ON THE ZEROS OF AN ENTIRE FUNCTION-I

S. S. DALAL

Let $f(z) := \sum_{n=0}^{\infty} a_n z^n$ be an entire function and suppose ρ denotes its order, λ its lower

order, μ (r, f) its maximum term when |z| = r, M(r, f) and m(r, f) its maximum and minimum modulus on |z| = r, n(r, f) the numer of its zeros in $|z| \le r$. Some inequalities concerning these quantities are obtained,

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be an entire function of order ϱ and lower order λ and let $\mu(r, f)$

be the maximum term of f(z) for |z| = r while M(r, f) and m(r, f) denote the maximum modulus and minimum modulus of f(z) on |z| = r respectively. Finally, let

n(r, f) = n(r) be the number of zeros of f(z) in $|z| \le r$. We prove the following Theorems.

Theorem 1.

i)
$$\frac{\{I_{\delta}(R)\}^{\frac{1}{\delta}}}{m(r)} \ge \left(\frac{R}{r}\right)^{n(r)}.$$

$$\frac{m(R)}{\left\{I_{\delta}(r)\right\}^{\frac{1}{\delta}}} \leq \left(\frac{R}{r}\right)^{n(R)}.$$

for

$$R > r > 0$$
.

where

$$I_{\delta}(r) = \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\vartheta})|^{\delta} d\vartheta.$$

and δ is any positive number.

We observe that if f(z) has an infinity of zeros

$$r_1 e^{i\theta_1}, r_2 e^{i\theta_2}, \ldots, r_n e^{i\theta_n}, \ldots$$

the above inequalities are obviously true for a sequence r_1, r_2, \ldots of values of r.

The main feature of the theorem is that it is true for all $R \ge r > 0$.

Theorem 1 improves the result due to S. K. SINGH [1].

Theorem 2,

Let

$$P(r) = \log \left\{ I_{\delta}(r) \right\}^{1/\delta} - \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(r e^{i\vartheta})| d\vartheta \ge 0.$$

Then

i)
$$\left(\frac{R}{r}\right)^{\delta n(r)} \leq \frac{I_{\delta}(R)}{I_{\delta}(r)}, \text{ if } P(r) - P(R) \leq 0.$$

ii)
$$\left(\frac{R'}{r}\right)^{\delta n(R)} \geq \frac{I_{\delta}(R)}{I_{\delta}(r)}, \text{ if } P(r) - P(R) \geq 0.$$

(iii)
$$\left(\frac{R}{r}\right)^{\delta n(r)} \leq \frac{I_{\delta}(R)}{I_{\delta}(r)} \leq \left(\frac{R}{r}\right)^{\delta n(R)} \text{ if } P(r) - P(R) = 0.$$

for $R \ge r > 0$ and δ is any positive number.

We give an example for which all the above three cases will hold.

Theorem 3.

If f(z) is an entire function having no zeros in the unit circle, then,

$$\frac{\left\{I_{\delta}\left(R\right)\right\}^{1/\delta}}{m(r)} \ge \left(\frac{R}{r}\right)^{N(R)/\log R} \text{ for } R \ge r > 0,$$

where

$$N(r) = \int_{0}^{r} \frac{n(t)}{t} dt.$$

Theorem 4.

$$\frac{M(R)}{M(r)} \ge \left(\frac{R}{r}\right)^{n(r) \log \left(\frac{R}{r}\right) / \log R}, R \ge r > 0.$$

Corollary.

$$\frac{M(R)}{M(r)} \ge n(r) \frac{\log (R/r)}{\log R} \left(\frac{R}{r}\right)$$

if
$$R \ge e \cdot r$$
, and $n(r) \cdot \frac{\log (R/r)}{\log R} > 1$.

Remark.

In Theorem 1, (i) and Theorem 3 we can easily replace m(r) by M(r), if we choose r such that

$$|f(r e^{i\vartheta})| = M(r).$$

Similarly we can replace m(R) by M(R) in Theorem 1 (ii).

Theorem 3 improves the result of S. K. SINGH [2],

Theorem 5.

If f(z) is an arbitrary entire function of lower order λ $(1 \le \lambda < \infty)$, x = H(y) denotes the inverse function of $y = \log M(x)$. Further, if $n_k(f(z), 1)$ denotes the number of zeros of $f^k(z)$ in the unit circle, where $f^k(z)$ is the k^{th} derivative of f(z), we have

$$\lim_{k\to \bullet_0} \inf n_k (f(z), 1) \ H(k) \le e^{2-1/\lambda}.$$

The above result improves the result of P. Erdős & A. Renyi [3].

Theorem 6.

Let $0 < a_1 < a_2 < \ldots < a_n \ldots$ be a sequence of numbers tending to infinity and let $n_1(r)$ denote the number of these $[o_n]$ not exceeding r. Similarly let $0 < b_1 < b_2 \ldots < b_n \ldots$ be a sequence of numbers tending to intinity and let $n_1(r)$ denote the number of these $[b_n]$ not exceeding r. We set,

$$Q_1(z) = \prod_{n=1}^{\infty} (1 - z^2/a_n^2)$$
 and $Q_2(z) = \prod_{n=1}^{\infty} (1 - z^2/b_n^2)$.

Let

$$\lim_{r\to\infty} \sup_{\text{inf}} \frac{n(r, Q_2) - n(r, Q_1)}{r} = \frac{B}{A}, \quad 0 < A \leq B.$$

Then

$$0 < \pi A \leq \lim_{r \to \infty} \sup_{\text{inf}} \frac{\log \left\{ \frac{M(r, Q_2)}{M(r, Q_1)} \right\}}{r} \leq \pi B.$$

Proof of Theorem 1.

By Jensen's formula [2]

(1)
$$\int_{0}^{r} \frac{n(x)}{x} dx = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(r, e^{i\vartheta})| d\vartheta - \log |f(0)|.$$

We know that [5]

(2)
$$\log\{I_{\delta}(r)\} \geq \frac{\delta}{2\pi} \int_{0}^{2\pi} \log |f(r,e^{i\vartheta})| d\vartheta.$$

From (1) and (2)

$$\log\{I_{\delta}(r)\} \geq \frac{\delta}{2\pi} \int_{0}^{2\pi} \log |f(r,e^{i\theta})| d\theta = \delta \int_{0}^{r} \frac{n(t)}{t} dt + \delta \log |f(e)|.$$

But

$$\int_{r}^{R} \frac{n(t)}{t} dt = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(R, e^{i\theta})| d\theta - \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(r, e^{i\theta})| d\theta.$$

So

$$n(r) \log R/r \leq \log \{I_{\delta}(R)\}^{1/\delta} - \log m(r)$$

and

$$n(R) \log R/r \ge \log M(R) - \log \{I_{\delta}(r)\}^{t/\delta}$$
.

So

$$\frac{\left\{I_{\delta}(R)\right\}^{1/\delta}}{m(r)} \ge \left(\frac{R}{r}\right)^{n(r)}$$

and

$$\frac{m(R)}{\left\{I_{\delta}(r)\right\}^{1/\delta}} \leq \left(\frac{R}{r}\right)^{n(R)}.$$

Proof of Theorem 2.

We know that [2]

$$\log \left\{ I_{\delta}(r) \right\}^{t/\delta} \geq \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(r \cdot e^{i\vartheta})| d\vartheta.$$

$$\log \left\{ I_{\delta}(r) \right\}^{1/\delta} = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(r,e^{i\vartheta})| d\vartheta + P(r),$$

where $P(r) \geq 0$.

So

$$\int_{-R}^{R} \frac{n(x)}{x} dx = \log \left\{ \frac{I_{\delta}(R)}{I_{\delta}(r)} \right\}^{1/\delta} + P(r) - P(R).$$

So

$$\left(\frac{R}{r}\right)^{n(r)\delta} \leq \left\{\frac{I_{\delta}(R)}{I_{\delta}(r)}\right\} \text{ if } P(r) - P(R) \leq 0.$$

which proves (i).

Similarly (ii) and (iii) follow.

Example.

Let

$$f(z) = e^z$$
 , $\delta = 1$.

Then

$$\log I(r) = r - \frac{1}{2} \log r + 0 (1).$$

So

$$P(r) = r - \frac{\log r}{2} + 0$$
 (1) and $P(R) = R - \frac{\log R}{2} + 0$ (1),

where R > r > 0.

$$P(r) - P(R) = r - \frac{\log r}{2} - R + \frac{\log R}{2} + 0$$
 (1).

Let

$$R = kr$$
 , $k > 1$.

Then

$$P(r) - P(R) = v - \frac{\log r}{2} - kr + \frac{\log r}{2} + \frac{\log k}{2} + 0(1).$$

$$P(r) - P(R) = \frac{c \log k}{2} - r(k-1)$$
, c is a constant.

So

$$P(r) - P(kr) < 0$$
 if $c \log k/2(k-1) < r$.

$$P(r) - P(kr) > 0$$
 if $c \log k/2(k-1) > r$.

$$P(r) - P(kr) = 0$$
 if $c \log k/2(k-1) = r$.

Proof of Theorem 3.

$$N(r) = \int_{r_0}^{r} \frac{n(t)}{t} dt$$

So

(1)
$$N(R) - N(r) = \int_{r}^{R} \frac{n(t)}{t} dt \le \log \left\{ \frac{\left\{ I_{\delta}(R) \right\}^{1/\delta}}{m(r)} \right\}$$

from the proof of Theorem 1.

N(x) is an increasing convex function of log x. If we draw the graph of N(x), it will pass through the origin,

Let O be the origin and $A(\log R, N(R))$, and $B(\log r, N(r))$ be two points on the graph.

Then

Slope of $OA \geq$ Slope of OB.

So

$$\frac{N(R)}{\log R} \ge \frac{N(r)}{\log r}$$

and it follows that

$$\frac{N(R) - N(r)}{\log R - \log r} \ge \frac{N(R)}{\log R}.$$

Thus from (1) we have

$$\frac{N(R)}{\log R} \leq \frac{\log \left\{ \frac{\left(I_{\delta}(R)\right)^{1/\delta}}{m(r)} \right\}}{\log (R/r)}.$$

So

$$\frac{\left\{I_{\delta}\left(R\right)\right\}^{1/\delta}}{m\left(r\right)} \geq \left(\frac{R}{r}\right).$$

Proof of Theorem 4.

We know that $[2] \log M(r)$ is an increasing convex function of $\log r$.

So

$$\frac{\log M(R)}{\log R} \ge \frac{\log M(r)}{\log r} \text{ for } R \ge r > 0.$$

$$\frac{\log M(R) - \log M(r)}{\log R - \log r} \ge \frac{\log M(R)}{\log R}.$$

$$\frac{\log M(R)}{\log R}$$

$$\frac{M(R)}{M(r)} \ge \left(\frac{R}{r}\right).$$

So

But

$$\log M(R) \ge \int_{r}^{R} \frac{n(t)}{t} dt \ge n(r) \log (R/r).$$

So

$$n(r) \frac{\log (R/r)}{\log (R)}$$

$$\frac{M(R)}{M(r)} \ge \left(\frac{R}{r}\right).$$

The Corollary follows from the following Lemma.

Lemma.

$$a^x \ge ax$$
 if $a \ge e$ and $x > 1$.

Proof of the Lemma.

$$e^x \ge e x$$
.
 $x \ge 1 + \log x$.
 $\frac{\log x}{x-1} \le 1$.

But

$$a \geq e$$

$$\log a \geq 1$$
.

So

$$\log a \ge \frac{\log x}{x-1}$$

i.e.,

$$x \log a \ge \log a + \log x.$$

So,

$$a^x \geq ax$$
.

Proof of Corollary.

From the Lemma we have

$$\frac{M(R)}{M(r)} \ge \frac{n(r) \log (R/r)}{\log R} \left(\frac{R}{r}\right)$$

And, if we put $R=r^k$, $k\geq 1$, in theorem 4, then, we can easily show that,

$$\left\{\frac{M(kr)}{M(r)}\right\}^{k} \geq (r)^{n(r)} (k-1)^{2}.$$

Proof of Theorem 5.

It is known that [7] if $\nu(r)$ denotes the central index of the power series of f(z) for |z| = r.

Then,

(1)
$$n_{v(r)} \quad (f(z), 1) \leq (v(r) + 1) \log \left(\frac{1}{1 - \frac{e}{r}}\right).$$

It follows from (1) that

(2)
$$\limsup_{r\to\infty} \frac{n_{v(r)}(f(z), 1)r}{v(r)} \leq e$$

Now we may suppose without loss of generality |f(0)| = 1. In that ease,

(3)
$$\log \mu(r) = \int_0^r \frac{v(t)}{t} dt.$$

It follows from (3) that, if c > 1, taking into account that v(r) is a non decreasing function of r [8], [9], we have,

(4)
$$\log \mu(rc) - \log \mu(r) = \int_{r}^{rc} \frac{v(t)}{t} dt \ge v(r) \log c.$$

It is known that

$$\lim_{r\to\infty}\inf_{r\to\infty}\frac{v(r)}{\log\mu(r)}\leq\lambda.$$

Thus to any $\varepsilon > 0$, there can be found a sequence r_n (n = 1, 2, ...) for which $r_n \to \infty$ and $v(r_n) < (\lambda + \varepsilon) \log \mu(r_n)$.

From (4)

$$v(r_n) (\log c + 1/\lambda + \varepsilon) < \log \mu(r_n c)$$
.

Choosing

$$c = e^{1-1/(\lambda+\epsilon)}$$

it follows that

(5)
$$v(r_n) < \log \mu(r_n e^{1-1/(\lambda+\varepsilon)}).$$

As

$$\mu(r) \leq M(r)$$

(6)
$$(5) \Rightarrow , v(r_n) < \log M(r_n e^{1-1/(\lambda+\epsilon)}).$$

and thus

(7)
$$H(v(r_n)) < (r_n e^{1-1/(\lambda+\varepsilon)}).$$

As by (2),

(8)
$$\limsup_{n\to\infty} \frac{n_{\mathbf{v}(r_n)} (f(z), 1) r_n}{\mathbf{v}(r_n)} \leq e$$

and with respect to (7) we obtain

(9)
$$\limsup_{n\to\infty} \frac{n_{v(r_n)}(f(z), 1) H(v(r_n))}{v(r_n)} \leq e^{2-1/(\lambda+\varepsilon)}.$$

But, (9) clearly implies

(10)
$$\liminf_{k\to\infty} \frac{n_k (f(z), 1) H(k)}{(k)} \leq e^{2-1/(\lambda+\varepsilon)}.$$

As (10) is valid for any $\varepsilon > 0$, the assertion of Theorem 5 is proved,

Proof of Theorem 6.

$$\log M(r, Q_1) = \sum_{i=1}^{\infty} \log (1 + r^2/(a_i^2))$$

$$\log M(r, Q_1) = \int_{-\infty}^{\infty} \log (1 + r^2/t^2) dn_1(t)$$

log
$$M(r, Q_1) = 2r^2 \int_{1}^{\infty} \frac{n_1(t)}{t(t^2 + r^2)} dt - n_1(1) \log (r^2 + 1).$$

Similarly,

$$\log M(r, Q_2) = 2r^2 \int_{1}^{\infty} \frac{n_2(t)}{t(t^2 + r^2)} dt - n_2(1) \log (r^2 + 1).$$

since

$$\frac{n(u)}{u^2} \to 0$$

by [10].

So

(11')
$$\log \left\{ \frac{M(r, Q_2)}{M(r, Q_1)} \right\} = 2r^2 \int_1^{\infty} \frac{n_2(t) - n_1(t)}{t(t^2 + r^2)} dt - \log(r^2 + 1) (n_2(1) - n_1(1)).$$

Again by [10] we get

$$2 (A - \varepsilon) r^{2} \int_{1}^{\infty} \frac{dt}{t^{2} + r^{2}} + 0 (\log r) < \log \left\{ \frac{M(r, Q_{2})}{M(r, Q_{1})} \right\} < 2 (B + \varepsilon) r^{2} \int_{1}^{\infty} \frac{dt}{t^{2} + r^{2}} + 0 (\log r).$$

Taking limits we get

$$0 < \pi A \leq \lim_{r \to \infty} \sup_{\text{inf}} \frac{\log \left\{ \frac{M(r, Q_2)}{M(r, Q_1)} \right\}}{r} \leq \pi B^{1}$$

¹⁾ I wish to thank Dr. S. K. Singh, for his kind interest and helpful criticism and the "Council of Scientific and Industrial Research, for awarding me a Scholarship.

REFERENCES

[1] SINGH, S. K. : A note on emire functions. Jour. of Univ. of Bombay, 20, pp. 1-7 (1952).

[2] SINGH, S. K. The maximum term and rank of an entire function. Pub. Math. 3, 1-2, Debrecen

(1953).

[8] Erdős, P. On the zeros of successive derivatives of entire functions of finite order. Acta Math.

AND Hung., 8, pp. 223-25 (1957).

[4] TITCHMARSH, E. C. : Theory of functions, Oxford. Univ. Press, Second edition, (1961).

[5] SRIVASTAV, R. S. L. : A note on means of entire functions, Revista Matematica Hispano America, 22.

pp. 180-84 Madrid (1962).

[6] VALIRON, G. : Integral functions, CHELSEA Pun., N. Y. (1949).

[7] Erdős, P. : On the number of zeros of successive derivatives of analytic functions, Acta Math.

AND Acad. Sei. Hung., 7. pp. 125-44 (1956). RENYI, A.

[8] POLYA, G. : Aufgaben und Lehratze aus der Analysis, 2, Berlin (1925).

AND Szegö, G.

RENYI, A.

[9] POLYA, G. : Aufgaben and Lehratze aus der Analysis, 1, Berlin (1925).

and Szegö, G.

[10] GANAPATHY, V. : On integral functions of order one and of finite type, Jour, of Indian Math.

Soc., 2, pp. 1-12 (1936).

DEPARTMENT OF MATHEMATICS KARNATAK UNIVERSITY DHARWAR — INDIA (Manuscript received June 11, 1966)

ÖZET

 $f(z) = \sum_{n=0}^{\infty} a_n z^n \text{ seklinde tanımlanmış bir tam fonksiyonun derecesi } \rho, \text{ alt derecesi } \lambda,$

|z|=r için maksimum terimi $\mu(r,f)$, |z|=r üzerinde maksimum ve minimum modülü M(r,f) ve m(r,f), $|z| \le r$ dairesel bölgesindeki sıfırlarının sayısı n(r,f)=n(r) olsun. Bu yazıda bu büyüklüklerin sağladıkları birkaç eşitsizlik elde edilmiştir.