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The problem considered here is a generalization of my earlier work [*> "̂ he genera
lization is in the sense that the constrHint set of the problem under investigation has 
a large number of equations in eacli block, ralher tlian one as in [J, '*], coupled 
together by relatively few connecting equations. The objective function which is the 
ratio of two linear functions is to be maximized. From the basis of the given problem 
a working basis is obtained which is much smaller in size than the original one. Two 
sets of pricing vectors are computed lo test the oplimality of the solution at any stage 

of the algorithm. 

1. INTRODUCTION 

A decomposition principle for solving a linear fractional program has already been given 
in [ 'J. A technique for solving a large block diagonal structured linear fractional program, where 
•each of the block contains just one equation, has also been given in [V]. The method proposed 
here solves a linear fractional program with more than one equation in each block. The special 
structured program is the following : 

Maximize 

subject to 

Z = 
Cu x0 -j- C, x, + C2 x., -I + C, x, 

Du x0 + DL x, -|- Dt x.2 • + DL xL -h <x 

A, xl 

A% . v a i , 

L 

Fig. I 

X [xu , xt , x s > * • - ,xL ] is a vector of components, X{, Ch Z)f have each « f components such that 

JV = rt|l + n l + " , + nL . A-t and A{ are m x A,-and mi x ni matrices respectively. M, the total 
number of equations, is given by M ~ m -f- tnt + • • • + mL . The system in full is given in fig. 2. 

J ) My sincere thanks are due to Prof. R . S . V A R M A . D. S C . F . N . 1. Dean, Faculty of Mathematics, 
U N I V E R S I T Y OF D E L H I , and Dr . R . N . K A U L for their valuable guidance in my work. 

91 



92 S. S. C H A D H A 

+ 

+ 

+ 

+ 
+ 

B 

+ 

+ 

II " ' -Ci. 
Il H-

»? f a 
II 

i 
II 

4- + 
4- 4-
+ + 

»? 

4- + 
-j 

-t-

4-

X 

4¬

4-
-i¬

Ş 
s: 

•i-
,c 

c 5 

+ + X 
4-

+ 
+ o 

+ 

+ o 

4¬

4-
4¬

4-

+ 

»? 

+ 4-

¿f 
4-

s; •- ce 
T 

c : :   

X 

il 

4r 

J 
II 

** 

+ T 
* 
* 
* • 

4- 4-

+ + 

+ + 

- feo 
3 s, 

H-

4-



A N E X T E N S I O N O F U P P E R B O U N D E D T E C H N I Q U E F O R A L I N E A R F R A C T I O N A L P R O G R A M 93 

No doubt the decomposition principle [ ' ] can be used with greater advantage over the 
methods proposed in I "> 7 ] ; but here, by taking the advantage of the very special structure of 
the problem we extend the device given in ["] to solve such type of problems. The computation 
is carried out with the help of a working basis, which has been derived from the basis of the full 
system and is of considerably smaller in size. This indeed results in a substantial saving in compu
tations. Following are the usual assumptions under which the algorithm works : 

1. Denominator of the objective function keeps the same sign (say positive), throughout the 
feasible region. 

2. The given system is of ful! rank, i.e. none of the given equations is redundant. 

3. We assume that the constraint set is non-void. 

4. The proposed algorithm is of importance if we assume that L ^> m. 
5. Underscoring of a matrix or a vector is done to distinguish it from that of the reduced system. 

Following closely the notations and terminology of [ * . J - fi] some definitions and theo
rems have been set out in the next section, while the algorithm in detail is given in section 3 of 
the paper. 

2. DEFINITIONS A N D THEOREMS 

The system of equations which couple together the different blocks is refered as the linking 
set. The i-th set of columns of variables Si is a set of columns or the set of the components of X 
that a linking set has in common with the i-th block. B denotes the basis of the full system and 

is given by B = \AJ>, A H ,• • -A'"] while the contribution of (he set Sf towards the basis 

B is denoted by 

0 
Bi 
0 

Theorem J , The set Si will definitely contribute at least vectors for the basis of 
the full system. 

Proof. Since B forms the basis of the full system, therefore, for an M components vector 

[0, 0,...,0, &,„ i + I,...,£„f ; + I , 0 , . . . , 0 ] r we can find scalars Xt such that 

M 

Y^^Asi = [0,0, . . . ,0 ,6„ t j + 1 1 . . .A„ / . H ,0 1 . . . ,0] ' 
/—1 

i.e. "Zli A% =* bk \ k = mi + l,...,tm+i, ; O^l^L— 1 ; 

which implies that there are m / + t or more AO' in the (/ + 1) th block, since each of the blocks is 
assumed to be of the full rank. Hence the result. 

Theorem 2. The numbers of the sets S; containing more than basic variables cannot 
exceed m. 

L 

Proof. Since (he basis is of the full rank, therefore, the basis consists of " I _ r ~ ^ mi vec" 
i=-l 

tors. This, combined with the result of the previous theorem, establishes the desired result. 
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A set Sf which contributes more than m ; variables towards the basis of the ful system is 
known as an essential set and S„ is always included in it. The rest of the sets are known as 
inessential sets, 

Reduced system and the Working Basis. 

Knowing the initial basic feasible solution (using phase 1) we can separate the sets 
St; i = i , 2,...,L into two classes, essential and inessential. The reduced system is obtained from 
the ful! system by deleting the sub-sets Ai Xi = b* for which Sj is inessential. The set of the 
essential basis columns restricted to the reduced system will be our working basis, B. I t follows 
from the construction of the working basis that the working basis will be a basis for the redu
ced system. A thing of special interest here is that the size of the working basis changes from 
step to step; further, one observes that the number of blocks in the working basis may also 
change with the change in step, however, their upper bound, is m. 

3. THE ALGORITHM 

I f B = {A>* ; i = 1, M\ is the basis of the full system then let B=[AM ; / = 1,2, . . .MB] 
denotes our working basis, where members of B are obtained from the corresponding members 
of B by removing their appropriate components. The values of the inessential basic variables are 
obtained by solving the subproblems Ai Xt = bl that belong to the inessential sets which are 
solved independently by putting equal to zero the variables not associated with the basis. In 
order to test the optimality of the solution which is associated with the basis B, we define 

7" 1 L¬

as our set of pricing vectors corresponding to the numerator and the denominator of the objec
tive function respectively. These are determined [N 5> 7 ] from the relations 

\n,^\...^L^ = — CBB~l 

where CB and DB ar'e the cost vectors associated with the basis B. Practically there would have 

been no advantage i f we were to find the prices as given. We shall try to take the help of our wor
king basis B to get these prices. As has been shown in[ a ] we find that [>„ ns,...,xm]t {yl tp2.,...,<j?m] 
and those (t^ and X^ which are associated with the essential sets can be obtained from, 

— CBB—' and — DBB~\ 

where CB and DB are the cost (row) vectors associated with the working basis B. The 
values of and X^ti when / belongs to an inessential set are given by 

where CB{ and DBi are the cost vectors associated with the basic variables of the inessential set /. 

After having determined the multipliers, we are now ready to test the optimality of the 
solution, for which we compute Aj , where j refers to non basic columns. 

A j = Z 2 [cj + (*, n^,...^) Afl — Zt id j -V (y, A(i>...A(L)) Ah • 
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Here Z , and Z 2 are the values of the numerator and the denominator of the objective function 
at the basic feasible solution. This solution will stay as an optimal one ['< a> T ] if all Ajf—O, ot
herwise we find As = MaXy Aj ; (dy>0) and thus Ac qualifies for entry into the basis. Now to 
determine the vector which has to leave the basis we express the column As and the vector 
b = (b" , b^L^) in terms of the basis B. I f A~s and b~' denote the representation of 

A" and b in terms of the basis B, then we have 

(3.1) 

As = B A-* 

M 

AJ Q< ^ 

b = Bb~' 

M 

E 
( 

AH . 

b* 
Y =- Min I 

i 

(<7i>0). Now A" enters 

the basis and vector At will leave the basis. As has been shown in [ f i l the solution of (3.1) can be 
decomposed into two parts according as the set SA to which As belongs is essential or inessen
tial. For the sake of completeness a brief account of the same is given in the following lines. 

In the case where SA is essential, solving (3.1) is equivalent to solve 

(3.2) BA~S =AS ; Bb~' - b. 

But, however, i f SA is inessential the equations to solve are 

A'Bl r B_~\A 
B 

(3-3) 

* ™ - E [ o ; ] ' 7 

rather than (3.1). 

The following four exhaustive cases can be considered for updating. Let As £ SA and A"* £ SA. 
a) Both' the sets SQ and SA are inessential. This can happen only when SQ will 

coincide with SA, and in this case the working basis will not be affected at ail. The only change 
will be in the values of those basic variables belonging to the set SA . 

b) Both the sets SQ and SE are essentials. In this case the pivoting is done with 

the help of the working basis B. B~\ the new value of B~is given by B~l E B~l 

where 
"1 — kjks 0" 
0 — kjks 0 

o ! ; 

UK 

— kMJka ... 1 

when /c, A 1 + k, Ah2 + ... + km A1'* + ... + kMD A 
lMB 
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c) Sq is ioessentiai but Sa is essential. In the light of our discussion we observe that 
this can never happen. 

d) 5e is essential but SA is inessential. This case is resolved by introducing SA in the 
essential sets. The size of the working basis is increased by m0 , and then pivot with the help of the 
new working basis as in b). A close study of this case shows that : 1) i f the set SQ is contributing 
more than m% -f- 1 vectors towards the basis B , and the numbers of the essential sets associated 

with Sis less than m, (which will certainly be the case) then the size of the working basis will re
main increased by ma , 2) i f SQ is contributing just mQ + 1 vectors towards the basis B , and 
the numbers of the essential sets associated with B will be m (this will definitely happen when 
we let the set SQ become inessential which will decrease the size of the basis by DIQ . 
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Ö Z E T 

Bu araştırmaya konu teşkil edilen problem, yazarın daha önceki çalışmalarının bîr 
gene II eşi iri İni esidir [a,u^. Genelleşme, teki durumdan farklı olarak, her blokta tek 
bir sınırlayıcı şart denkleminin yerine, aralarında bâzı bağıntıları bulunan birer denklem 
sisteminin verilmesinden ibarettir. Gaye fonksiyonu lineer iki fonksiyonun oranı olarak 
düşünülmekle vc bunun maksimum kilin m ası istenmekledir. Verilen problemin bazından 
hareket edilerek, bu bazdan daha az sayıda eleman ihtiva eden bir çalışma bazı 
bulunmaktadır. Çözüm algoritmasının her kademesinde, çözümün optimıt Ilığım kontrol 

etmek için İki nallandırma vektörü hesaplanmaktadır. 
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