^U . P. SINGH AND B. N . PRASAD

The hyper DARHOUX lines (hyper D-lines) on a surface of a 3-dimensional Euclidean space have been defined and studied by PRVANOVITCH [²]. SINGH [⁵] investigated some **properties of these curves for a Riemaunian subspace. The object of this paper is to obfain** the differential equation of the hyper $-D$ -lines of a T_{INSLER} subspace and deduce some **properties of union hyper D-liues.**

1. Fundamental formulae. Let a subspace F_m given by the equations $x^i = x^i (u^{\alpha})$ $(i = 1, ..., n; \alpha = 1, ..., m)$ be immersed in an *n*-dimensional FINSLER space F_a . Consider **any** arbitrary curve $C: u^d \Rightarrow u^d$ (s) (or $x^i = x^i$ (s)) of the subspace. The components x' **(** or $\frac{dx'}{ds}$ and u'^a (or $\frac{du^a}{ds}$) of the unit tangent vector of C are related by $x'^i = B^i_\alpha u'^a$ where $B'_\alpha = \frac{\partial x^i}{\partial u^\alpha}$.

The metric tensors $g_{i,j}(x,x')$ **and** $g_{\alpha\beta}(u,u')$ **of** F_n **and** F_m **are such that**

(1.1)
$$
g_{\mathfrak{a}}\beta(u,u') = g_{i}^{\prime}(x,x') B_{\alpha}^{i} B_{\beta}^{j}
$$

and the tensor

(1.2)
$$
C_{ijk}(x,x') = \frac{1}{2} \frac{\partial g_{ij}(x,x')}{\partial x'k}
$$

satisfies the identities

(1.3)
$$
C_{ijk}(x,x')x'^i = C_{ijk}(x,x')x'^j = C_{ijk}(x,x')x'^k = 0.
$$

There exist $(n-m)$ vectors, called secondary normal vectors $n_{(\mu)}^{\pi i}$ $(\mu = m +1)$ **which satisfy the relations**

83

(1.4) a)
$$
g_{ij}(x,x')n_{(a)}^{*j}B_{\alpha}^{i}=n_{(a)i}^{*}B_{\alpha}^{i}=0,
$$

b)
$$
g_{ij} (x, n_{(\mu)}^*) n_{(\mu)}^{*i} n_{(\mu)}^{*j} = 1,
$$

c)
$$
g_{ij}(x,x')n_{(i)}^{*j}n_{(v)}^{*j}=\delta_v^u\psi_{(i)} \text{ (no summation on }\mu\text{).}
$$

The δ -derivative of a vector field V^i of F_n along the curve C has been defined **by RUND** *["]* **as**

(1.5)
$$
\frac{\delta V^i}{\delta s} = \frac{dV^i}{ds} + p_{jk}^{*i} V^j \frac{dx^k}{ds}
$$

where p_{jk}^{*} are the connection coefficients of the embedding space.

The δ -derivative of the metric tensor g_i , (x, x') along the curve C is given by RUND [⁸]

(1.6)
$$
\frac{\delta}{\delta s} g_{ij}(x, x') = 2C_{ijk}(x, x') \frac{\delta x'^k}{ds} = C^*_{ijk} \frac{dx^k}{ds}
$$

where

(1.7)
$$
C_{ijk}^{*}(x,x') = g_{ij;k}(x,x').
$$

If q^i $\left(= \frac{\delta x'^i}{\delta x} \right)$ and $p^{\mathbf{a}} \left(= \frac{\delta u'^{\mathbf{a}}}{\delta x} \right)$ are the components of the first curvature vectors of the curve with respect to F_n and F_m respectively, we have

(1.8)
$$
q^{i} = p^{\sigma} B_{\alpha}^{i} + \sum_{\mu} \Omega_{(\mu)\alpha\beta}^{*} \left(u, u' \right) \frac{du^{\alpha}}{ds} \frac{du^{\beta}}{ds} \eta_{(\mu)}^{*i}
$$

where $\Omega^*(\mu)_{\alpha\beta}$ are the components of the secondary second fundamental tensors of the **subspace.**

. ¿1x1 $\frac{2.7}{100}$ and $\frac{4.7}{100}$ and $\frac{4$

(2.1)
$$
q^{i} = \frac{\delta n_{(0)}}{\delta s} = K(1) n_{(1)}
$$

where $K(1)$ is the first curvature of the curve. The vector $n_{(1)}ⁱ$ is consistent with the conditions

(2.2)
$$
g_{ij}(x,x')n_{(0)}^j n_{(1)}^j = 0 \text{ and } g_{ij}(x,x')n_{(0)}^j = 1.
$$

The δ -derivative {refer (1b.5)} of the vector $n_{(1)}^i$ gives

(2.3)
$$
\frac{\delta}{\delta s} n_{(1)}^i = \frac{d}{ds} n_{(1)}^i + P_{jk}^{*i} n_{(1)}^j \frac{dx^k}{ds}.
$$

Decomposing this vector in the surface determined by $n_{(0)}^i$ **and** $n_{(0)}^i$ **and orthogonal to this surface we have**

(2.4)
$$
\frac{\delta}{\delta s} n_{(1)}^i = a n_{(0)}^i + b n_{(1)}^i + c n_{(2)}^i
$$

where the vector $n_{(2)}^i$ satisfies

(2.5) $g_{ij} (x, x) n_{(p)} n_{(2)} = o_2 (p = 0, 1, 2)$

A simple calculation based on the equations (1.3) , (1.6) (2.1) , (2.4) and (2.5) gives

$$
a = - K(i); b = -\frac{1}{2} C_{ijk}^{*} \frac{dx^{k}}{ds} n_{(1)}^{i} n_{(1)}^{j}.
$$

Substituting the values of q, b in (2.4) and putting $C = K_{(2)}$ **(the second curvature of the curve) we get**

$$
(2.6) \qquad \frac{\delta}{\delta s} \; n_{(1)}^i = -K_{(1)} \; n_{(0)}^i + K \; n_{(2)}^i - \frac{1}{2} \; C_{ijk}^* \; \frac{dx^k}{ds} \; n_{(1)}^i \; n_{(1)}^j \; n_{(1)}^i \; .
$$

The equations (2.1) arid (2.6) represents the first two FRENET'S formulae for a curve in the FINSLER space.

3. Hyper D-line. Consider a congruence of curves given by the vector field λ^i such that through each point of F_m there passes exactly one curve of the congruence. At the point **of the subspace we have**

(3.1)
$$
\lambda^{i} = t^{*_{\alpha}} B_{\alpha}^{i} + \sum_{\mu} C_{(\mu)}^{*} n_{(\mu)}^{*i}.
$$

The curve *C* **is said to be a hyper D-line of the subspace if the surface spanned by the** vectors n_0^4 and $R(1)$ n_1 , $+ R(2)$ $\overline{+ L}$ n_2 contains the vector λ^i , $(R(1) = \frac{L}{R(1)}$ and $R(2)$ **are the radii of curvatures of the first and second order respectively.) From (2.1) and (2.6) we have**

$$
(3.2) \qquad \frac{\delta^2}{\delta s^2} \quad n_{(0)} = \frac{dK_{(1)}}{ds} \quad n_{(1)} - K_{(1)}^2 \quad n_{(0)} + K_{(1)} \quad K_{(2)} \quad n_{(2)} - \frac{1}{2} \quad K_{(1)} \quad C_{ijk}^* \quad \frac{dx^k}{ds} \quad n_{(1)} \quad n_{(1)} \quad n_{(1)}.
$$

This equation gives .

$$
(3.3) \t g_{1j}(x,x')\left(\frac{\delta^2}{\delta s^2} n_{(0)}^{i}\right)\left(R_{(1)} n_{(1)}^{j} + R_{(2)} n_{(2)}^{j} \frac{dR_{(1)}}{ds}\right) = -\frac{1}{2} C_{ijk}^{*} \frac{dx^{k}}{ds} n_{(1)}^{j} n_{(1)}^{j}.
$$

For the hyper D-liue, we have

(3.4)
$$
\lambda^{i} = A \left(R_{(1)} n_{(1)}^{j} + R_{(2)} \frac{dR_{(1)}}{ds} n_{(2)}^{j} \right) + B n_{(0)}^{j}.
$$

Multiplying this equation by g_i , (x, x') n^A_{00} , g_i , (x, x') n^A_{11} and g_i , (x, x') $\frac{1}{x-2}$ n^A_{00} res**pectively and putting** $\lambda_{(h)} = g_{i}(x,x')$ λ^{i} $n_{(h)}$ $(h = 0, 1, 2)$ **we get** $B = \lambda_{(0)}$ **,** $A = \lambda_{(1)} K_{(1)}$ **and**

(3.5)
$$
g_{ij}(x,x')\lambda^i \frac{\delta^2}{\delta s^2} n_{(0)}^j = -\frac{1}{2} \lambda_{(1)} K_{(1)} C_{ijk}^* \frac{dx^k}{ds} n_{(1)}^l n_{(1)}^j + \lambda_{(0)} g_{ij}(x,x') n_{(0)}^i \left(\frac{\delta^2}{\delta s^2} n_{(0)}^l\right).
$$

86 U . P. SINGH AND B. N . PRASAD

which with the help of equation (3.2) gives

$$
(3.6)
$$

(3.6)
$$
\frac{dK(1)}{ds}\lambda_{(1)} + K(1)K(2)\lambda_{(2)} = 0.
$$

This equation represents the equation of hyper D-line of the subspace.

Theorem (3.1). If the congruence λ^{i} is along the first curvature vector of the curve then the necessary and sufficient condition that it be a hyper D-line is that it be a curve of **constant first curvature.**

Proof. The proof follows from equation (3.6), the definition of $\lambda_{(1)}$ and $\lambda_{(2)}$ and the fact that the vectors $n^{i}_{(1)}$ and $n^{i}_{(2)}$ are orthogonal.

4. **Hyper D - line envolving secondary second fundamental tensors. Writing the** *3* **- differential of equation (1.8) and using [']**

4.1)
$$
n_{(\mu);\gamma}^{*i} = -\psi_{(\mu)} B^i_{\alpha} g^{\alpha\delta} \Omega^*_{(\mu)\delta\gamma} - C^*_{jhk} g^{ji} B^k_{\gamma} n_{(\mu)}^{*h} + \sum_{\lambda} N^{(\mu)}_{(\lambda)\gamma} n_{(\lambda)}^{*i}
$$

we obtain

< 4 -

$$
\frac{\delta^2}{\delta s^2} n_{(0)}^i = \left[\frac{\delta p^{\alpha}}{\delta s} - \sum_{\mu} \psi_{(\mu)} \Omega_{(\mu)\theta\beta}^* \frac{du^0}{ds} \frac{du^0}{ds} \Omega_{(\mu)\delta\gamma}^* g^{\alpha} \frac{du^{\gamma}}{ds} \right] B_{\alpha}^i
$$

+
$$
\sum_{\mu} \left[3 \Omega_{(\mu)\alpha\beta}^* p^{\alpha} \frac{du^{\beta}}{ds} + \Omega_{(\mu)\alpha\beta;\gamma}^* \frac{du^{\alpha}}{ds} \frac{du^{\beta}}{ds} \frac{du^{\gamma}}{ds}
$$

+
$$
\sum_{\lambda} \Omega_{(\lambda)\alpha\beta}^* \frac{du^{\alpha}}{ds} \frac{du^{\beta}}{ds} N_{(\mu)\gamma}^{(\lambda)} \frac{du^{\gamma}}{ds} \right] n_{(\mu)}^{*i}
$$

-
$$
\sum_{\mu} \Omega_{(\mu)\gamma\beta}^* \frac{du^{\alpha}}{ds} \frac{du^{\beta}}{ds} C_{\mu\nu}^* g^{\mu} B_{\gamma}^k n_{(\mu)}^{*h} \frac{du^{\gamma}}{ds}.
$$

Substituting the values of $\frac{\delta^2}{\delta s^2}$ $n_{(0)}^l$ **from (4.2) and** λ^i **from (3.1) in the equation (3.5) we get**

(4.3)
$$
g_{\alpha\beta}(u,u') \frac{\delta p^{\alpha}}{\delta s} t^{\beta} - \sum_{\mu} \psi_{(\mu)} K_{(\mu)}^* \Omega_{(\mu) \alpha \beta}^* t^{\alpha} \frac{du^{\beta}}{ds} - \sum_{\mu} K_{(\mu)}^* C_{ihk}^* t^{\alpha} \epsilon B_i^i n_{(\mu)}^* \frac{dx^k}{ds} + \sum_{\mu} \psi_{(\mu)} C_{(\mu)}^* \left[3 \Omega_{(\mu) \alpha \beta}^* p^{\alpha} \frac{du^{\beta}}{ds} + \Omega_{(\mu) \alpha \beta; \gamma}^* \frac{du^{\alpha}}{ds} \frac{du^{\beta}}{ds} \frac{du^{\gamma}}{ds} + \sum_{\lambda} K_{(\lambda)}^* N_{(\mu) \gamma}^{(\lambda)} \frac{du^{\gamma}}{ds} - \sum_{\mu} \sum_{\nu} C_{(\nu)}^* K_{(\mu)}^* n_{(\nu)}^* C_{ihk}^* n_{(\mu)}^* \frac{dx^k}{ds} + \frac{1}{2} \lambda_{(1)} K_{(1)} C_{ijk}^* \frac{dx^k}{ds} n_{(1)}^l n_{(1)}^j - \lambda_{(0)} \left[g_{\alpha\beta} \left[\frac{\delta p^{\alpha}}{\delta s} \frac{du^{\beta}}{ds} - \sum_{\mu} \psi_{(\mu)} K_{(\mu)}^{*2} \right] = 0.
$$

where we have used

(4.4)
$$
K_{(\mu)}^* = \Omega_{(\mu)\alpha\beta}^* \frac{d\mu^{\alpha}}{ds} \frac{d\mu^{\beta}}{ds}
$$

and the fact that $n_{(0)}^i$, is orthogonal to $n_{(\mu)}^{*i}$.

The first two FRENET'S formulae for the subspace are

(4.5)
$$
p^{\mathfrak{q}} = \frac{\delta}{\delta s} \left(\frac{du^{\mathfrak{q}}}{ds} \right) = k(1) \xi_{(1)}^{\alpha}
$$

$$
(4.6) \qquad \frac{\delta \xi_{(1)}^{\alpha}}{\delta s} = -k_{(1)} \xi_{(0)}^{\alpha} + k_{(2)} \xi_{(2)}^{\alpha} - \frac{1}{2} C_{\beta\gamma\delta}^{*} \frac{du^{\delta}}{ds} \xi_{(1)}^{\alpha} \xi_{(1)}^{\gamma} \xi_{(1)}^{\beta}
$$

where $C^*_{\beta\gamma\delta} = g_{\beta\gamma\delta}$, $\xi^{\alpha}_{(0)} = \frac{du^{\alpha}}{ds}$, $\xi^{\alpha}_{(1)}$ and $\xi^{\alpha}_{(2)}$ are the first and second curvature vectors and $k_{(1)}$, $k_{(2)}$ are the first and second curvatures with respect to the subspace. These equations **give**

$$
(4.7) \quad \frac{\delta p^{\alpha}}{\delta s} = -k_{(1)}^2 \xi^{\alpha}_{(0)} + \xi^{\alpha}_{(1)} \frac{dk_{(1)}}{ds} + k_{(1)} k_{(2)} \xi^{\alpha}_{(2)} - \frac{1}{2} k_{(1)} C^*_{\beta \gamma \delta} \frac{du^{\delta}}{ds} \xi^{\alpha}_{(1)} \xi^{\gamma}_{(1)} \xi^{\beta}_{(1)}
$$

Substituting the value of $\frac{\delta p^{\alpha}}{\delta s}$ in (4.3) and using the fact

$$
\lambda(0) = g_{ij}(x, x') \lambda^i n_{(0)}^j = g_{\alpha\beta} t^{*_{\alpha}} \frac{du^{\beta}}{ds} = t_{(0)}^*,
$$

$$
K(1) \lambda(1) = g_{ij}(x, x') \lambda^{\gamma} q^j = g_{\alpha\beta} t^{*_{\alpha}} p^{\beta} + \sum \psi(\mu) C_{(\mu)}^* K_{(\mu)}^*
$$

|»

we obtain

$$
(1) \quad \frac{dk_{(1)}}{ds} \quad t_{(1)}^* + k_{(1)} k_{(2)} \quad t_{(2)}^* - \frac{1}{2} \quad k_{(1)} \quad C_{\beta\gamma\delta}^* \frac{du^{\delta}}{ds} \quad t_{(1)}^* \quad \xi_{(1)}^{\delta} \quad \xi_{(1)}^{\beta}
$$

 ~ 10

$$
- \sum_{\mu} \psi_{(\mu)} K_{(\mu)}^* \Omega_{(\mu)\alpha\beta}^* t^{*_{\alpha}} \frac{d\mu}{ds} - \sum_{\mu} K_{(\mu)}^* C_{ihk}^* t^{*_{\epsilon}} B_{\epsilon}^i n_{(\mu)}^{*h} \frac{d x^k}{ds} + \sum_{\mu} \psi_{(\mu)} C_{(\mu)}^* C_{(\mu)}^* \left[3 \Omega_{(\mu)\alpha\beta}^* p^{\alpha} \frac{d\mu^{\beta}}{ds} + \Omega_{(\mu)\alpha\beta}^* \frac{d\mu^{\alpha}}{ds} \frac{d\mu^{\beta}}{ds} \frac{d\mu^{\gamma}}{ds} + \sum_{\lambda} K_{(\lambda)}^* N_{(\mu)\gamma}^{(\lambda)} \frac{d\mu^{\gamma}}{ds} \right]
$$

FERNANDERS

$$
-\sum_{\mu}\sum_{\nu} C_{(\nu)}^* K_{(\mu)}^* n_{(\nu)}^* C_{ihk}^* n_{(\mu)}^{*h} \frac{dx^k}{ds} + \frac{1}{2} (k_{(1)} t_{(1)}^* + \sum_{\mu} \psi_{(\mu)} C_{(\mu)}^* K_{(\mu)}^*).
$$

$$
\int_{ik}^{k} \frac{dx^{k}}{ds} n'_{(1)} n'_{(1)} + t^{*}_{(0)} \sum_{\mu} \psi_{(\mu)} K^{*2}_{(\mu)} = 0
$$

where

$$
t_{(1)}^* = g_{\alpha\beta} t^{*\alpha} \xi_{(1)}^{\beta} ; t_{(2)}^* = g_{\alpha\beta} t^{*\alpha} \xi_{(2)}^{\beta}.
$$

The equation (4.8) represents the hyper D-line of the subspace. The equation has been expressed in the secondary second fundamental tensors.

5. Hyper D-lines and union curves. The union curves of the subspace have . been studied by SINGH *[*].* **For these curves we have**

$$
\lambda^{i}=A\,n_{(0)}^{i}+B\,\frac{\delta}{\delta s}\,n_{(0)}^{i}.
$$

Using (3.1), (1.8) and (5.4), we obtain

C

$$
t^{*_{\alpha}} = A \frac{du^{\alpha}}{ds} + B p^{\alpha}, C^{*}_{(\mu)} = B \Omega^{*}_{(\mu)\alpha\beta} \frac{du^{\alpha}}{ds} \frac{du^{\beta}}{ds}.
$$

$$
t^{*}_{(0)} = A, t^{*}_{(1)} = B k_{(1)}, t^{*}_{(2)} = 0.
$$

Substituting these values in (4.8) we get, after some simplification,

(5.1)
$$
k_{(1)} \frac{dk_{(1)}}{ds} + 2 \sum_{\mu} \psi_{(\mu)} K_{(\mu)}^* \Omega_{(\mu) \times \beta}^* p^{\alpha} \frac{d\mu^{\beta}}{ds} + \sum_{\mu} \psi_{(\mu)} K_{(\mu)}^* \Omega_{(\mu) \times \beta \gamma}^* \frac{d\mu^{\alpha}}{ds} \frac{d\mu^{\beta}}{ds} \frac{d\mu^{\gamma}}{ds}
$$

$$
+ \sum_{\mu} \sum_{\gamma} \psi_{(\mu)} K_{(\mu)}^* K_{(\gamma)}^* N_{(\gamma)}^{(\lambda)} \frac{d\mu^{\gamma}}{ds} - \sum_{\mu} K_{(\mu)}^* C_{ihk}^* p^{\alpha} B_i^{\varepsilon} n_{(\mu)}^{* h} \frac{ds^k}{ds}
$$

$$
- \sum_{\mu} \sum_{\gamma} K_{(\mu)}^* K_{(\gamma)}^* n_{(\nu)}^{* t} C_{ihk}^* n_{(\mu)}^{* h} \frac{dx^k}{ds} - \frac{1}{2} C_{\beta \gamma \delta}^* \frac{d\mu^{\delta}}{ds} p^{\gamma} p^{\beta}
$$

$$
+ \frac{1}{2} C_{ihk}^* \frac{dx^k}{ds} q^i q^{\hbar} = 0.
$$

(4>8)

Further since [^l]

(5.2)
$$
\psi_{(\gamma)} N^{(\mu)}_{(\lambda)\gamma} + \psi_{(\mu)} N^{(\lambda)}_{(\mu)\gamma} = \frac{\partial \psi_{(\mu)}}{\partial \mu^{\gamma}} \delta_{\mu}^{\lambda} - C^*_{i\ell k} n^{*l}_{(\lambda)} n^{*l}_{(\mu)} B^k_{\beta}
$$

we have

$$
(5.3)\quad \sum_{\lambda}\,\sum_{\mu}\,K^{\star}_{(\mu)}\,K^{\star}_{(\lambda)}\,\psi_{(\mu)}\,N^{(\lambda)}_{(\mu)\gamma}\,\frac{du^{\gamma}}{ds}=\frac{1}{2}\,\sum_{\mu}\,K^{\star 2}_{(\mu)}\,\frac{d\psi_{(\mu)}}{ds}-\frac{1}{2}\,\sum_{\mu}\,\sum_{\lambda}\,K^{\star}_{(\mu)}\,K^{\star}_{(\lambda)}\,C^{\star}_{i h k}\,n^{*}_{(\mu)}\,n^{*}_{(\lambda)}\,\frac{dx^{k}}{ds}.
$$

A simple calculation based on the equations (1.1), (1.8) and (1.4) yields

(5.4)
$$
\frac{1}{2} C_{i h k}^{*} \frac{dx^{k}}{ds} q^{i} q^{h} - \frac{1}{2} C_{\alpha \beta \gamma}^{*} \frac{di_{l}^{\gamma}}{ds} p^{\alpha} p^{\beta} = \frac{1}{2} \sum_{\mu} \sum_{\nu} C_{i h k}^{*} \frac{dx^{k}}{ds} n_{(\mu)}^{*} n_{(\nu)}^{*} K_{(\mu)}^{*} K_{(\nu)}^{*} + \sum_{\mu} K_{(\mu)}^{*} C_{i h k}^{*} \frac{dx^{k}}{ds} B_{\beta}^{h} p^{\beta} n_{(\nu)}^{*i}.
$$

With the help of equations (5.3) and (5.4), the equation (5.1) reduces to

$$
(5.5) \qquad k_{(1)} \frac{dk_{(1)}}{ds} + 2 \sum_{\mu} \psi_{(\mu)} K^*_{(\mu)} \Omega^*_{(\mu)\alpha\beta} p^{\alpha} \frac{du^{\beta}}{ds} + \sum_{\mu} \psi_{(\mu)} K^*_{(\mu)} \Omega^*_{(\mu)\alpha\beta;\gamma} \frac{du^{\alpha}}{ds} \frac{du^{\beta}}{ds} \frac{du^{\gamma}}{ds}
$$

$$
+ \frac{1}{2} \sum_{\mu} K^{*2}_{(\mu)} \frac{d\psi_{(\mu)}}{ds} - \sum_{\mu} \sum_{\nu} K^*_{(\mu)} K^*_{(\nu)} C^*_{ihk} \frac{dx^k}{ds} n^*_{(\mu)} n^*_{(\nu)} = 0
$$

or

$$
(5.6) \qquad k_{(1)} \frac{dk_{(1)}}{ds} + \frac{1}{2} \frac{\delta}{\delta s} \left[\sum_{\nu} \psi_{(1)} \left(\Omega^*_{(\mu)\alpha\beta} \frac{du^{\alpha}}{ds} \frac{du^{\beta}}{ds} \right)^2 \right] - 2 \sum_{\nu} \sum_{\nu} K^*_{(\mu)} K^*_{(\nu)} M_{(\mu\nu)k} q^k =
$$

where

(5.7)
$$
M_{(\mu\nu)k} = C_{ihk} n_{(\mu)}^{\dagger i} n_{(\nu)}^{\dagger k},
$$

μ

Assuming

(5.8)
$$
\sum_{\mu} \sum_{\nu} K_{(\mu)}^* K_{(\nu)}^* M_{(n\nu)k} q^k = 0
$$

and using the fact

$$
\frac{\delta}{\delta s} \left[\sum_{\mu} \psi_{(\mu)} \left(\Omega_{(\eta) \alpha \beta}^{*} \frac{q u^{\alpha}}{ds} \frac{d u^{\beta}}{ds} \right)^{s} \right] = \frac{d}{ds} \left[\sum_{\mu} \psi_{(\mu)} \left(\Omega_{(\eta) \alpha \beta}^{*} \frac{d u^{\alpha}}{ds} \frac{d u^{\beta}}{ds} \right)^{s} \right].
$$

we get after integrating (5.6)

 Ω

Indiana complete complete the control of the complete complete

90 ^U . P. SINGH AND B . N . PRASAD

$$
\frac{1}{r_1^2} + \frac{1}{\varrho^2} = \frac{1}{a}
$$

where $r_{(1)} = \frac{1}{k_{(1)}}$ and $\rho = \left[\sum_{\mu} \psi_{(\mu)} \left(g_{(\mu) \alpha \beta}^* \frac{d\mu \alpha}{ds} \frac{d\mu \beta}{ds}\right)^2\right]^{-\frac{1}{2}}$ are the radii of geodesic

(with respect to the subspace) and the secondary normal curvatures and $\frac{1}{a^2}$ is the constant of **rr**

integration.

We have thereby established the followiug theorems:

Theorem (5.1). The sum of the squares of the geodesic and the secondary normal curvatures in the direction of a union hyper D-line is the same at all those points where the vector $M_{(w)\&}$ is orthogonal to the first curvature vector q^k :

Theorem (5.2). At all those points where the vector $M_{(\mu\nu)k}$ is orthogonal to q^k , the sum **of squares of the geodesic and secondary normal curvatures in the direction of the union hyper D-line is the same relative to every congruence** *X'.*

REFERENCES

['] ELIOPOULOS , H . A . *Subspaces of a generalised metric space,* **Can. J . Math. II , (1959), 235- 255.**

t'2] PHVANOVITCH, M . *Hyper Darboux lines on a surface in tlire<! dimensional Euclidean space.* **Bull. Cal.** Math. Soc., 47 (1955), 55-60.

[w] RUND , H. The differential geometry of the Finsler space, SPRINGER VERLAG (1959).

m **SINGH. U . P .** *On union curves and pseudogeadesics in Fhisler spaces,* **Kevista Univ. Nac. Tucuman (Argentina) Ser. A , 18 (1968), 35-41.**

[5] SINOH, U . P. *On hyper Darboux lines in Siemamt subspace,* **Tensor (N.S.), 20 (1969), 1-4.**

DEPARTMENT OF MATHEMATICS UNIVERSITY OP GORAKHPUR GORAKHPUR (INDIA)

(Manuscript received September 30, .1969)

OZET

Ü ç boyutlu bir Euklid uzayında bulunan bir yüzeye ait hiper ÛATIBOUX çizgileri (hiper D -çizgileri) PRVANOVITCH tarafından tanımlanmış ve incelenmiştir [2], SINGH, bir RJEMANN uzayının alt uzaylarmdaki benzer çizgilerin bâzı özelliklerini incelemiştir [5]. Bu yazının **gâyesi bir FINSLE R uzayının bir alt uzayına ait hiper D-çizgilerinin diferansiyel denklemini elde etmek ve bundan, birleşim eğrileri olan hiper D-çizgilerinin bâzı özelliklerini bulmaktır.**