]g -
where
4.2) . gif(x, ¥ =gauf(y, 2 )E" EF=1?

may be called the generalised normal curvature of the congruence iiu) in the direction of &i,

Theorem (4.)) : The generalised normal curvature and its square arc respectively given by

1 .
3) Ky 71 (307, B — ) 0(tnw) By £
X
and

P () o (i, ) EPER

4.4 P& Al B = et
@4 O D= e

where

(4.5) P (my op (2, 07)= Z ( 2 vlwg) p a(vr)) (Z o (uid) By id) ) .
B

N T

Proof. Applying the condition (4.1} in (3.8) and using the equations (1.3), (1.5) and (1.8),
we get (4.3). With the help of (4.3} and (4.5), we get (4.4},

Definition (4.2) A direction §% in Fp for which the generalised normal curvature vanishes,
is called the generalised asympiotic dizection of the congruence "E'm.

Definition (4.3) A curve C whose direction at cach point ofit is asymptotic, iscalled the
generalised asymptotic line of the congruence ;'qu‘

Theorem {4.2) The generalised asymptotic ling of the congruence is given by

4.6) P BTV EF—10.

Proof. Using the definitions (4.2} and (4.3) and the relation (4.4). we pget {4.6).

Theorem {(4.3) When the congruence l{u) has no components along the normals and

the tangential components r‘(“u) of the congruence léu) coincide with the unit vector-field %

the generalised normal curvature and its square are given by

Y Ruwnp has defined the normal corvatare of the hypersurface by the relation

. ax’i oy
T ds
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20 of(u,u)E*EB

IEN)) AK @y, 5= {”aﬂ(ﬂ H')EHEB}”‘E

and

21200 of Q) 5057 EBE E9

{4, 2 ’ =t .
-9 B L P L P ST

Proof. By the conditions given in the theorem, the tangential and normal compeonents

f:;) and Cp,, respecﬁvely reduce to

(4.9) 1=t
and
(4.10) C(y.y) :0 .

Using (4.9) and (4.10) in (4.3) and {4.4), the results {4.7) and (4.8) follow.

It is obvious that if x’f and Ef coincide, the generalised normal curvature of the cong-
ruence given by (4.7} reduces to the normal curvature of the FINSLER subspace with respect to
the curve € defined by Eriorourus ['].

In a similar manner, the eguation of the generalised asymptotic line of the congruence

reduces to the atymptotic line of the congruence ﬂ';u) with respect to the curve C.

Definition (4.4} With respect to the norral néu) at P of F,, and corresponding to x'i, a di-
rection Ef for which the generalised normal curvature 3 KZ(uyn of the congruence assumes an

extreme value, is called a generalised principal direction of the congruence li 2.

Theorem (4.4} The generalised principal directions of the congruence Zé 1, &re given by

(4.10) (L K"y 8 ap— @ (v) aBYELy =0 (=12, ...m) .

Proof. To find the extreme values of 1K®(y)a for the principal ditections, we have to
seek the solutions of the equation

' )
(412) Ger | A8 B3I = ) ap 558 | =0 .
Simplifying (4.12), we have

(4.13) (L Ky ng g, 46" — @ (v) 0B (e, 4 )EB =0,

There are m linear equations in §',§%,...,§" not all these components being zero.

Thus with respect to each normal név) and corresponding to any fixed direction #'% of the

subspace,- there exists m roots of the equation

4.14) | K2 wyng o (u,0") — @ (u,u"} =0
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‘These roots will be called the gencralised principal normal curvatures of the congruence

% corresponding to x’f, We thereby obtain s generalised principal directions given by
(4.13) OK* (v 18 ap—F (W aP)EP () =0 (r=12,....m)

Theorem (4.5) At a point P of the subspace. with respect to the normal zriv), and cor-
-responding to an arbitrary fixed direction #'%, any two of the generalised principal directi-
ons are orthogonal and satisfy the relation

4.16) @ (v) of (0, 0V ES (i EB (5) =0

Proof. Let the equations (4.13) have simple roots and let E‘E‘v) and E?Y) be any two of
the s generalised principal directions E% of the congruence, we can write

(417 (WK vy g oBp— 9 (v) aPIE* (1 —0
(4.18) (LK twgy g gf— P () aB) E% () =0

multiplying (4.17} by Ef,y and (4.18) by E?_r) and subtracting we obtain

(4.19) £ (@, 1) By BEy =0

which gives the condition of orthogonality. Also we have the equation {4.16).
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OGLET

Bir efri kongriiansinin esas dogrullularmin belirtilmesi  problemi, “‘s-tiirev” usuliiniin
(Runp [4, s, §5) kullamlmas: halinde Duemy gbstergesinin kullaniimasm icabettirir, Bu
usuliin esas dogirultular belirtemiyecedi gerek Ruwp t41 gerek EBrioroUros [1] tarafindan
gésterilmigtir. Bu  yazida tammianan ““A-tiirey” bir <@rl kongriiansinm esas dogrultula-
rinn bulunmas igin bir 2 dogruftusunda Oskilidr gostergelerin kullanflmasimu  ge-
rektirmektedir. Bu yeldan hareket edildiginde bir egri kongrilansimn  esas degrultularn
igin bir lineer eigen-degier problemine variliy ve esas dofrultularin sayist elde edilir.




