AN EXTENSION OF UPPER BOUNDED TECHNIQUE FOR A LINEAR
FRACTIONAL PROGRAM ')

S. 8. CHADHA

The problem considered here is a generalization of my carfier work |%, 9}. The genera-
lization is in 1he sense that the constraint set of the problem under investigatlion has
a large number of equations in each block, ralher than one as in [?, #], coupled
together by relatively few connecting equations. The objective function which is the
ratio of tweo linear functions is to be maximized. From the basis of the given problem
a working basis is obtained which s much smaller in size than the originai one. Two
sets of pricing veclors are compuled lo test the oplimality of ithe solution al any stage
of the algorithan. ’

L. INTRODUCTION

A decomposition principle for solving a linear fractional program has already been given

in [']. A technigue for solving a large block diagonal structured linear fractional program, where
each of the block contains just one equation, has also been given in [%%]. The method proposed
here solves a linear fractional program with more than one equation in each block. The special
structured program is the following :

Maximize
CoXy +Crx,+ Coxy 4 -0 +CL *r
T Dy xg+D X, Dyxy+ - + Dy xp

subject to

Ao Xo + A x4 AgSig + — — — =~ o w oo et Ay xy = b
A xy = bt
Ay xps = b*
‘_-L"‘—‘-iALx,_:
x>0,
Fig. 1

X [Xg s X, Xg,0 oy, Jis a vector of & components, x;, C;, D; have each n; components such that

N=mn, 4 n 4+ ny A; and A; are m X #; and m; X A matrices respectively. M, the total

number of equations, is given by M == m 4 m +-+++ m; . The system in full is given in fig. 2.

i} My sincere thanks are due to Prof, R. 5. Vagma. D, Sc. F. N, L. Dean, Faculty of Mathematics,

UwmiversiTy ofF DEeLHI, and Dr, R. N. Kavus for their valuable guidance in my work.
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No doubt the decomposition principle ['} can be used with greater advantage over the
methods proposed in % 7} ; but here, by taking the advantage of the very special structure of
the problem we extend the device given in [*] to solve such type of problems. The computation
is carried out with the help of a working basis, which has been derived from the basis of the full
system and is of considerably smaller in size, This indeed results in a substantial saving in compu-
tations. Following are the usual assumptions under which the algorithm works :

1. Denominator of the objective function keeps the same sign (say positive), throughout the
feasible region.
2. The given system is of full rank, i.e. none of the given equations is redundant.
3. We assume that the constraint set is non-void,
4, The proposed algorithm is of importance if we assume that L 35 m.
5. Underscoring of a matrix or a vector is done to distinguish it from that of the reduced system,
Following closely the notations and terminology of [% % % %] some definitions and theo-

rems have been set out in the next section, while the algorithm in detail is given in section 3 of
the paper.

2. DEFINITIONS AND THECGREMS

The system of equations which couple together the different blocks is refered as the linking
set. The f-th set of columns of variables §; is a set of columns or the set of the components of X
that a linking set has in common with the i-th block. B denotes the basis of the full system and
is given by B = [AJ’ R {'f e -AJ’”] while the contribution of the set S; towards the basis
B is denoted by

-

=]

o me

Theorem 1, The set S will definitely contribute at least my vectors for the basis of
the full system.

Preof. Since B forms the basis of the full system, therefore, for an M components vector
o, 0,...,0, b,,,H[,....b.-uH[,O,...,O]T we can find scalars 1; such that
A

E 2 AR = 10,0,0.0,6mm, , 1,-bm, g, 0017
=]

e MAiAl =bps k=mtlgme,; 0101

which implies that there are sy, or more 4if in the (/ + 1) th block, since each of the blocks is
assumed to be of the full rank. Hence the result.

Theorem 2. The numbers of the sets 8; containing more than my basic variables cannot
exceed m.
. L
Proof. Since the basis is of the full rank, therefore, the basis consists of nH—Z m; vec-
. =t
tors, This, combined with the result of the previous theorem, establishes the desired result.
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A set S; which contributes more than mr; variables towards the basis of the ful system is
known as an esscntial set and S, is always included in it, The rest of the scts arc known as
inessential scts,

Reduced system and the Working Busis.

Knowing the initial basic fcasible solution (using phase 1) we can separate the sets
S;;i=1,2..,L into two classcs, cssential and inessential. The reduced system is obtained from
the full system by deleting the sub-sets A; X; = bf for which S;is inessentlal. The set of the
essential basis columns restricted to the reduced system will be our working basis, B. It follows
from the construction of the working basis that the working basis will be a basis for the redu-
ced system. A thing of special interest here is that the size of the working basis changes from
step to step; further, one observes that the number of blocks in the working basis may also
change with the change in step, however, their upper bound.is m.

3. THE ALGORITHM

If B~ {Ajf si=1, ..., M]is the basis of the full system then let B=[AR ;7= 1,2,...MR]
denotes our working basis, where members of B arc obtained from the corresponding members
of B by removing their appropriatec components. The values of the inessential basic variables arc

obtained by solving the subproblems A; X; = bt that belong to the inessential sets which are
solved independently by putting equal to zero the variables not associated with the basis, In
order to test the optimality of the solution which is associated with the basis B, we define
2 t 1 L Ly -
£, w0, p® bl =, Ay, ey, ”En?i-l"‘”fnz"‘“uguj_l+1 ...,ufuz I
A M D

L 1 o L
fe, z(l), /1( ), AL = () #asevsma 410 JH|’“'AH*7-1+1 “.lgni]

and

as our set of pricing vectors corresponding to the numerator and the denominator of the objec-
tive function respectively. These are determincd (' % 71 from the relations

b, 20, = — Cp B
and tp, A0, 4D — — p B

where Cp and Dp arc the cost vectors associated with the basis B. Practically there would have

been no advantage if we were to find the prices as given. We shall try to take the help of our wor-
king basis B to get these prices. As has becn shown inf?] we find that [z, 7,,...,%5L [, oy @ml
and those p@ and 2% which arc associated with the essential sets can be obtained from,

—CpB~! and —DgpB",
where Cp and Dy are the cost (row) vectors associated with the working basis B, The

values of af? and %) when 7 belongs to an inessential set are given by

F(i) = [CBf + oz B:] -Br_l
3

2= Dy 4+ B1B!

where Cp;and D p; are the cost vectors assaciated with the basic variables of the inessential set /.

After having determined the multipliers, we are now ready to test the optimality of the
solution, for which we compute Aj , where j refers to non basic columns.

Ay =Z,le;+ G, g0, b AN — Z1d )+ (9, 400,200.0% ).
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Here Z, and Z, are the values of the numerator and the denominator of the objective function
at the basic feasible solution, This solution will stay as an optimal one [’ % 7] if all /ijgO, ot~
herwise we find A, — Maxj Afs (4j>0) and thus zi" qualifies for entry into the basis. Now to

determine the vector which has to leave the basis we express the column A and the vector
B =", b'..,b™ in terms of the basis B. If 4—° and »—' denote the representation of
E"’ and _b in terms of the basis B;‘, then we Have a -

AT =BA— b= Bb-
(3.1) : or

M Mo
iszzqf,iﬂ ; QZZb;/y".

=1 i=}

Ed *
Thus the column which has to leave the basis is given by ﬁ‘% = Min J: . (g{>0). Now 4* enters
7, ioq; -
Y ¥

the basis and vector AY will [eave the basis. As has been shown in [f[ the solution of (3.1) can be

decomposed into two— parts according as the set S to which A® belongs is essential or inessen-

tial. For the sake of completeness a brief account of the san;: is given in the following lines.
In the case where Sq is essential, solving (3.1)is equivalent to solve

(3.2) BA—S=A° : BbL—) =D,

But, however, if S, is inessential the equations to solve are

>

s [ 18T
T

The following four exhaustive cases can be considered for updating. Let 4% € Sgand AY€ S,

(1.3)
rather than (3.1).

a) Both the sets Sp and Sg are inessential. This can happen only when Sp will
coincide with S4, and in this case the working basis will not be affected at all. The only change
will be in the values of those basic variables belonging to the set S4 .

b) Both the sets Sp and Sg are essentials. In this case the pivoting is done with
the help of the working basis B. §", the new value of B—', is given by B! E Bt
where

1 e feg conras 0
0 —kofks oo 0

0
E=|: : :
{1 S g ... O
0 —lygplhy e 1

[

h
when A5 e fe, AN R AR L ke AT M AR
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¢} Sg is inessential but. S, is essential, In the light of our discussion we observe that
this can never happen.

d) Sg is essential but Sy is inessential. This case is resolved by introducing S4 in the
essential sets. The size of the working basis is increased by mg , and then pivot with the help of the
new working basis as in b). A close study of this case shows that : 1) if the set Sg is contributing
more than my + 1 vectors towards the basis B, and the numbers of the essential sets associated

with B is less than m, (which will certainly be the case) then the size of the working basis will re-
main increased by mg . 2) if Sg is contributing just mg -+ 1 vectors towards the basis B, and
the numbers of the essential sets associated with B will be m (this will definitely happen when

we let the set Sg become inessential which will decrease the size of the basis by mg .
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OZET

Bu aragtirmaya konu tegkil edilen problem, yazarin daha Snecki ¢ahigmalariun bir
genellestirilmesidir (2,91, Genelleyme, [?,8] teki durumdan farkl olarak, her blokia tek
bir simrlayice sart denkieminin yerine, aralannda biz: bagntlar: bulunan birer denklem
sisteminin verilmesinden ibarettir. Ghye fonksivonu lineer iki fonksivonun oram olarak
dilginillmekic Ve bunun maksimum kthnmass istenmekicdir. Verilen problemin bazedan
hareket edilerek, bu bazdan daha az sayida eleman ihtiva eden bir calisma baw
bulunmakiadir. Céziim algoritmasmmn her kademesinde, ¢ézilmiin optimullgfim  kontrol
etmek igin iki fiatlandirma vekidrll hesaplanmaktader,




