ON THE GENERALISED LIE DIFFERENTIATION ARISING .
FROM SII'S INFINITESIMAL TRANSFORMATION '

R. B, Misra

The results of generalised Lie differentiation in  FiNsLErR Space, defined in {#] by using

Su’s infinitesimal transformation [6], are applied to BerwaLp and RUND's connection

parameters, the generalised CHrisToFFEL symbols and projective connection parametess.

Certain commutation rules concerning the generalised Lic operator and various kinds
of operators which arise in ihe theory of Finsicr spaces are also obtained,

The theory of Lie differentiation of Riemannian geometry was extended to FiNSLErR geo-
metry by Davies [2] and Larrew [®]. These authors considered the infinjtesimal transfor-
mation ¢ = xi + 5 vi(x/) "} where the vector-field v, as in Riemannian geometry, is a
function of the coordinates xf and ¢ is an infinitesimal constant. Later Su ['*] generalised

the above transformation taking i as a function of line-elements (x¥, x©}® and extended
the results of Davies concerning geodesic deviation. Corresponding to Su’s infinitesimal
transformation® the differentiation analogous to Lie differentiation (so called generalised :
Lie differentiation or briefly GL-differentiation) has been defined by the present author and :
Misera [°]. The GL-derivatives of vectors, tensors and CARTAN’S connection parameters have :
been derived in that paper. The further aspects of GL-differentiation are studied in the present
paper. The first section is introductory and includes some of the known results for their
applications in our analysis. The second, third and fourth sections deal with the GL-differen-
tiation of BErwarLp’s and RunD’s connection parameters, the symbols analogous to those of
CHRrisTOFFEL (So called generalised CurisTorrer. symbols or GC-symbols) and the projective
connection parameters. In the fifth section it is seen that the operator 3; = 9joxi which is
commutative over the LiR differential operator (called briefly LiE operator) with respect to a
RI-transformation is no more commutative over the GL-operator with respect to a GL-trans- :
formation. Lastly, in the sixth section, the commutation rules of the GL-operator over various ;
kinds - of covariant differentiation operators have been derived. Unless stated otherwise the ‘
notation used in this paper is based on [*} and ["L

1. Preliminacies. Let F, be an »-dimensional FiNsLER space with the metric function
F(x, x) of class at least €*, The entities defined by #; (x, x) def (1/,) 4 8; F7 and gi* &ry = 6}'
form the components of a tensor called the metric tensor of F, and are symmetric and positively

1} Latin indices run from 1 to a throughout the paper.
?) Henceforth the linc-element {x! , JE") will be briefly denoted by {x, r)
3} An infinitesimal transformation will be called Ri-(vestricted infinitesinal) transformation if ¢ is a function

of the x's and GI-(generalised infinitesimal) transformation if viis a function of the {(x ,;':).
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homogeneous of degree zcro in the xt *s. The connection parameters I';.ﬁ (of CarTaN) and G}k (of
BERWALD) are expressed in terms of the tensors € (x, x) def gin Cibke = 5 g 8, gnj and the

GC-symbols ?’;:.fc are connected by

; e T ey
1.1y Fﬂc xk =Gy xk = G dely, G def 0, (—2— Fhy X %™ ) .

Replacing the element of support it by an arbitrary vector-field &7 (x/) Runp introduced a
set of connection parameters P ;Ic 7 (x, ©) which ultimately coincide with those of CARTAN.

Two kinds of CarTaNn’s covaciant derivatives of a tensor T are given by ')

(1.2) FeT=0T-—@, 1G] Z s ZT .
and
139 T e 3 TG - 3 T G

ke B

The difference ( Ve — [?-k["j) T gives rise to the curvaturc tensor

: ) 1
(1.4} Ky =2 {B[kajh + {8 Iyy,) 6 + Pr{; e,

where the square brackets denote the skew-symmetric part with respect to the indices enclosed

within them. # BerRwWaLD’s covariant derivative B T and the curvature tensor HY  (x,) may

Jkctr
be described by replacing I” Jk by G % A0 (1.2) and (1.4). Indeed, BERWALD constructed the cur-

vature tensor H_;M in the following way :

a def 2
s My #0000 W, My 0220 1],
where I }c (x, x') is the deviation tensor. These tensors satisfy
P i ko
(1.6) G X =Hj, M) x*=H.

Similarly the partial d-derivative and the corresponding curvature tensor E;kh (x, 'x) of
Ruwnp [°} (henceforth called after him) may be obtained from (1.2) and (1.4) by replacing’ the
functions —G;,'; by the derivatives oy EJ.

13 ‘The covariant differential operators | &, (%) and ;k given by CarRTAN, BErwALD and Runp |*] are more ele-
eganily denoted by g, EB:: and Ry respectively, Alsa the derivative T | ({9], eqnation (4,1,20)) is suitably modified
in (1.3). '

2) The present Kfr. is same as K',qu of {9}, equation (4.1.7) and ‘R}kh of [11], p. 187.
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The GI-derivatives of a tensor T and the connection parameters Pj’z with respect to the
GI-transformation

(L7 g?izx!'—{-ev"(x,x'),‘;?-i:x.iJrs(J'c"‘ajvl'Jr;jéjvl)

are given by [¢]

sy 0 RETEVOGLIT A e
o
| Z Tf ...... 3y vk (ka)(‘h Op vE £ % |’k]),
a
(1.8b) ST = vk T— ) 7K (e vie 4 v G
Y TR, e vEGEY (B TG P ve + W),

8

(1.92) Qry =00 v+ o Iyl — Tl B vi + 2T 9!
+ Qr DY 73, vR + 5D,

(1.96) 8L =7 vyt + R KL, + O I 7 et 4 wh)

+ Qp v+ T vy G + 7,056,

where v }d_ 3, vt wi (x, x) def dEfv (x’ -+ 2G4 and the round brackets denote the symmetric
part.

2. GL-derivatives of Gj.k and P;: . As the connection parameters of BERWALD possess

the same transformation law as those of CARTAN therefore for 8 Gfk we may transcribe almost
word for word the method used to derive the formula (1.9b). Thus we may obtain

8G), = B; By v + VP HYy + Gl 67 B, 4wk

2.1
+ (ak v;x + G;(r V;;) G;r + %j (V;‘ Git)'
where G; ik = ah , is a tensor-field symmetric in all the lower indices,

From (1.1} we have

(2.2) 8G) = (3Gh) xk + Gl f x*
and
@3 LGi=@QG)x + G Ex

1} For convenience the GL-operator D of [0] has been replaced by Q.
L
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Substituting from (2.1} and
@24 Qxk = xh yk

in (2.2) and using (1.1), (1.6), B ; x% = 0 and the homogeneity properties of Gj.k we derive

8G =B By vi xk + v* H, + (xk 3 v, + G ) GF
@.5)
+ Z‘EBJ- (vf;‘ Gh) + Gj.k ”;: P

Also , from (2.3}, (2.4) and (2.5}, we derive

) R 1 g : i T
$GT = (B By vix/ xk 4 V" H + Gl vy, xP)

(2.6)
+ (xR 0 v + GV GM 4 B0 oy xd

For, RUND's connection parameters P_:,: being identical with those of CARTAN £ P;‘,i may
be evaluated from the equation (1.8a). However, if we require to express ¢ P:,: in aid of Runp’s
covariant derivative and the corresponding curvature tensor I&}’M, we note that the RuNp's

covariant differentiation differs with that of CarTAN in the respect that the former involves
the derivatives o jgf, which are purely functions of xi’s only, instead of the functions

— G} {x , x) of the latter, The same distinction also appears in the corresponding curvature tensors
r}(}fk,, and Ig'}d,. The derivatives 9 ; Ry, v¥ and p; fr v¥ also differ in the same way except
for a term resulting from the differentiation of G,’cl with tespect to x* which, in fact, vanishes
in the case of SRx vi, Therefore to express £ P;j in the required form we have to add one term,

namely ¥ (35 £™) ém P;,; and subtract the same in (1.9a). Thus, we derive

LRy = R, Re v+ v Kige + G PROGT 3,04 + %7 ) — v 8, Eh)
Q7

*f

— @V, + Py 8 e — R (O 9 B
Fliminating 8, v* by the definition of R, v*, introducing one extra term 2 vf_ G" and appl-
ying {1.1) and the definition of wi, the coefficient of B',, Pj,: in the above equation reduces to
X Roh 4wt — @8+ P xmy Al @ eh + P emy,

Now taking the vector - field Ef as the element of support ¥ and applying the definition of Rytt
it further reduces to

TR o — (v}: o+ " alr')igh 134

Consequently the equation (2.7j may be rewritten as
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8P = R Ry vi + A Kige — @ vh + Prgv))a &
(2.8)
+ @n PO S v bk — O X+ 0ol RiETY - R, (8, ED).
When the vector-field £f is regarded as stationary:) the covariant differentiation process of

RuUND becomes identical with that of CarTaN and the corresponding curvature tensors coincide.
Consequently the equation (2.8) coincides with (1.9b).

3, GL-differentiation of GC-symbols. It has been seen in [®] that the formula for the Lie
derivative of F;,: with respect to a RI-transformation can not be applied to evaluate the Lig

derivative of }J_;.’c because they do not satisfy the same transformation law as [';.: . Therefore to

evaluate the Lig derivative of T;k we had to start from the definition. Similarly to evaluate

the GL-derivative of GC-symbols with respect to a Gi-transformation we have to revert to the
definition.

Firstly, we notice that the variation in ?jk under the (I-transformation (1.7) is given by
YR B = vl G 3 s DRk Garl) 7 At X
Eliminating 3,, ¥® by means of

I . ool h
(3.1) v, = - ph - P.’r Yoer af + vi yn’:ﬂ -9

JIH

and using (1.1} the above eguation reduces to
(3.2) P (B, D) = vhy (0 + 2 (R 3yl + @arl) Gm Vi, + vt —igf, 3

Secondly, writing the transformation law for yjk (I*1, equation (2.1)) the variation in

}ij when the Gl-transformation (1.7} is regarded a coordinate transformation is obtained by

i G4 5) = vy (e, Xy — o 18, 8 v+ 2y B v — o 9y vF
3.3
+ {2 C,';U Ay 97 ¥t - gt Cixh dy o, vh} Fa )
Thus, from (3.2) and (3.3) , we get
ry i r N .
Srjvk =0y b v v+ 29y On) v — ¥ Op ¥+ vh B i
(3.4) 4 @ iy Gt b wh =V g ™)
+ (2 Ciyy iy 32 V" — & C e By 3 vI} X,
Applying the definition of Pijk and the curvature tensor type quantities ijh (arising from

the covariant differentiation for y'jk) the above formula may be reduced to

1} cf. 1%, 96.]

?} The covariznt differentiation with respect to '{;-fa has been defined in [%, cquadion {2.3}]
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Wyl = v 1V Zh @y vl GV Wl
(3.5 (@) v, + ¥y VY Vi + Gl ik
2 Cly 8 v — T C o 3y 0 VR 1™
4, GL-derivative of projective conuection parameters. Recently the present author and
MesER [*] devived the formula for the Lig derivative of the projective connection parameters
(4.1) oAl N Gy — 7 (20], G, + % Gy )

for a RI-transformation, The variation in njk under the Gi-transformation (1.7) is given by

@.2) ah (8, %) = 2l (x, x) + o ok aly e GV ).

Also the transformation law for n}k is

,ﬂ_iﬂc &, “_;) = ‘qgc @j xb) @k x°) +-§_,v-_a-k xa] (ﬂa f!‘)

TEET H (g 7o 27 0y, (g 47) @B, 59,

which, for the Gl-transformation, simplifies to
8¢y tn v*

.. C 2¢
r;rc}k(x,x):ﬂ}k(x,x) ‘I*ﬁ—l

“.3)
¢ {rcj‘ apvi 4+ 2 H:’(J Ty vh ffz?k ap v
From (4.2) and (4.3) we thus have
53:15,.‘ =8, d vt + vy, “;k + 2 ﬂ;iu Bk) vhu—n‘f;k o v
4.4

+1 6(jak)3;,v +nh1k(x 0 v Xy ,,').

Applying the definition of projective covariant differentiation ) and the definition of projective
type quantities Qj'.'m the above equation may also be written as

Srge = Py Prvi+ V" Oy + g (e Py v+ b

4.5)
2
+ (3; vy + "rj Vi) ”‘.'c + P 0 j) + ‘s(j 9y Bn v
where
(4.6) P (x, x) def pM (37 |- 2 a7)

together with

1) of. [4] and [5].
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@.7 : 2a" =l %) = 2% & ak,

h

I't may be noted that the entities «® are different than 1"* of the first section.

5. 'The operators £, d; and ;. The operator 94 has been seen ([11], p. 189) commutative
over the Lie operator with respect to an Ri-transformation, But in the following we observe
that it is not commutative over the GL-opcrator with respect to the Gl-transformation (1.7,

We enunciate the

Theorem 5.1. For the quantities V) Q77 (x, ¥) the operators &y and & commate aceording to

(5.1 @e—udp AT,

where 53}! stands for the GL-derivative with respect to a Gl-transformation generated by the
rensor field 'r);, vi,

Proof. First we consider a vector-field X* (x,J'c) whose GL-derivative may be obtained
from (1.8a), Differentiating € xi with respect to x” and noting that x* are independent of

h we have

x
p BXE = @ v @ XD 4 vi 0, 0y XE— (O 57 ) (99D
(5.2 — X7 3 3pvi 4+ @ 35 X9 (xk 0 v + 3 O 0T
+ @, X @n v 4 Xk 3 3y v+ Xk 3y 3y, ),
Further, Eih X! being a tensor-field its GL-derivative may be found from (1.8a).
o X1 = v/ 9,0 Xi—@p X0, v+ (@ X% o v
5.3
+ (@ p X (k3 I 4 ki vy
From (5.2) and (5.3) we obtain
Or 8L v = (@pv) o, X1 — X0, @5 vD)
+ (@) X0 ke By B vy + 3k 3 @) ).
Comparison of the second member of this identity with the expression for X 4 shows that
the former might have been derived from the latter replacing vt by 3}1 vé, Thus, the formula
(5.1} hoids for a vector-field.

Similarly it may be verified for a scalar and a tensor also,

To establish (5.1} for the connection parameters FT}C or I"’:jc we differentiate (1.9a)
with respect to x® and then evaluate the GL-derivative of é;, F;,i from (1.8a) as these deri-
vatives constitute a tensor-field. Thus, the expression for (3 £—8 dp) 1‘; , after cancelling
some common terms in the operations indicated, reduces to one derived from the GL-derivative

of by writing 3, »i for vi. Further, the GL-derivative of ij is analogous to that of F;f we

can verify (5.1} for ij in a similar way.

1y By quantities here we mean scalars, vectors, tensors, connection parameters of RuUND, Canraw and
Brrwalp, GC-symbols and the projective connection parameters .
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Next, 1o verify (5.1) for the GC-symbols a little complication arises. Since 8}, ?’;k do not,

in general, form the components of a tensor, so £ 3;, ";k can not be directly calculated
from (1.8a), Starting from the definition we may find

L 3h vl — VIO 0 vh + @rdp vl G A v 4 S B ﬁ’)
(5.4) + 2 (8 7} B3 ve + @a i) Bn vt — n vl B vi + 2.CF, 8y Byt

— g C e 91 9 V™ + [2 (B €L 0 8 v — Bag™ Cjen) B, B0 V1] 00,
Then differentiating (3.4) with respect to x” and forming the difference (é}, g 8';,) y}'k
we obtain, after cancelling some common terms, the expression for it in the form £, ?';k .

Finally, it is easy to verify (5.1) for the projective connection parameters as their derivati-
ves with respect to xh do constituie a tensor-field symmetric in all the lower indices, Thus,
differentiating (4.4) with respect to x* and subtracting the expression for € 'Bh B}k from
the resulting equation we get

(5.5 (0n 8—8 35) 0%, ~ fr 0% .

This completes the proof of the above theorem.

Note 5.1, For an R/-transformation i.’.;! 2
commutative over the L derivative.

Theorem 5.2. For any vector-field Xi(x , x) the operators & and ék co mmute according to
(5.6) (80 — B xf = (@, X0 (P 3 9 v/ + X 3y ).

Proof : As the derivatives 9y X7V do not, in general, possess the tensorial characteristics
their GL-derivatives can not be calculated from (1.8a). Starting from the definition we
derive :

8 X =08 X" — @ X9 0w+ (0, X0 g v/
(5.7) '
DB v+ B0 XB (R By v+ X B ),

Also, differentiating 8X1 with respect to x¥ and subtracting the resulting equation from (5.7)
we get (5.6).

6. Commutation rules. In general the covariant differentiation is not commutative over
the Lie differentiation even with respect to an RiI-transformation. In the following theorems we

derive rules for the Grl-operator £ to commute owver various processes of covariant
differentiation,

Theorem 6.1. For any vector-field Xi (x, ,\'c) the opertors & and Ay commute according to
(6.1) @ — P X = XTIl — @ XD @ 6] + 58 x) — 68, xt.

Proof. pj X! being a tensor, its GL-derivative may be found from (1.8b).
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Qg X =i Fil X — (7 Xj) (Vj vi g vj: G‘.;r)
6.2
F XD VG @y r XD G vl 4w,

Now applying the covariant differential operator [ over the GL-derivative of X7 we pget
P 8XT = v P v X4 (v i X — (e X (70t + v, 6T
(6.3) — XV v+ P Of G4 Gt XD v/ +w!
+ @, XD v va v+ pevd), |

where we have used the fact that x* remains invariant under % Subtracting (6.3) from (6.2)
and using the commutation formulae

27 Py Xi= I(;M Xy xH Kj.kh xh
and
(‘jj Fe— Vi éj)X" = Xt bj I‘;’;,L
we get

(8 — A B Xi = X (A 7y vi+ P Kl + Gn D) G 1 vh 49 4 1 0, 67))
6.4)
+ (XD v, Gl — @ XD (Frlp v/ X" A+ Ky, X+ g ).

In view of (2.4) we may write
6.5 vew = 8x0 1 2 ] 6N,
Thus the relation (6.4), in consequence of (1.9p), (2.5) and (6.5), reduces to
U e—Fief) 3= xt [T — @ %) (FGf +3xSx /)
+ 4@ vl — 0, v+ @2 GF v+ X7 8, v G
Now applying the definition of the operator 531: this relation becomes identical with (6.2).

The GI-operator £ commutes over BERwALD’s covariant differential operator B, in
a way analogous to {6.1) :

(6.6) (88, — B, 0) xi = x/ 06, — (@; x) @G] + 0,87 ) + GL &, x7 .
Theorem 6.2, The operators & and. V & Commute according to
6.7 @y — Ve x' = x 8 Gh L —x

Proof. The derivative |7',v, xt being a tensor, its GL-derivative may be obtained from (1.8a),

Thus, applying (1.3) we evaluate £ ‘Vk xf:
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Ry xi = pf {aj El'k xt+ (7 X Cih.'—]- & Bj C;;;.I}
(6.8)

4y G xt ok @ Chy P b 3B, )

Next, writing the expresston for € x7 by (1.8a} and applying the operator j}k over it w.e also eav-
Inate 4, 8 x¥:

Vi Sxi = vf;Bj Xy, 3wt — (B 21 éj e 9 Ok v
(6.9) A Gty O w0y P By v/ o xR vl ) 4 @ xh) @ v+ X B B+ KR
R a © — g AN T, e
Thus the formula (6.7) follows from (6.8) and (6.9},

Theorem 6.3. The processes of GL-differentiation and the projective covariani differentiation
commute according fo

(6.10) (05 — Py X = X7 Bl — (0, XDQ DL+ Lx) + 2f & ¥/,

Proof. Since the projective covariant derivative X7 x does not, in general, possess the
tensor character its GL-derivative can not be directly obtained from (1.8a). Therefore, to eva-
Iuate £ P X7 we use the relation ([}, equation (2.3)).

1

P X =B X' + 7

13; X9 (8} G + x/ Gip)— X1 {28 G + 3 Gyt |

Thus we have

; 1 o .
2P Xi = LB, Xi + = [(€9; XD 6L G+ %/ 6T )
(6.11) -+ @, x4 o, 861 + 8/ GL) { — (@ Xf){ 26 Gy, + 5 G}

—x/ 42 ag_,. 8G,, + &Uxt Gy, 133}

Also the projective covariant derivative of @X7 given by

Ry LX = By, 8Xi +

1 . .. .
6.12) S [0, 00 0 6]+ ¥ 6y)

—@xH {286, + ¥ G} L

Subtracting (6.12) from (6.11)} and using (4.1}, (5.1), (6.6) we derive (6.10) after some simplifi-
cation,

.E;
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IO CH S LR P P



[t] Dawvies, E. T,

[?] Davies, E, T.

[8] Laptew, B.

[#] Misgra, R, B,

[*] Misra, R. B,

(5] Misra, R. B,
AND
Misura, R. 8.

[71 Misra, R. B,
AND
Misnra, R, 8,

[#] Misra, R.B,
AND
Mener F. M,

{71 Rump, H.
[t] Su B.
[1:] Yano, K.

ON GENERALISED LIE DIFFERENTIATION 15

REFERENCES

1 On the infinitesimal  deformation af a space, Ann. Mat. Pura Appl. (9 12, 145-151

(1933),

1 Lie derivation in generalised meltric spaces, Ann. Mat, Pura Appl. (4) £8, 261 - 274 (1939),

: Une forme invariante de la variction el la dérivée de S, Lie, Bull, Soc. Phys.-Math,

Kazan (3) 12, 3-8 (1940),

1 The projective transfarmation fn a Finsler space, Ann, Soc, Sci. Bruxelles 80, 227-239

(1966),

2 On the deformed Finsler space, Tensor (N.8,) {9, 241 - 250 ([968).

» Lie deripatives of vavions geometric entitics in Finsler space, Rev. Fac, 8ci.  Univ.
: Istanbul, Ser. A, 30, 77- 82 (I965).

: The Killing vecter and the generalised Killing equation in Finsler space, Rend, Cire,

1 Mat. Palermo (2) 15, 216 - 222 (1966).

i Lie differentiation in projective Finsler space, Under publication,

: The Differential Geometry of Finsler Spaces, SPRINGER VERLAG, {(959),
+ Geadesic deviation in generlised metric spaces, Acad. Sinica Sci Rec. 2, 220 - 226 (1949),

: The theory of Lie derivatives and its applications, North HorLranp PUsLISHNG

co., Amsterdam (1957),

DEPARTMENT OF MATHEMATICS { Marnuscript vecelved Janiury 8, 1970)
UNIVERSITY OF ALLAHABAD

ALLAHABAD - INDIA

OZET

Rismann peometrisindeki Lie tiirev alma teorisi Davies [?] ve Laprew [3] tarafindan
Fiwscer uzaylarina tesmil edilmigtic. Bu {ki yazar

F o= xi b osvi (xf)

seklinde bir infiniiezimal dénigiimii harcket noktasi olarak kullanmiglurdir. Ancak,

RieMAni geometrizinde oldugu  gibi, + vektdr alanine x/ nokia koordinatlannin  bir
fonksjyonu ve ¢ nu seusuz kiigiik bir =abit olarak almiglardir, Daha sonra Su [!%} bu
diniigimii, vektdr alamm  Frwsirr uzaymmn bir (¢F , & ) lincer elemammm  fonksiyonn
olarak dilsiinmek suretiyle legmil eimiz ve Davies'in bdzi sonuclanim  gencllestirmistir,
Sunun  doniigimiinden hareket ediierek genelleysivitmis Lig tirev alma  iglemi Misiura ve
yazar tarafindan [*] tanimlanmgtir, Bu aragtirmada  gencllesilrilmis Lig firev alma
igleminin biznr uypntamatart Gzerinde dernimakeadir, Bu  iglemin Hsewatp ve RUND'un
baf@imhilik parametreleri, genellegticilmiy CorisSvoFFEL sembollzri ve projektif bagimlilik
parametreleri ile ilgisi incelenmekte ve igleme tokabiil eden operatr ile FinsLEr uzaylan
teorisinde kargdayilan diger bz aperatrler jcin komiitasyon bafintilan clde ediimektedir,




