ON A CLASS OF INTEGRAL FUNCTIONS DEFINED BY A DIRICHLET SERIES
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A set of m integral functions, each having a DrriCHLET series representation of the form
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where the Me,n form a monotonic increasing sequence satisfying certain special conditions
at the Iimits, is considered and the function given by the DIRICHLET series
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is defined and some properties of this function are obtained as consequence of those of
the function £, (s).
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Let o, and «, be the abscissa of convergence and abscissa of absolute convergence,
respectively, of F(s). If vc = sa = co, F(s) is an integral function. We shall suppose
throughout that (1.1) holds and that ¢, = o, = o=. :

Let f(s), k==1,2,..., m, be mintegral functions of s-=o-} is with the following
DIRICHLET series representation, :
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in the whole s-plane and let
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and the p ’s are positive constants.
In thi_s paper, we have obtained some of the properties of f(s).

2. Theorem 1

If fi (s}, as defined in (1.1), are m integral functions of order
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where h(< 1) is a positive constant, then the function f{s5), defired by (1.3), is also an
integral function of order @, such that
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It is known (['I p. 80) that f(s), as defined by (1.3), is an integral function.
Tt is also well known {[%], p. 44) that if
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where 4 (< 1) is a positive constant, then F(s) is of linear order g,
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3. Theorem 2
If fi (8), as defined in (1.2), are m integral functions of lower order ¥y 0 = yp = ),
(k=1,2,..., m) such that - -
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are non-decreasing functions of n for n > ny, then the function f(5), as defined in (1.3), is also
an integral funciion of lower order v such that
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We know that fi(s) is an integral function, (['], p. 80), also we have ([?], p. 44) that if
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is a non-decreasing fanction of » for » >> n,, then the lower linear order » of F(s) is
given by

i
(3.1) ’ y = lim inf — 08 a
oo . aﬂ
log
D1

Using (3.1) in the case of f {5), we have
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The following corailaries easily follow from the above theorems:

Corolary 1

If f(s) is an integral Tunction of infinite order then each of the functions S (5) is of
infinite order. ’

Corollary 2

If any of the integral functions f; (s) is of zero order then the order of f(s) is zero.

Coroilary 3

If the functions f, (s) satisfying the conditions of theorem 2, are of linearly regular
growth, then f(s) is also of regular growth, and
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Since for functions:—of linearly regular growth o =, we can write,
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Hence f(s) is also of linearly (egular growth.

4, Theorem 3.
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then the function f(5), as defined in (1.3), is also an integral function of order ¢ and rype T,

such that
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If £ (s) are m integral functions of order op (0 << op < ) k=1, 2,..., nr) and
lower type t (0 < #3 < o0), such that
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OZET

{ A "} dizileri monoton artan ve limitleri baz dzel garthar saglamak fzere,
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DmicHLET serileri ile -vecilen mr tane fonksivon gbz dniine ahinmak ve
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DinicHikT serisivle tamimianan f(s) fonksiyonu géz dntine almmaktadic. Bu fonksiyonun
baz 6zcilik]eri,fk(s) fonksiyonlarinin dzelliklerinin sonuglan olarak clde oditmektedir.




