CONGRUENCES OF CURVES IN A RIEMANNIAN SPACE - HI

M. D. UPADHYAY

Consider a set of m-n congruences of curves in a Rimannian space V_m , such that one curve of each congruence passes through each point of a given subspace of reference V_n . The object of this paper is to determine the equations of the focal subspaces of the congruence and those of the orthogonal normal directions at a point of a curve of the congruence.

1. Introduction. Congruences of curves in a Riemannian space V_n of coordinates x^i (i=1,2...n) imbedded in a Riemannian space V_m of coordinates Y^{α} ($\alpha=1,2...m$) have been studied by UPADHYAY [1],[2] and other authors. In this paper following the notations of UPADHYAY [1],[2] we shall obtain the equations determining «Focal subspaces» and «Orthogonal normal directions» at a point of a curve of the congruence.

Let us consider a set of $m \cdot n$ congruences of curves in V_m (m>n) such that one curve of each congruence passes through each point of V_n . Let s_n be the length of a curve of the congruence- λ_n (say) measured from a point P with coordinates Y^α at which the curve meets V_n to another point on the curve. V_n is known as the subspace of reference. The fundamental tensors of V_n and V_m are connected by the relation

$$g_{ij} = a_{\alpha\beta} Y^{\alpha};_{i} Y^{\beta};_{j}$$

where semi colon (;) followed by a Latin letter denotes tensor derivative with respect to x's.

2. Focal Subspace. The infinitesimal distance between two adjacent curves of the congruence $-\lambda_{\tau_1}$ from a point $y^{\alpha}_{\tau_1}(x^1, x^2, ..., x^n, s_{\tau_1})$ on the former curve to another point $y^{\alpha}_{\tau_1}(x^1 + dx^1, x^2 + dx^2, ..., x^n + dx^n, s_{\tau_1} + ds_{\tau_1})$ on the latter is of the second or higher order. Therefore, neglecting quantities of the second and higher order, we obtain

$$y_{\tau_1}^{\alpha}(x^1, x^2, ..., x^n, s_{\tau_1}) = y_{\tau_1}^{\alpha}(x^1 + dx^1, x^2 + dx^2, ..., x^n + dx^n, s_{\tau_1} + ds_{\tau_1})$$

i.e.

(2.1)
$$\frac{\partial y_{\tau_1}^{\alpha}}{\partial x^i} dx^i + \frac{\partial y_{\tau_1}^{\alpha}}{\partial s_{\tau_1}} ds_{\tau_1} = 0.$$

Throughout this paper Latin letters i, j, k, ... take values from 1 to n, early letters α, β, γ, δ, ...
of the Greek alphabet take values from 1 to m and later letters μ, ν, σ, τ ... take values from
n+1 to m.

²⁾ The numbers in square brackets indicate references which are given at the end of the paper.

Multiplying (2.1) by
$$a_{\alpha\beta} \left(\frac{\partial y^{\beta}_{\tau 1}}{\partial s_{\tau 1}} \right)_{ij} dx^{j}$$
 we get

(2.2)
$$a_{\alpha\beta} \frac{\partial y^{\alpha}_{\tau_i}}{\partial x^i} \left(\frac{\partial y^{\beta}_{\tau_i}}{\partial s_{\tau_i}} \right)_i dx^i dx^j = 0.$$

From (2.2.) we have

$$(2.3) C_{xi} ij dx^i dx^j = 0$$

which is satisfied when

$$(2.4) Det |c_{\pi i} y| = 0$$

where

(2.5)
$$Det \mid c_{\tau \mid ij} \mid = a_{\alpha\beta} \frac{\partial y_{\tau \mid}^{\alpha}}{\partial x^{i}} \left(\frac{\partial y_{\tau \mid}^{\beta}}{\partial s_{\tau \mid}} \right)_{i,j}$$

The value of s_{τ_1} in (2.2) corresponds to the focal points on the curves of the congruence - λ_{τ_1} by analogy with the focal points of a curvilinear congruence in an Euclidean space of three dimensions [*]. Hence (2.4) is satisfied at all points of a subspace, which we call the *«Focal Subspace»*. Thus (2.4) determines such a subspace,

3. Orthogonal normal directions. From (2.1) the infinitesimal displacement $\delta y_{\tau l}^{\alpha}$ normal to a curve of the congruence - $\lambda_{\tau l}$ at the point $M(y_{\tau l}^{\alpha})$ is given by [1]

(3.1)
$$\delta y_{u_1}^{\alpha} = y_{\tau_1;l}^{\alpha} \delta x^i + \frac{\partial y_{\tau_1}^{\alpha}}{\partial x_{\tau_1}} \delta s_{\tau_1}$$

But we have [1]

$$(3.2)_{\alpha} \qquad ds_{\tau_1} = -p_{\tau_1} dx^i$$

where

$$(3.2)_b p_{\tau l} = a_{\alpha\beta} \frac{\partial y_{\tau l}^{\alpha}}{\partial s_{\tau l}} y_{\tau l}^{\beta} i^{l}$$

By virtue of $(3.2)_a$ and $(3.2)_b$ the equation (3.1) takes the form

(3.3)
$$\frac{\partial y_{\tau_i}^{\alpha}}{\partial x^i} dx^i - p_{\tau_i} \frac{\partial y_{\tau_i}^{\alpha}}{\partial s_{\tau_i}} dx^i \stackrel{def}{=} u_{\tau_i}^{\alpha},$$

so that $u_{\tau_1}^{\alpha}$ are the components of an infinitesimal vector normal to the curve of the congruence - λ_{τ_1} .

Let $u_{\tau_1}^{\alpha}$ and $u_{u_1}^{\beta}$ be the components of two such normal directions, τ and μ having fixed values. If these directions are orthogonal, we have

$$a_{\alpha\beta} u_{\tau_1}^{\alpha} u_{\mu_1}^{\beta} = 0.$$

With the help of (3.3), (3.4) can be written as

$$a_{\alpha\beta} \left[\begin{array}{ccc} \frac{\partial y_{\tau_{1}}^{\alpha}}{\partial x^{i}} & \frac{\partial y_{\mu_{1}}^{\beta}}{\partial x^{j}} - p_{\tau_{1}} & \frac{\partial y_{\tau_{1}}^{\alpha}}{\partial s_{\tau_{1}}} & \frac{\partial y_{\mu_{1}}^{\beta}}{\partial x^{j}} - p_{\mu_{1}} & \frac{\partial y_{\tau_{1}}^{\alpha}}{\partial x^{i}} & \frac{\partial y_{\mu_{1}}^{\beta}}{\partial s_{\mu_{1}}} \\ + p_{\tau_{1}} p_{\mu_{1}} & \frac{\partial y_{\tau_{1}}^{\alpha}}{\partial s_{\tau_{1}}} & \frac{\partial y_{\mu_{1}}^{\beta}}{\partial s_{\mu_{1}}} \right] dx^{i} dx^{j} = 0 \end{array}$$

At the point M, the normal directions which are orthogonal are determined by the ratio dx^{i} : dx^{j} . The determinant of (3.5) is

$$(3.6) a Det \mid A_{\tau\mu}ij \mid = 0$$

where

$$A_{\tau\mu_1 ij} \stackrel{def}{=} a_{\alpha\beta} \left[\begin{array}{cc} \partial y^{\alpha}_{\tau_1} & \partial y^{\beta}_{\mu_1} \\ \partial x^i & \partial x^j \end{array} - p_{\tau_1} \frac{\partial y^{\alpha}_{\tau_1}}{\partial s_{\tau_1}} \frac{\partial y^{\beta}_{\tau_1}}{\partial x^j} \right]$$

(3.6) b

$$-p_{\mu}\frac{\partial y^{\alpha}_{\tau_1}}{\partial x^i}\frac{\partial y^{\beta}_{\tau_1}}{\partial s_{\mu_1}}+p_{\tau_1}p_{\mu}\frac{\partial y^{\alpha}_{\tau_1}}{\partial s_{\tau_1}}\frac{\partial y^{\beta}_{\tau_1}}{\partial s_{\mu_1}}\right].$$

In particular, for a hypersurface, m = n + 1, and the m - n congruences will reduce to a single congruence, Therefore s_{r1} will have only one value, say, s. Then the equation (3.5) reduces to

$$(3.7) ds(\Omega - 1) = 0$$

where we have used (1.1) and the definition

$$p_{\tau_1} \frac{\partial x^t}{\partial s_{\tau_1}} \underline{\underline{def}} \Omega.$$

REFERENCES

[1] UPADHYAY, M. D. : Congruences of curves in a Riemannian space I, İstanbul Üniv. Fen Fak. Mcc. Ser. A, 27, 35-40, (1962).

[2] UPADHYAY M. D. : Congruences of curves in a Riemannian space II, Istanbul Univ. Fen Fak. Mec. Ser. A, 19, 19-22, (1954).

[9] WEATHERBURN C. E.: Differential Geometry of three dimensions, II, CAMBRIDGE UNIVERSITY PRESS, 210-218, (1930).

DEPARTMENT OF MATHEMATICS

(Manuscript received February 18, 1969)

LUCKNOW UNIVERSITY

INDIA

ÖZET

Bir V_m Riemann uzayında, V_n ile gösterilen bir karşılaştırma altuzaynın her bir noktasından sadece birer eğrisi geçecek şekilde çizilen m-n eğrisel kongrüanslarından meydana gelen bir sistem gözönüne alınıyor. Bu araştırmanın gâyesi, bu konarüans sisteminin odak altuzay'larının denklemleriyle kongrüanslara ait bir eğrinin bir noktasındaki ortogonal normal doğrultu'larının denklemlerini bulmaktadır.