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The present paper deals with the flow of a conducting viscoelaslic fluid between two 
porous plates under a transverse magnetic field with constant suction and injection, 
and finite eléctrica! waif conductivities. Using (he perturba lion method, an exact solution 
is obtained for small relaxation time. It is found that velocity decreases with the 
increase in the viscoclastic parameter, whereas the induced magnetic field increases 
with the increase in both the píate conductivity and the viscoclastic parameter. Also 

various other conclusions are drawn. 

0. Notation : 

C'o ' C' i , Cu, , Cí0 , C ü u , C 4 U , ClL , C 2 , , C B L , C 4 I Constants 

efy Strain rate tensor 

H(l Applied transverse magnetic field 

h Dimensionless induced axial magnetic. field 

L Half-width between plates 

M HARTMANN number 

m Suction parameter 

p' Hydrostatic pressure 

P Dimensionless hydrostatic pressure 

pij Deviatoric slress tensor 

p¡j Dimensionless deviatoric stress tensor 

prm Magnetic PRANDTL number 

Jl REYNOLDS number 

Rm Magnetic REYNOLDS number 

ii Dimensionless axial velocity 

je Longitudinal distance 

x Dimensionless longitudinal distance 

y Transverse distance 

y Dimensionless longitudinal distance 

F Viscoelaslic parameter 

X Relaxation time 
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fi Viscosity 

v Kinematic viscosity 

He Magnetic permeability 

1] Electric diffusivity 

fl'fa Electrical conductivity parameters of lower and upper plates 

Q Density 

a Electrical conductivity 

fifj KRONECKER tensor 

jfjj Stress tensor 

l . Introduction: The flow of a conductiug newtonian fluid between two parallel plptes 
under transverse magnetic field was first studied by HARTMANN and LAZARUS [' ] . GUPTA [ s] has 
studied POISEUILLE flow with suction and injection. Later K A P U R and R A T H Y [ e] investigated 
the same probiein for a conducting viscoelasric fluid, taking the walls to be nonconducting. 
But in the flow process, the percolation of the fluid through the plates makes them electrically 
conducting, even though the plates ihcmselves are non conducing when they are in dry state. 
Thus electrical conductivity of the plates plays a significant pari. Hence we cannot neglect 
the conductivities of the plates, when we are dealing with magneto-hydrodynamic flow problems 
with suction and injection. 

The aim of the present paper is to btudy the effect of wall conductivity in (his problem. In 
this paper we have studied ihe steady incompressible flow of a viscoelastic fluid between two 
conducting parallel plates under a transverse magnetic Meld with constant suction and injection. 

In the analysis a rectangular Cartesian co-ordinate system is used. 

denote the magnetic, velocity, electric and current field vectors respectively. It is assumed that 
all the HON variables depend on y oniy. 

2. Basic Equations. Ike Rheological equation is 

(2.D *tj^-p'»i!+Pij . 

(2.2) pij-'tXpij^ltieij , 

where 

"> 2 \dxj^dXi J ' 

Pi) = ~gf Pi} + Pi}. RVR— PiR *>}, R — PRj t>i, R + Pij •OR.R . 

With the above assumptions from the basic equations of magneio-fluid-dynamics and the rheolo
gical equations, we get 

(2.3) o 4 ^ - ^ . 
dy 4lt dy dy 
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(2.4) dux

 dP' , dPxg , l**Hu<)Hx 

9 y dx 9y 4ll d y 

ay 3 y dy 

(2"7> P*9 + H * ° ~ " S T P**)=**d 

(2.3) ^ + * ( - . ^ - 4 ^ ) = ° ' 

(2.9) Pxx = Pxtt~Py* = Q • 

Using the transformations, 

.v - Z,x, y~Ly ,v„—m u„, ux — H , //^ = //U /; , 

P ' = P«y PiPxy = i'l'lPxs ' Pyg = . pXx ^ P** > 

l-i It \ It / 

we get the non-dimensional form of equations (2.4) to (2.7) as 

(2-12) ^ — + « - ^ - ^ ^ - ^ 0 , 

(2.13) Pwg+en,-^Ps9=° ' 

, / d du\ \ du 

(2-14) ^ ^ ( . ' " - ^ r ^ ^ ^ r f j ^ x 
It can be shown that is constant. Hence we take = —^1, where / I is a positive 

5* ox 
constant. 

Boundary Conditions : Let the two walls be given by ^ = + 1 . From the no slip 
condition, we get 

(2.15) « — 0 at y ~ ± l . 

The condition that the tangential component of E and H must be continuous across the 
interface ( 4 ] , [5] ), gives the following boundary condition for the induced magnetic field 
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J - A = 0 at y = - i , dy yi 
(2.16) 

-f. + ± k = 0 at , = + 1. 
dy 9a 

3. Solution: Integration of (2.11) gives 

(3-1) ™< = Ay+pxg-\--kJi + CL. 

Eliminating P g g between (2.12) and (2.13), we get 

a / du d'px;f d'2udpxg \ / <fa dpXJJ d?u \ 
B \dy dy-1 df-~dTr\ dy dy dy* P*v ) 

i ( 1 du \ du 

We develop the solution in powers of s ( e < < l ) , hence we lake 
CO CO 0 0 

0 0 0 

on oo co 

(3-3) Pxy — ^ xS . P W = J] g V(n) . P « = • 
0 0 0 

Substituting (3.3) in (2.12), (3.1) and (3.2) and equating the various power? of st we shall get 
the equations for determining 

un,hn and P{n)xg for n — 0, 1,2, ... 

The boundary conditions will give 

(3.4) «„ = 0 (77 — 0,1,2,...) at y = ± 1, 

(3.5) J _ . A „ = r 0 , ( / i = 0 f l , 2 ...) at y = — l 

and 

ay (f>a 

Zero Order Solution. Substituting (3.3) in (2.12), (3.1) and (3.2) and taking zero order 
terms in 8 , we have 
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(3.7) m«» = ^ + P ( o ) « f f + R R - f'o+ Ci(0) * 

Eliminating u„ and p{0)Xff from (3.6), (3.7) and (3.8), we have 

(3.9) ^ . _ » « ( , + J L ) 4 . + -A- JO*. =:|5I, + < . 
V /Vm / «V RmPrm Prm 0 

Solving this, we get 

(3.10) h = C i ^ + c ^ - w ^ ^ y + C „ . 

From equations (3.6) and (3.10), we get 

(3.11) A. = C „ ( „ _ i = 5 ) + C ( « - * + j ^ S ^ y + c u 

where are zeroes of 

(3.12) V-mR (l+ ~ M l + D - ^ — (m2 R i? m - M^) = 0. 
V P r m / '<m Prm 

Using the boundary conditions (3.4), (3.5), we get 

= ARRm rfiQiQashft—mQ,) QAeaa~ch^{mQ—QiQlsh<t)Q^—chli)\_ gn 

(3.13) 

ARRm r f(Q^Q^Afl—mG«)[c < w -(aVı+l)e , , ] - K m G . - f i * <2t^a) [^P' / - (^ l i + l K r t 
i f 7,0 M2—m*RRmL\ ' (QsQtShp—QtQlshoi) 

(3.14) - { ^ - 0 + ^ ) } ] 

where 

fi1=(«-^),fit=(»-^),i24 = 2 + w + V l I , 

Q 3 = x ( y „ e " + ^ e~a) + 2iAa , Q f i - / ? ( * „ e P +- ne~9) + 2JA/3 . 

Knowing u0 , / i 0 we can get al! other field quantities, like, E0 , p(0)xff , P(„)y9 , etc. 

First Order Solution. Substituting (3.3) in (3.2) and talcing first order terms in e from 
equation (3.2), and simplifying we have 
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Proceeding in a similar way as in the zero order solution, we get the equation determining h 
first order as 

(3.16) ^ - m R ( i + ± - \ ? ! h + * _ W-RRm — M J)/f t 

The solution of (3.16) is 

(3.17) A ^ c . ^ + C ^ - ^ ^ ^ f c . , . - ^ - ^ ? ) - - . 

Taking first order terms in 6 from (2.12) and using (3.17), we get 

(3-18) «i = C u ( « - ^ ) e - V + C s l ( i » i - ^ ) c l » 

+ d 7 [ ^ ( " - Y ) - ( ' + - - £ 0 
- c ! „ r ( m ^ ) ^ ( ] + ^ - £ , ) ] + c.1,. 

Applying the boundary conditions (3.4), (3.5), we have 

<3.19) « ^ C ^ . ^ - r - J + C . Q ^ ^ - r P ) 

- c . « . { . P . ( 1 + * - £ , ) - ^ ( . - « - £ ) } ] . 
A ( = C , t I - (a 9»„ -f. 1) * « } 4- C , ( j et* - (/? «?„ + 1) cP | 

- ^ 7 o [ c ^ , ( M - ^ ) { ^ - [ ( 1 + * ) ^ + , ] * a } 
- Cw ** (m- ^ ) j y eP* - [(1 -h /J) y„ + 1 ] e? } ] 

(3.20) 

where 
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2TJJZ,> • Zi^Z- Z%Z$ Z^Z$ 

Knowing w, we can evaluate £ , , p{\)xy , PU)xx > P{i)</y etc-
n-th Order Solution: Taking «-th order terms also into account in equation (3.2) and 

substituting the value of x y in (3.1) and then eliminating, We have 

(3.21) ™*-MR(I-{- R-^{m^RRn-M^hn^fn{tln.^n^i...). ay' \ Prm/ ay Rmprm 

Knowing the solutions up to the (n—1) th order, we know/. Then we can soive (3.21) to know 
/;„. Similar procedure as in zcroth order and first order solution gives u„. Hence in this way 
theoretically, the solution can be found up to any order we like. But second and higher order 
solutions w ll give unwieldy expressions and the solution up to the first order gives fairly ap
proximate values. 

4. Conclusion : The graphs (Fig. 4.1, Fig. 4.2) showing the variation of H ( = H u + E»i). 
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F / > . 2 

and /r(=/i ( l-|-' !''i) versus y are drawn for fixed values of m, R, Rm.pTm,« and for various 
values of Af and (pi, <pa and ii is found that 

It As the HARTMANN number increases, velocity is decreasing at every point, hence the 
fluid is being retarded by the increase in the magnetic field. 

II) The velocity decreases with the increase in the plate conductivities. 

III) Maximum of velocity moves towards the plate with suction with increase of HARTMANN 
number as well as with the increase in plate conductivities (pi , ya , 

IV) Induced magnetic field increases with ihe increase in the plate conductivities <pi,<pu and 
decreases with the increase of HARTMANN number. 

"V) Induced magnetic field is more near the plate with injection, than that near the plate with 
suction. 
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R = 5 . 0 

Fig. 4.4 
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(Fig. 4.3, Fig. 4.4) are the graphs showing the variation oi it and h versus y for fixed values 
of M, m, R, Rm ,prm and <pi, tpa or various values of s, from which it is concluded that 

VI) In POISEUILLE flow the velocity increases at every point due to viscoelastic effects and the 
maximum of the velocity profile shifts towards the plate with suction. 

VII) The induced magnetic field also increase due to viscoelastic effects. (*> 
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Ö Z E T 

Bu yazıda iletken ve viskoelastik bir akışkanın iki mesameli levha arasındaki akışı ince
lenmektedir : bu olayı incelerken dikine bir magnetİk alanın varlığı, emiş veya verişin 
sabit o lduğu vc duvarların elektrik il etkenliğin sonlu bulunduğu kabul edilmiştir. Pertür-
basyon metodunu kullanmak suretiyle kısa bir relaksasyon zamanına tekabül eden tam 
çözümler elde edilmiştir. Viskolastik parametrenin büyümesi halinde hızın azaldığını, halbuki 
doğurulao magnetik alanın gerek Jevha iletkenliği, gerek viskoelastik parametre ife birlikte 

büyüdüğü tesbit edilmiştir. Ayrıca çözümden daha başka sonuçlar da çıkarılmıştır. 

(*) 1 am thankful to D r . P. N . SBIVASTAVA for his guidance and Prof. K A P U R for his constant 
encouragement. 


