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The results of generalised L I E differentiation in F I N S L E R space, defined in ("] by using 
Su's infinilesimal transformation ["•], are applied to B E R W A L D and RUNI>'S connection 
parameters, the generalised C H R I S T O F F E L symbols and projective connection parameters. 
Certain commutation rules concerning the generalised Lie operator and various kinds 

of operators which arise in the theory of F I N S L E R spaces are also obtained. 

The theory o f L I E differentiation o f Riemannian geometry was extended to F I N S L E R geo
metry by D A V I E S [ a ] and L A P T E V V [* ] . These authors considered the infinitesimal transfor
mation x> = x* + b v'(xJ) ') where the vector-field v', as i n Riemannian geometry, is a 
function o f the coordinates x' and s is an infinitesimal constant. Later Su [ l < 1 ] generalised 

the above transformation taking v{ as a function o f line-elements (JC1'', s ) and extended 
the results o f D A V I E S concerning geodesic deviation. Corresponding to Su's infinitesimal 
t ransformation H ) the differentiation analogous to L I E differentiation (so called generalised 
L I E differentiation or briefly G£-different ia t ion) has been defined by the present author and 
M I S H R A [ " ] . The GL-derivatives o f vectors, tensors and C A R T A N ' S connection parameters have 
been derived i n that paper. The further aspects o f GX-differentiation are studied i n the present 
paper. The first section is introductory and includes some of the k n o w n results for their 
applications in our analysis. The second, third and fourth sections deal w i t h the GL-differen
t ia t ion o f B E R W A L D ' s and R U N D ' S connection parameters, the symbols analogous to those o f 
C H R I S T O F F E L (so called generalised C H R I S T O F F E L symbols or GC-symbols) and the projective 
connection parameters. I n the f i f th section i t is seen that the operator 9; — 3/3,*' which is 
commutative over the L I E differentia! operator (called briefly L I E operator) w i t h respect to a 
7i/-transformation is no more commutative over the G £ - o p e r a t o r wi th respect to a GZ.-trans
formation. Lastly, i n the sixth section, the commutat ion rules o f the GL -operator over various 
kinds o f covariant differentiation operators have been derived. Unless slated otherwise the 
nota t ion used i n this paper is based on [ 8 ] and [°] . 

1. Preliminaries. Let F„ be an H-dimensional F I N S L E R space, w i t h the metric function 

F(x, x) o f class at least Cs. The entities defined by gtj(x, x) dj£('!2) dt 9/ Fx and g^ g k j = d'j 

form the components o f a tensor called the metric tensor o f Fn and are symmetric and positively 

1 ) Latin indices run from 1 to n throughout the paper. 

2) Henceforth the line-element {x> , x' ) will be briefly denoted by (.T, 

3) An infinitesimal transformation will be called fii-(restricted infinitesinal) transformation if v' is a function 

of the x's and G/-(generaliscd infinitesimal) transformation if V is a function of the (.* , x). 

5 
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homogeneous o f degree zero i n the x* 's. The connection parameters rjk (of C A R T A N ) and Gjk (of 

B E R W A L D ) are expressed in terms o f the tensors C"jk(xt x) def gi'< Cjhk = g'1' dj g}>k and the 

GC - symbols y'-k are connected by 

( 1 . 1 ) r y k X * = Gi

JkXK- G}Mdj & m ( y 4 xl > ) • 

Replacing the element o f support x{ by an arbitrary vector-field %{ (x!) R U N D introduced a 

set o f connection parameters P-k (,v, \ ) which ultimately coincide w i t h those of C A R T A N . 

T w o kinds o f C A R T A N ' S covariant derivatives of a tensor T are given by ' ) 

( 1 . 2 ) R * T = 3 * T _ ( a y T)Gl -\-2 T;;ZZ.rll'-^ r , 

and 

0 . 3 ) ' ; * T = » * T - ' - 2 T : : : 1 : : : - d r i r - -
a (J 

The difference (y jVk — VkV j) T gives rise to the curvature tensor 

4* - 2 {9u r*]* + (& ' ^ + r X r ™} , ) , 
where the square brackets denote the skew-symmetric part w i t h respect to the indices enclosed 

wi th in them. ' ) B E E W A L D ' S covariant derivative SB t T and the curvature tensor H\kh (x , x) may 

be described by replacing rj( by Gj f c i n ( 1 . 2 ) and ( 1 . 4 ) . Indeed, B E R W A L D constructed the cur

vature tensor Hjk/l i n the fol lowing way : 

0.5) H j k b m h H l k i H \ k ^ \ - 6 { j H ^ , 

where H'k (x , x) is the deviation tensor. These tensors satisfy 

( 1 . 6 ) H)kh x*=H<k, ll)k xk=*Hj . 

Similarly the part ial ^-derivative and the corresponding curvature tensor Kjkh (x , x) o f 

R U N D [°j (henceforth called after h im) may be obtained f rom ( 1 . 2 ) and ( 1 . 4 ) by replacing the 

functions —G{ by the derivatives dk 

' ) The covariant differential operators ] k, (k) and ;k given by C A R T A N , B E R W A L D and R U N D [»] are more ele

gantly denoted by pk, and Ri, respectively. Also the derivative T U (t°]> equation (4.1.20)) is suitably modified 

in (1.3). 

The present Kf,, is same as Kj of [9], equation (4.1.7) and R' of [ n ] . P- 1 8 7 -
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The GZ.-derivatives o f a tensor T and the connection parameters rjk w i t h respect to the 
G7-transformation 

(1.7) x* = xl + e v ; (x , x), xl = x f + s (xj d - vi + xJ dj v') 

are given by [ 6 ] 

(1.8a) a T = v* 9* T — 2 T;;±;Z h v i * 

-!- ^ r - " ' T " ' . 9 ; u v * + ^ T > 9 * " f e + * f t 

(1.8b) SiT = v* T — £ 7':.".:.*.:.". (F* W - f - v j ; G*) 

+ 2 T ( i 7 y ( ! v* f- v j G*) + (9* X ) ( i * P A + n* ) . 

(1,9a) SrJ/ = 3 / 3 , v' + v" 3 f t r*/ - r** 3 f t vi + 2 , 3 « / jfr - "k *• - r " "ft * ,7,- — -t J k o f t K- - r ^ z u A ) 

1*/' 
jk-

h v l ' '% r*l) & w vh + w'" 

i ..»••, /->h i r-, / . . i " W'-. 

+ ( 9 A ( > 3 r v' 1 + vf) , 

(1,9b) S i r J = Vj Vk V + v f t K'm + ( 9 A ( > F , V * + H>'') 

where vj ^ 9y- v*, (A- , x ) drf vj ( x y -|- 2GJ) and the round brackets denote the symmetric 

part. 

2. GX-der!vatives o f Gjk and P . ^ . As the connection parameters o f B E R W A L D possess 

the same transformation law as those o f C A R T A N therefore for S3 Glk we may transcribe almost 

w o r d for word the method used to derive the formula (1.9b). Thus we may obtain 

Qqk = 93 y ® f t yt + / H).k + G'wfr <$T vh + wh} 

(2.1) 

where Gl

hjk = dh Gj / ( is a tensor-field symmetric i n all the lower indices. 

F r o m (1.1) we have 

(2.2) S3G} - (HGljk) xk + Gjkfxk 

and 

(2.3) E G ' = ( B Gj) xJ + Gj fiV . 

i ) For convenience the GL-operator D of [c] has been replaced by ¡3 . 
L 
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Substituting f rom (2.1) and 

(2.4) Qxk - xh vk

h 

in (2.2) and using (1.1), (1.6), 93 y- xk = 0 and the homogeneity properties o f Gj f t we derive 

SiGj = £ ; % + / < • + (xk dk v), + G; G* 

(2.5) 

Also , f rom (2.3), (2.4) and (2.5), we derive 

KG* = y (33; % V' Xk H- V* J ? i + Gfc v j X , ! ) 

(2.6) 

+ ( > 3 f c + Gj vr

h) Gh+SB. (v[ Gh) xJ . 

For, R U N D ' S connection parameters P.'k being identical w i t h those of. C A R T AN Si P*jk may 

be evaluated f rom the equation (1.8a). However, i f we require to express Si P.'k i n aid o f R U N D ' S 

covariant derivative and the corresponding curvature tensor K.]kh we note that the R U N D ' S 

covariant differentiation differs w i t h that o f C A R T A N i n the respect that the former involves 

the derivatives which are purely functions o f x*'s only, instead o f the functions 

— Gj (x , x) o f the latter. The same distinction also appears i n the corresponding curvature tensors 

Kjkb and K]ki, . The derivatives 9iy v* and p y- fk

 v ' a * s o differ i n the same way except 

for a term resulting f rom the differentiation o f Gk w i t h respect to xr which, i n fact, vanishes 

i n the case o f v'\ Therefore to express S3 pjk i n the required f o r m we have to add one term, 

namely vh (B/t%m) dmPj^ and subtract the same i n (1.9a). Thus, we derive 

2Pjk' = 9 1 , 9t f c v1 -!- v h % k + (dh P*l)(xr 3 r vh + xr v* - v ' dr t ) 

(2.7) 

El iminat ing 3 r vh by the definit ion o f 9 i r vh, introducing one extra term 2 v'' G r and appl

y ing (1.1) and the defini t ion o f if 1 ' , the coefficient o f 3'ft P*k

! i n the above equation reduces to 

xr SRr vh + wh — vh

f (di l r + i £ > ) xl — vl (3, t + PZ >). 

N o w taking the vector - field £[" as the element o f support x* and applying the definit ion o f Ri%' 
i t further reduces to 

xr $il vh + wh — (v£ 'xl + vl ap jK , l r . 

Consequently the equation (2.7) may be rewritten as 
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iii>*< - <$tj ftk yi + vh"kl,jk - ( 3 A v A + PZ vr

h) dj l h 

(2.8) 

+ Ck P]k> U r v A + iv* - (»'; x 1 + v ' $ i f , %'•} - Rj (vj, dk t ) . 

When the vector-field is regarded as s ta t ionary) the covariant differentiation process o f 
R U N D becomes identical w i t h that o f C A R T A N and the corresponding curvature tensors coincide. 
Consequently the equation (2.8) coincides wi th (1 .9b). 

3. GL-differenriation o f GC-symboIs. I t has been seen i n [ 5 ] that the formula for the L I E 

derivative o f Fjk w i th respect to a i i / - t ransformat ion can not be applied to evaluate the L I E 

derivative o f yjk because they do not satisfy the same transformation law as r j k . Therefore to 

evaluate the L I E derivative o f y'jk we had to start f rom the defini t ion. Similarly to evaluate 

the GL-derivative of GC-symbols w i t h respect to a G/-tratisformation we have to revert to the 

definit ion. 

Firstly, we notice that the variat ion in y'jk under the (//-transformation ( 1 . 7 ) is given by 

rl

JkOc, x) = y)k (x , x) + s [vh dh y)k H- ( 3 A y)k) ( > 3 M vh + > >£,). 

Eliminat ing 3 m vh by means o f 

(3-D " i , = f m " ' ' - v ? ^ r i r + v ' 7 ; K , 2 ) 

and using ( 1 . 1 ) the above equation reduces to 

(3.2) ^ {xj) = y'Jk (x ,x) + * {vh 3 f t y)k + ( 3 A y'jk) (> v['m + »/ - vl rfM >). 

Secondly, wr i t ing the transformation law for y'jk ([*], equation (2 .1)) the variat ion in 

y'jk when the CT-transformation ( 1 . 7 ) is regarded a coordinate transformation is obtained by 

Iy)k (x , i ) = y)k (x > x) F [dj dk vi + 2 r ' i ( J dk) v1' - y)k 3 A yi 

(3.3) 

+ {2 Ci(j 3*> 3, vh ~gll» C j k h dt dm vh] x1}. 

Thus, f rom (3.2) and (3.3) , we get 

tyjk = 9 ; 9 * v * v i + 2 Aj a*> v h - y'h dh v + vh dk y)k 

(3.4) -|- (?h y'Jk) ( x - v';m + wh - vl y)m x m ) 

+ {2 C'hQ dk) 3, vh - g^ C j k h 3, dm vh] x1. 

Apply ing the definit ion o f v'jk and the curvature tensor type quantities Z'jkft (arising f rom 

the covariant differentiation for y*jk) the above formula may be reduced to 

1) cf. 1», 96.] 

2) Trie covariant differentiation with respect to yjic has been defined in equation (2.3)]. 
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(3-5) - i - {(dj v U ^ ^ r L + K ^ U 

+ 2 C ; ( ( ; 3 A ) 3 m vh - C j k h 3 r dm vh) > . 

4. Gi-derivative of projective connection parameters. Recently the present author and 
M E H E R [ b ] derived the formula for the L I E derivative o f the projective connection parameters 

4< • = G / * - V T T *2 *« G£v + **" °W 
for a ^/- t ransformation. The variation i n - i ^ under the G/-transformation (1.7) is given by 

(4.2) ( * , i ) = "J* ( * , * ) + * {v* * k » ^ -|- « A y A (.V * r v h + > vj)}. 

Also the transformation law for ,V. / c is 

' * } , t ( i , i) - K c ( 3 , xb) (3 f t x°) + djdk x«] (*a 

+ ("6 ¿ 0 A(y (y f c ) ^ ) ( 3 r 

which, for the G/-transformation, simplifies to 

(4.3) 

F r o m (4.2) and (4.3) we thus have 

2*'Jk = 3 y a* vi + v A 3 A *l

Jk + 2 4 ( J dk) vh~*)k dh vi 

(4.4) 

" - ^ T T 8u3*> a* v h + ( * r ^ v f t + * r ^ 

Apply ing the definition o f projective covariant differentiation ' ) and the definit ion o f projective 

type quantities Q!jk/t the above equation may also be wr i t ten as 

G»Jfc - Pj Pk v* + vh QiJk + 4 J k (x Pr v* + **) 
(4.5) 

+ 0 / ^ , + »i/ "P »J + Pk (vi »}) ~ *'„ 3 / £ ) 3 A v* 
where 

(4.6) o>h (x , x) grf v/ 1 ( i r -|- 2 » r ) 

together w i t h 

J) cf. [̂ ] and [s]. 
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(4.7) 2 « R = « J Xj = *r

Jk XJ i * . 

I t may be noted that the entities wh are different than ip'1 o f the first section. 

5 . The operators Si, dk and 9 f c . The operator 9 f c has been seen ( [11] , p . 189) commutative 
over the L I E operator w i t h respect to an 7i/-transformation. But in the fol lowing we observe 
that i t is not commutative over the GL-opcrator w i t h respect to the G/-transformation (1.7). 

We enunciate the 

Theorem S.l . For the quantities l) Q..'.. (x > x) the operators 0/, and Si commute according to 

(5.1) (3 2 j h i i : , 

where S2A stands for the GL-derivative with respect to a Gl-tvansformaiion generated by the 

tensor field 3/, v'. 

Proof. First we consider a vector-field X' (x , x) whose GL-derivative may be obtained 

f rom (1.8a). Differentiating Si xl w i t h respect to xh and not ing that xk are independent o f 

xh we have 

3 f t 2X' - Oft v') ( 3 y Xi) -f- yi dj 3ft Xt — ( 3 A x' ) ( 9 y yt) 

(5.2) — X> d; 3ft v ' + (dj 3/, ,V) (jt'fc 9 f c v' + A-'* 9 f c v') 

+ (dj Xi) &h v! + > 3 f c 3ft v' + > 9 f c 3 A v ' ) . 

Further, 9 A .if'" being a tensor-field its GL-derivative may be found f rom (1.8a). 

Si3ft X* = v> 9 j 9ft Xt — (3,, Xs) i)j yt + ( 3 Y X') 3 A W 
(5.3) 

+ ( 9 ; 3ft JTO (** 3 A v> + xk 3A vO . 

F r o m (5.2) and (5.3) we obtain 

( 3 A S i—ii 9 A ) xt *= (3ft v') 3 ; X' — 3 y (3ft v'-) 

+ (djXi) [xt dk (9ft vO + 3 f t (3ft vO } . 

Comparison o f the second member o f this identity w i t h the expression for HXJ shows that 

the former might have been derived f rom the latter replacing v' by 3 A v1'. Thus, the formula 

(5.1) holds for a vector-field. 

Similarly i t may be verified for a scalar and a tensor also. 

To establish (5.1) for the connection parameters r * £ or P*.'k we differentiate (1.9a) 

w i t h respect to xh and then evaluate the GL-derivative o f 3 A rjk' f rom (1.8a) as these deri

vatives constitute a tensor-field. Thus, the expression for ( 3 A Si—Si 9 A ) r j k , after cancelling 

some common terms in the operations indicated, reduces to one derived f rom the GL-derivative 

o f by wr i t ing 3 A v' for v'\ Further, the GL-derivative o f G'Jk is analogous to that o f r*k we 

can verify (5.1) for G!

jk i n a similar way. 

t) By quantities here we mean scalars, vectors, tensors, connection parameters of R U N D , C A R T A N and 
BnnwALD, GC-symbols and the projective connection parameters . 



12 R . B . M i S R A 

Next, to verify (5.1) for the GC-symbols a l i t t le complication arises. Since 3/, yjk do not, 

in general, fo rm the components o f a tensor, so Si 3 f i yjk can not be directly calculated 

from (1.8a), Starting f rom the definit ion we may f ind 

2 3ft yjk = vl 3, dh y)k + (3 Z bh y)k) ( > 3 m vl + xm dm vl) 

(5-4) + 2 { 9 A y { y ) 3 t , v, + (3 f i 3 A v ' - 3 A y'jk) 9, v' + 2 C<, 3 A ) 3 A yl 

— gtl C j k m 3, 3ft v"1 + [2 {3ft C1^) dk) dm v1 — (3ft gi* Cjki) 3, 9 m vl] > . 

Then differentiating (3.4) w i t h respect to x A and forming the difference (9ft Si—Si 3 A ) yj,c 

we obtain, after cancelling some common terms, the expression for i t i n the fo rm Si/, yjk . 

Finally, i t is easy to verify (5.1) for the projective connection parameters as their derivati

ves w i t h respect to x& do constitute a tensor-field symmetric i n all the lower indices. Thus, 

differentiating (4.4) w i t h respect to xh and subtracting the expression for Si 9 A djk f rom 

the resulting equation we get 

(5-5) (3ft S i -S i 3ft) 9^ = A 3 ^ . 

This pompletes the proof o f the above theorem. 

Note 5.1. Fo r an ^/- t ransformation SiA vanishes and therefore the operator 9ft is 
commutative over the L I E derivative. 

Theorem 5 . 2 . For any vector-field X'(x, x) the operators Si and dk commute according to 

(5.6) (83* — dk Si) xi = ( 3 y X') (xh dk 9ft W + xh dk v{). 

Proof : As the derivatives 3 f c Xi do not , i n general, possess the tensorial characteristics 
their GL-derivatives can not be calculated f rom (1.8a). Starting f rom the definit ion we 
derive 

B 3 f c Xi = vi dj Bk x* — Oft XJ) dj v ' + 0 ; Xi) 9 & v' 
(5.7) 

— xJ dj dk vi + (dj dk Xi) (xh 3ft vJ + xh 9/, vJ). 

Also, differentiating 2Xl w i t h respect to xk and subtracting the resulting equation f rom (5.7) 
we get (5.6). 

6. Commutation rules. I n general the covariant differentiation is no t commutative over 
the L I E differentiation even w i t h respect to an -/^-transformation. I n the fol lowing theorems we 
derive rules for the Gi-operator Si to commute over various processes o f covariant 
differentiation. 

Theorem 6.1. For any vector-field Xi (x , x) the opertors Si and Ak commute according to 

(6.1) (S3pfc — F f c Si) Xi = Xi Si rjk — (9 Xi) (Si G{ + 3 f cS x>) — Gjc2j X ' . 

Proof. p f c X1 being a tensor, its GL-derivative may be found f rom (1.8b). 
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ZPk * l = F / r-fc Xi - (pk Xh (Vj v1 + v[ o'p 
(6.2) 

+ (Vj (Vk yi + v{ G\) + (dj yk X*) (xh fh v< + wj). 

N o w applying the covariant differential operator Vk over the GL -der iva t ive o f X' we get 

Vk %Xt = v' Ffc Vj Xi + (Vk v' ') Vj Xi ~ (Vk X>) (Vj vi + vh C j ) 

(6.3) —XJ {Vk Vj V* + Vk (vA } + (1 k?j X') (xh \ h v' + w' 

+ (d;Xi)(xhVkVflvi + P A V ) , 

where we have used the fact that x1' remains invariant under p A . Subtracting (6.3) f rom (6.2) 
and using the commutat ion formulae 

2 Vy Vh] Xi = K)hh X'' - (Di A-0 J f j t f t i * 

and 

ttjVk-Vk '<>j)xi-x''-djrk

i

lli 

we get 

( KAk - z l f e S3) Xi - ^ { / I * P ; v* + /c/lif/ + (3 f i r £ ) ( > F r v* + wb) -]- V k ("i, G) ) } 

(6.4) 

+ 0 ' ; * ' ' ) G* - Oy Xi) (VkVh v' xh + v 1 Jf / f t f t x ' 1 + Vk «-'")• 

I n view of (2.4) we may write 

(6.5) Vk ™} = Vk + 2 P A (v^ G A ) . 

Thus the relation (6.4), i n consequence o f (1.9p), (2.5) and (6.5), reduces to 

WVk - Vkf) ^ fr]i - (dj xi) (fc{ +dk/x J) 

+ { 0 j *f) v i - *J dj 4 + 0 / *{~> & dr A + xT a, v{ ) } G k

h . 

N o w applying the definit ion o f the operator i3ft this relation becomes identical wi th (6.2). 

The G £ - o p e r a t o r 13 commutes over B E R W A L D ' S covariant differential operator 33 t i n 
a way analogous to (6.1) : 

(6.6) ( 893A — % 13) xi - x> i3Gj A — Qj xi) ( f i G{ + dk iix J ) + Gj, ii. xi . 

Theorem 6.2 . The operators S3 and Vk commute according to 

(6.7) (S3|"'fr — Vk C ) xi = x ' S3 c / f t f i A — xi 

Proof. The derivative p A x{ being a tensor, its GL-derivative may be obtained f rom (1.8a). 

Thus, applying (1.3) we evaluate S3 Vu '-
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« P * ** -v'tfj 9* xl + ( 3 , *h) Cl

kh+ xh dj C A a } 

(6.8) 

+ { 3 Y 3FC ^ - I - (3 j xh Ckh + xb dj Cl

kh) x* 3 R vj + > v> ) 

Next, wr i t ing the expression for Si x* by (1.8a) and applying the operator yk over i t we also eav-
luate Ak Si x ' : 

Vk %x! = v{ djxi-t- Vj dk x f — ( 8 A x ; ) dj v f — x'1 dj dk V1 

(6.9) - i - (hj dk Xi) (xh dh v> + x h vl

h ) + & x ' ) ( 3 A v> + xh dk dk v'! + xh \ v { 

+ Sk x> — xh 3 f t v> + (3ft x ' ) (xr 3 r vh + xr v f ) } C)k . 

Thus the formula (6.7) follows f rom (6.8) and (6.9). 

Theorem 6.3. The processes of GL-differentiation and the projective covariant differentiation 
commute according to 

(6.10) (2Sp fc - <Bft) Xi = S i . i ^ - ( 3 , Xi) (2 3 £ + 3 A 2 * ' ) + * { 2 j X>. 

Proof. Since the projective covariant derivative tykX* x does not, i n general, possess the 
tensor character its GL-derivative can not be directly obtained f rom (1.8a). Therefore, to eva
luate 2 SpA X> we use the relation ( [ 4 ] , equation (2.3)). 

<$k xi = Bk xi + ihj xi) ( 4 G ; + y G ; A ) - x i {2 aj, G ; 0 r + G ; y A } ] 

Thus we have 

fi<pfc Xi = 22?* J ( i + - i ? - ^ T [ (S3 , JTO (4 G ; + x> Gr

hr) 

(6.11) -|- ( 3 , X^ { d{ 2 G ; + 2(x ' ' G £ f ) { - (2 x') [ 2 d) Gr

k)F + x ' G j A r } 

- J T ^ 2 ^ 2 G £ ) r + 2 ( x i G i i r ) } ] . 

Also the projective covariant derivative o f QX* given by 

(6.12) ^ k * x i B k 2 X * + V T T 1 ( 3 ; ^ } 0 5 G i + * ' } 

~ ( 2 X - ' ' ) { 2 ^ . G ; ) r + x > - G } ] . 

Subtracting (6.12) f rom (6.11) and using (4.1), (5.1), (6.6) we derive (6.10) after some simpli f i 
cation. 
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Ö Z E T 

R I Ü M A N N geometrisindeki L I E türev alma teorisi DAVIITS ['-'1 ve LAPTEVV ["J tarafından 
F I N S L E R uzaylarına teşmil edilmiştir. Bu ilci yazar 

x> = .\-' + s v> (xJ) 

şeklinde bir infinİıezimal dönüşümü hareket noklası olarak kullanmışlardır. Ancak, 
R I E M A N M geometrisinde olduğu gibi, v' vektör alanım x> nokta koordinatlarının bir 
fonksiyonu ve e nu sonsuz küçük bir sabit olarak almışlardır. Daha sunra Su [ t r»î bu 
dönüşümü, vektör alanını FINSI.KB. uzayının bir (x' , i ' ) lineer elemanının fonksiyonu 
otaıak düşünmek suretiyle teşmil cfmİ; ve DAviEs'in bâzı sonuçlarım genclleştirmiştir, 
Su'nuıı dönüşümünden hareket edilerek genelleştirilmiş L I E türev alma işlemi MısiIRA ve 
yazar tarafından [ '>] tanımlanmıştır. Bu araştırmada genelleştirilmiş L I E türev alma 
işleminin bâzı uygulamaları üzerinde durulmaktadır. Bu işlemin BSIIVVALD ve RuND'tın 
bağımlılık parametreleri, genelleştirilmiş C I I R I S T O F F E L sembolleri ve projektif bağımlılık 
parametreleri ile İlgisi incelenmekte ve işleme tekabül eden operatör ile F I N S L E R uzayları 
teorisinde karşdaşılan diğer bâzı operatörler için komütasyon bağıntıları elde edilmektedir. 


