ON THE ZEROS OF AN ENTIRE FUNCTION-I
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60
Jet f(z) = 2 @ 2 be an entire funclion and suppose g denotes its order, » its lower

=0
order, 1 (¢, f) its maximum term when |z} =r, M (s f) and m(r, f) its maximum and
lz] <r. Some

minimum moduadus on | z1=# n(r, f} the unnmer of its zeros in
inequalities concerning these guantitics are obtained,

(&)
Let f(z) = E a, z" be an entire function of order ¢ and lower order 1 and let u (r, /)

=0
be the maximum term of f(z) for | z | = r while M(r, f) and m(r, f) denote the maximum
modulus and minimum modulus of f(z}) on |z | = r respectively, Finally, let

#(r, f} == n(r) be the number of zeros of f(z) in |z| <k

We prove the following Theorems.

Theorem [,
i
) {Iin(‘z‘))}d . (i})n(r).
i m (R) : = (—f )n(R) )
(150} °
for
R=r>0.
where
2o
Is (J')“_—Z% f | flreity | dd.
¢

aud & is any positive number.
We observe that if f'(z) has an infinity of zeros

roetbo pyefte oo, p et L

the above inequalities are obviously true for a sequence ry, ry, . of values of r.
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The main feature of the theorem is that it is true tor all R >» > 0.

Theorem 1 improves the result due to 8. K. Smcu [']L
Theorem 2,

Let

2%

Py =1log (I, (n}7/% — ?11- f log | f{r ei® | d¢ =0,
0

Then
2 (&Y = 2 rr—P@ <0
i) ( £ )5 " fi‘f} s i P(r)— P(RY 0.
iy (‘f,i )5 a{r) = 1;6((13_ = (% )f}ﬂ(R) i PO P(R) =0,

Jor R=y >0 and § is any positive number.
We give an example for which all the above three cases will hold.

Theorem 3.

If f(2) is an entive function having no zeros in the unit circle, then,

52 N{Reg R
'{%ﬁ)} 3(%) for R>=r > 0,
where
r
N = f ”—?) dt.
0
Theorem 4,
R
M(R) o (-E)n{r) log (T)llog R , R r >0,
M)y — »
Corollary.

M@E) o 1B (R (R
V(f')_ = n(r) log R ( ¥ )

log (R]r}

1.
log R >

if R>=e.r, and n{r) -
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Remark.

In Theorem 1, (/) and Theorem 3 we can easily replace m(r) by M), if we
choose ¢ such that

i fret®) [ = M),

Simularly we can replace m{R) by M (R) in Theorem 1 (i),

Theorem 3 improves the result of S. K. SingH [?],

Theorem 5.

If f(z) is an arbitrary entire function of lower order L (121 < o), x = H()
denotes the inverse function of y==1log M (x). Further, if y (f(z), 1) denotey the number
of zeros of fR(2) in the unit circle, where f¥(z) is the K derivative of f(z), we have

lim inf ng ( f(2), 1) H{k) < & YL,
k8

The above result inmproves the result ot P, Erpis & A, Renyi [°].

Theorem 6.

Let 0<Za,<a,<<..... < dy.... be a sequence of numbers tending to infinity and

fet n, (r) denote the number of these [ 0,1 not exceeding r. Similarly let 0<b,<Cb,..,.
< by .... be a sequence of numbers tending to intinity and let n, (r) denote the number of

these [ b, } not exceeding v, We set.

0.0 = [[ a4 —=ad) and Q.0 = [[ ¢ — =),

) n=1 =1
Let
lim sup n(r:Q!)'_‘n(raQI)_B, O A= B
S 11 § r T A4 -
Then
lOg { M(f', Q_?)v }
0<nd = tim P WMEOQ)T . ,p
rooo  INf I3
Proof of Theorem 1.
By Jensen’s formula [?]
r ( ) 2m
n(x 1 ,
- 1 4i —
% [ B2 s [1oe 1500 a8~ 108 | £O)1.
. 0

We know that [F}
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2o
d
@ Jog (1) = 5 [ 1og |70 e) | an.
0

From (1) and (2)

2o ¥
d ) , .
gl 1) = 5 [ g 1se.em | av=s [ "Dy o0 101,
0 i+

But
R - 20
[Oa— L [ 1o 17® e a0 — L [ o8 17601 as.
v 0 0
So
n(r) log Rir < log {13 (R)}''® — fog m(n)
and
n(R) log Rfr > log M(R) — log { Iy () }'/® .
So
-Mua . (_&)"(f)
m(r) —\r
and

_m® A RNR
NI ( r ) |

Proof of Theorem 2.

We know that [2] -
2

L 1 . .
log {750)}% = o [ log 1 /(e ety | a0
0

20
log (13(0})"* = 2 [ log 1/ ey | a4 PG,
i}

where P(r) = 0.

So

R

S G 15 (R) '3
f —;—dx—log{rla(r) } —+ Py — P(R).

r

So
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R YU [ IR Y . _
(T) ﬁlrlw—}ﬁ'}’(r)—P(R)éO.

which proves {f).

Similarly (/i) and (i) follow.

Example.
Let
flizy=¢ , 6=1.
Then
log I(4) = r — —‘:12— log r 4+ 0(Q1).
- So
log r log R
P@)=r— =2 4 0() and P(R)=R— - +0()
where R >r >0,
1 . log R
PGy — P(R)=r — "2 — R+ 5= 0L},
Let
R=kr , k>1.
Then
tog r log log k
P — PR =v — 5 — kr = + == 4 0(1).
clogk ,
P(r) — P(R) = 5 (k--1), ¢ is a constant.
So

Plry — P{r) < 0 if clog k2(k—1) < r.

P(r)— P(kr) > 0 if clog kj2(k—1) > r.

P{r) — Pllkr) =0 if clog kj2(k—1) = r. .
Proof of Theorem 3.

N(r)=f n—?ﬂ)dr

Fo

So

61
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n{t)
4

R
Illb
) N(R)—N(r).:f _d,élog{w}

m(7)

from the proof of Theorem 1%.
N (x) is an increasing convex function of log x. If we draw the graph of N (x), it will
pass through the origin,
Let O be the origin and A (log R, N(R)), and B (log r, N{r})} be two points on
the . graph.

Then
Slope of 04 = Slope of OB.
So
N _ N@
logR — logr
and it follows that
N(R)y —N(r) - N(Rl.
logR—logr —~ logR
Thus from (1) we have
) 1o
tog {(Ia (®)
N(R) m(r)
log R — log (Rfr)
So
l,fb
iR} ( RN
m(r) - r
Proof of Theorem 4.
We know that [*] log M {r) is an increasing convex function of log r.
So
log M (R) ~ log M{(r) for R r = 0.
log R log r
log M (R) — log M (r) - log M(RZ
log R —log r = log R '
So
log M (R)
log R
MR (_’S
MFEr — r
But
R
()
log M (R) = - dt > n () log (Rfr).
¥
So
log (Rfr)
" e @

M@® ( R
M@y — T)'

The Corollary follows from the following Temma.
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Lemma.

a*>ax if a>=e and x> 1,

Proof of the Lemma,

fog x
;:1’ — 1 v
But
a4 >e
log g =1
So
log @ log x
—1
ie.,
x log a = log a4 log x,
So,
a* > agx.
Proof of Corollary.
From the Lemma we have
M) 1) (R (R
My — log R r
And, if we put R==rk |, Lk =1, in theorem 4, then, we can easily show that,
f M (kr) k n(r) (—1)2
M = .
1 M©
Proof of Theorem 5.
It is known that [7] if »(-) denotes the central index of the power series of f1z)
for |z|=mr.
Then,
. 1
) Moy (f(2), 1) = (0() + D log [ ——— )+
1—=
It follows fiom (1) that
. Iy
(3] lim sup foty (S, LY r = e
roa o ()

Now we may suppose without loss of generality | f(0) | = 1. In that ease,
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r

4 2

@ oepy= [ 22 a
0

It follows from (3) that, if ¢ > 1, taking into account that v{r) is a ﬁon decreasing function g

of r [*], [°], we have, f

@ tog u(r)—tog p)= [ =t = v log .

Tt is known that

- ("
lim inf o2 _ =,
oo log p() =

Thus to any & = 0, there can be found a sequence r, (n =1, 2,....) for which r, > o and
v ir,) << (A 2) log g rn).

From (4)
w (ry) (log ¢ - 1fA 4 &) << log u(r, c).
Choosing
¢ = ¢—H0te
it follows that
©) v (ry) < log p(r, ef—_la'(a+e) ).
As
uir) = M),
®) (5) =, 0 () < log M(r, et 104y
and thus
) H{(w(ry)) < (ra el—lj(1+e)) .
As by (2),
Hy (f(z , 1 n
8 Jim sup (ry (FG@), D 1,

rares v (1’") -

and with respect to (7) we obtain

vl » 1) H(o(r,
©) Jim sup Rotr,y (F(2), 1) H(w(ry))

= A0+
) o (r,)
But, (9) clearly implies

(10) lim inf T2 D HE 2ot |
PR (%) -

As (10) is valid for any & > 0, the assertion of Theorem 5 is proved.
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Proof of Theorem 6.

log M(r, Q) = ), log (1| r*/(a}))

i=1

w

log M (5, @) = [ log (1 117/ %) dn, (1)
L

o

log M, @) =2 [ ;- dt—m () tog ¢+ D).

TGS
H
Similarly,
log M (r, Qy) = 27 f ?{ff—(’;).v?j dt —ny (1) log (r* - 1).
1
since
H (f‘) Yo
u®
by [''].
So
ary  log { g%g?}} — 2 f "i((*;)z;w dt — 1og (1) (ng (L=, (1))
Again by ['°} we get
o f M, 00 L
2(A— & r f —Iﬂ_'_—ﬁ)JrO(log r)<log{fM(r,Ql) } < 2(B+=)r f W—;
i ; 1
—+ 0 (log #).

Taling limits we get

g { 2120 )
sup M (r, Ql) Z 2B 1) :
mf ’ -

0< nAd < lim

row

1} I wish to thank Dr. 8, K. Smon, for his kind interest and helpful criticism and the “Council. oF
SCENTIRIC AND INDUSTRIAL RESTARCH,, for awarding me a Schelarship,




66

31

41

[53

[°1

£8}

91

[Le]

DEPARTMENT OF MATHEMATICS { Manuscript received June 11, 1966)
KArRNATAK UNIVERSITY
DHArRWAR — INDIA

5. 8. Darar
REFERENCES
SivoH, 8. K. A note on emive functions. Jour. of Univ. of Bombay, 20, pp. 1-7 (1952).
‘
SimncH, S. K. Y1 The maximam term and rank of an enmtive finction. Pub. Math, 3, 1-2, Debrecen
: (1953).
ERrDds,. P. On the zeros of successive derivatives of entive funetions of finite order. Acta Math,
AND Hung., 8, pp. 223-25 (1957).
RENYE, A,
Tircamarsa, E. C. : Theory of functions, Oxrorn. UNiv. Press, Second edition, (I961).
SrivasTav, R. 8. L. 1 A note on means of entive functions, Revista Matematica Hispano America, 22.
pp. 180-84 Madrid (1562).
VALIRON, G. Integral functions, CHersea Pun., N. Y, (1949),
ErD&s, P. On the momber of zeros of successive derfvatives of anclytic functions, Acta Math.
AND Acad. Sei. Hung., 7. pp. 125-44 (1956).
RENYT, A. ’
PoLya, G. Aufgaben und Lehratze aus der Analysis, 2, Berlin .{1925).
AND
Szeco, G.
Porya, G. 1 Aufgaben and Lehratze aus der Analysis, 1, Berlin (1925), -
AND '
SzEgd, G.
Ou integral functions of order one and of finite iype, Jour, of Indian Math.

GANAPATHY, V.

fi = E a, zR geklinde tanimlanmug bir tam fonksivonun derecesi ¢, alt derecesi 2,

n=0
bz | = r igin maksimum terimi y (7, £), |z | = r iizerinde maksimum ve minimum modiili

[l

Sec., 2, pp. 1-12 (1936). -

OZET ‘

M@, fy ve m @ f), |z] = r dairesel bolgesindeki sifrrlarmm sayist # (v, £) = 1 () olsun.

Bu yazida bu biiyiikliiklerin sagladiklart birkag egitsizlik elde edilmistir.




